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The nature of the superconducting transition in highly underdoped thick films of La,_, Sr,CuOy4 (x = 0.07 and
0.08) has been investigated using the in-plane transport measurements. The contribution of superconducting
fluctuations to the conductivity in zero magnetic field, or paraconductivity, was determined from the
magnetoresistance measured in fields applied perpendicular to the CuO, planes. Both the temperature dependence
of the paraconductivity above the transition and the nonlinear current-voltage (/-V') characteristics measured
across it exhibit the main signatures of the Berezinskii-Kosterlitz-Thouless (BKT) transition. The quantitative
comparison of the superfluid stiffness, extracted from the /-V data, with the renormalization-group results for
the BKT theory, reveals a large value of the vortex-core energy. This finding is confirmed by the analysis of the
paraconductivity obtained using different methods. The results strongly suggest that the characteristic energy
scale controlling the BKT behavior in this layered system corresponds to the superfluid stiffness of a few layers.

DOI: 10.1103/PhysRevB.93.024519

I. INTRODUCTION

One of the most intriguing phenomena in con-
densed matter systems is the occurrence of the so-called
Berezinskii-Kosterlitz-Thouless [1-3] (BKT) transition in
two-dimensional (2D) superfluid systems. The main ingre-
dients of the BKT physics were described originally within
the context of the two-dimensional XY model, which is an
effective model for the collective phase of the superfluid order
parameter [4,5]. Here, logarithmically interacting vortexlike
topological excitations drive the transition from the superfluid
state, where they are bound together in vortex-antivortex
(V-AV) pairs, to the metallic one, where single-vortex excita-
tions proliferate. This mechanism leads in principle to several
peculiar signatures in the physical observables, such as the
universal and discontinuous jump [6] of the superfluid density
at Tgkr, the observation of which in *He films [7] was the
first experimental proof of the existence of a BKT transition.
Afterwards, interest in BKT physics was triggered mainly by
the possibility to observe it in superconducting (SC) systems
that can be considered to be in the 2D limit. On very general
grounds, this occurs for systems with low superfluid stiffness
Js, defined as the energy scale associated to the areal density
of superfluid electrons:

W2ngdgkr h*c? dgkr 1
 dm l6me? A2 M
where ng,m denote the superfluid density and mass of the
carriers, respectively, A is the magnetic penetration depth
and dpkr denotes a transverse length scale over which the
system can be seen as effectively 2D. The possibility to see
BKT physics is connected to a low value of dggr/A%: indeed,
despite the presence of screening supercurrents, the interaction
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between vortices remains logarithmic when the Pearl screening
length A = 222 /dgkr overcomes the system size [8]. In
addition, since the distance between Tpgrt and the ordinary
BCS temperature 7, scales as (T, — Tgxr)/ T « Tgkr/Js, @
clear BKT regime can only be identified when J; gets reduced.
In films of conventional superconductors, these conditions are
usually realized when the film thickness d is reduced. In those
cases, by identifying dgxr with d, typical BKT signatures
have been observed [9—16] by means of different experimental
probes. The universal jump of the superfluid density has been
seen either via direct measurements of the inverse penetration
depth [9-14,16] or via a discontinuous jump of the exponent
of the nonlinear /-V characteristics [9]. At the same time, the
vortex proliferation above Tgkr has been identified [9,14,15]
from an exponential divergence of the correlation length above
TskT, Which leads to a peculiar paraconductivity above the
transition [4,17].

An alternative route for the observation of BKT physics is
presented by bulk layered systems, in which the magnetic-field
distribution of a vortex differs drastically from the monopole-
like Pearl solution in uniform films [4,18]: the presence of other
superconducting layers squeezes the field of a pancake vortex
into a narrow strip of size A along the c axis. This in turn implies
that the logarithmic dependence of the interaction potential
between two vortices placed in the same layer persists up to all
length scales, as in a neutral superfluid, making in principle the
stack of uncoupled layers the best possible system to observe a
true BKT transition, with the 2D unit in Eq. (1) corresponding
to each isolated plane. In the presence of Josephson coupling
between layers, the upper cutoff for the logarithmic interaction
between vortices becomes [4,18] Ay =~ &/,/J1/J), where &
is the zero-temperature in-plane coherence length, and J; | are
the in-plane and out-of-plane superfluid stiffness, respectively.
If the interlayer coupling is weak, i.e., J, /J; < 1, this length
scale is large enough to allow for a BKT-like description of the
vortex-antivortex interaction, independent of the film thickness
d. In practice, even if the finite-size effect due to A ; leads to
a rounding of the discontinuous jump in J;, the analysis of

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.024519

BAITY, SHI, SHI, BENFATTO, AND POPOVIC

anisotropic three-dimensional (3D) XY -like model [19-24]
shows that the unbinding of vortex-antivortex pairs in each
plane is still the mechanism driving the transition, in analogy
with the purely 2D case. Therefore, in a weakly coupled,
layered superconductor, one expects to observe a BKT-like
transition at a 3D transition temperature that is slightly higher
than the BKT transition temperature of a single layer of an
equivalent uncoupled system.

Such a description is expected to be appropriate for
underdoped samples of cuprate superconductors, which are
highly anisotropic, layered materials. Here, one also finds
that the superfluid stiffness is suppressed by the proximity
to the Mott insulator [25,26], making the separation between
Tsxr and T, large, while avoiding the additional consequences
of an increase of the disorder level, as it occurs in films of
conventional superconductors when the thickness is reduced.
According to this argument, in bulk samples of underdoped
cuprates one should be able to identify BKT signatures
assuming that the fundamental 2D unit is represented by
isolated CuO, layers, i.e., the transverse length scale dpkr
in Eq. (1) would coincide with the interlayer distance d., as
pointed out in the seminal work by Emery and Kivelson [25].
However, it has been recently shown [23] that this picture
is somehow too simplified since one should also account
for the nontrivial role of the vortex-core energy u, which is
the energetic cost needed to create the vortex at the smallest
length scale &,. Indeed, even if the layers are weakly coupled,
what matters for the vortex proliferation is the competition at
large distances between the effective vortex fugacity and the
effective Josephson coupling. As a consequence, when p is
large, the Josephson coupling between layers can prevent the
vortex unbinding, moving the BKT transition away from the
value expected for each isolated layer, resulting in an effective
dimension dgkr larger than d..

So far, the experimental situation in cuprate supercon-
ductors has been controversial. For example, the direct
measurements of the inverse penetration depth have shown
that, in the YBa;Cu30;_, family, no BKT jump is observed
even in strongly underdoped thick films [27,28] or crystals
[29]. A BKT-like superfluid-density jump is only seen in
few-unit-cell thick films of YBa,CuszO;_, (Ref. [30]) or
Bi;Sr,CaCu, 05, . (Ref. [31]), but even in this case, as the
samples get underdoped, the effective dgxr seems to cross
over to the sample thickness and the superfluid-density jump
gets smeared out. While this can be explained indeed by an
increase of the vortex-core energy with underdoping [32],
one should notice that the simultaneous appearance of an
anomalously large dissipative response suggests that spurious
finite-frequency effects can also be present, as emphasized
recently in the analysis of thin films of NbN [33]. These
spurious effects are instead absent in the dc measurements
of the 7-V exponent that suggested a BKT-like jump very near
T, in cuprate samples [34-38]. However, this measurement
allows one to extract directly the effective 2D areal stiffness
(1), i.e., the combination dgkr/A?, so dgkr can be determined
only if A is known by measurements in similar samples. Finally,
the analysis of the paraconductivity, i.e., of the SC fluctuations
above T, also raises some questions on the occurrence or not
of a BKT transition. Indeed, on one hand, the SC fluctuations
have been proved to have a strong 2D character in several
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cuprate families (e.g., Refs. [39—43]) with the typical 2D unit
being identified as the distance between the CuO; layers d..
On the other hand, these are ordinary Gaussian (amplitude
and phase) fluctuations, with a BKT regime that, if present, is
restricted to a small range of temperatures near 7, in the most
underdoped samples [37,43].

In this work, we address the issue of the identification of
the scale dgkr in cuprate superconductors by making a simul-
taneous analysis of the BKT signatures both below and above
Tkt in two highly underdoped samples of La,_, Sr, CuO,4. We
first extract the paraconductivity above Tkt (Sec. IIB), and
then determine the temperature dependence of the anomalous
2D exponent of the -V characteristics across it (Sec. I1C).
In Sec. IIT A, the direct comparison of the experimental 7-V
data with the renormalization-group results for the BKT
theory allows us to extract a large value of the vortex-core
energy i, consistent with that obtained from the analysis of
paraconductivity in Sec. II B. According to earlier theoretical
work [23,32], the large value of w obtained in our study
corresponds to dggr =~ (2-3) d.. Furthermore, this value of
the vortex-core energy can be used to reduce considerably the
fitting parameters in the well-known Halperin-Nelson formula
[44] for the paraconductivity above Tgkr, spanning both the
BKT and Aslamazov-Larkin [45-47] (AL) regimes of the SC
fluctuations. This analysis (Sec. IIIB) confirms that the
effective length scale dgkr is a few times larger than d., in
agreement with the expectation [23,32] for a layered weakly
coupled system with a large vortex-core energy. Our study
clarifies how different transverse length scales enter in the
analysis of the SC fluctuations above and below Tgxr, solving
the apparent contradiction between previous measurements.

II. EXPERIMENTS

A. Samples and measurement techniques

The samples were La,_,Sr,CuQO4 (LSCO) films with the
nominal doping x = 0.07 and 0.08. They were patterned into
standard Hall bars with the length L =2.0 mm and the
width W = 0.3 mm; the distance between voltage contacts
was 1.01 mm. The films were 75 unit cells (150 CuO,
layers) thick (d ~ 1000 A) and grown by molecular beam
epitaxy. The films and samples were described in detail
elsewhere [48]. The samples become superconductors below
the temperature Tr—o(x), defined as the temperature at which
the in-plane resistance R becomes zero. The measured Tr—g
were (3.9 £0.1) K and (9.7 £ 0.3) K for samples x = 0.07
and 0.08, respectively.

The in-plane sample resistance and magnetoresistance were
measured in *He cryostats (base T = 0.25 K) with a standard
four-probe ac method (~13-16Hz) in the Ohmic regime,
using either SR7265 lock-in amplifiers or a LR-700 resistance
bridge. The magnetic fields H up to 18 T were applied per-
pendicular to CuO; planes (H || ¢ axis) and swept at constant
temperatures. The sweep rates of 0.02-1 T/min were low
enough to avoid the heating of the sample from eddy currents.

The current-voltage (/-V) measurements were carried
out at constant temperatures (7') in H = 0 using *He and
variable-temperature insert (base T ~ 1.3 K) cryostats. The dc
square pulses provided by a Keithley 6221 current source were
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applied to the samples, while a Keithley 2182 A nanovoltmeter
measured the voltage response. Each data point on the 7-V
curve was found by averaging measurements with positive
and negative pulse polarities. Such a four-point dc method [49]
avoids possible effects of parasitic capacitances (e.g., from the
sample contacts) and obviates Joule heating, while retaining
the increased sensitivity of a finite-frequency technique and
eliminating the effects of thermal electromotive forces. Current
excitations between 50 nA and 1 mA were typically used,
depending on the film doping and temperature.

The addition of current noise to a device with an intrinsic
nonlinear behavior can create an Ohmic response at low
currents [50] and, in particular, it can create Ohmic behavior
even below Tgkr. Therefore, for the I-V measurements,
filtering was provided at room temperature by a 1.75-nF
low-pass 7 filter in series with a 1-k€2 resistor on each lead
to the sample. The 7 filters and the resistors were encased
in a shielded box attached to the top of the cryostat probe.
This filter box provided a 5-dB (60-dB) noise reduction at
10 MHz (1 GHz), which enabled the observation of nonlinear
1-V behavior at low excitations amid masking current noise.

B. High-field magnetoresistance measurements
and superconducting fluctuations

By approaching the superconducting transition from above,
it is in principle possible to identify the BKT transition
from the temperature dependence of the contribution of
superconducting fluctuations (SCFs) to conductivity (or “para-
conductivity”), Aosce(T) = p(T)~! — p,(T)~", where p(T)
and p,(T) are the measured and normal-state resistivity,
respectively. In cuprates, the determination of p, (7)) has been
somewhat ambiguous and controversial (see, e.g., Ref. [43]
and references therein). We emphasize, however, that the
precise determination of (finite) p, is not crucial for the
extraction of Aogcr in the regime of interest, very near the BKT
transition where the contribution of SCFs diverges [Eq. (3)].
On the other hand, it may introduce considerable errors into
the values of Aogcr far from it [43]. This issue is demonstrated
and discussed further in Sec. III B.

In this section, we adopt a method that uses transverse
(H || ¢) magnetoresistance measurements to determine the
extent of SCFs. In particular, above a sufficiently high
magnetic field H/(T), SCFs are completely suppressed
(i.e., they become unobservable in the experiment) and
the normal state is fully restored. In the normal state, the
magnetoresistance of cuprates increases as H> at low fields
[43,48,51-60] (w.T < 1, where w, is the cyclotron frequency
and t is the scattering time), similar to the classical orbital
effect in conventional metals [61]:

pn(H) - pn(o) . 2 2
—pn(O) = (w.T)" x H". 2)

Therefore, the values of H/ can be found from the downward
deviations from such quadratic dependence that arise from
SCFs when H < H/ [43,48,56,58,59]. The SCF contribution
to the conductivity can be determined then as Aoscp(T,H) =
o(T,H)™' — p(T,H)™', where p(T,H) is the measured re-
sistivity and p, (T, H) is obtained by extrapolating the region of
H? magnetoresistance observed at high enough H and 7. The
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advantages of this method [43,56] over some of the earlier ones
(e.g., Refs. [41,62]) are that it does not rely on any assumptions
about the 7' dependence of p,, and it makes it possible to deter-
mine both the paraconductivity Aoscp(7, H = 0) and the SCF
contribution to conductivity in the presence of magnetic field.

Figure 1(a) shows representative p(H) curves (H || c)
obtained on the x = 0.07 LSCO sample. The condition for
the weak-field limit is satisfied in the entire regime of interest
as w.t ~ (0.5 at 18 T and 5 K, where it reaches its maximum
value. By tracking the gradual evolution of the magnetore-
sistance curves measured at different 7' [Fig. 1(b)], from the
high-T region where the H? dependence is unambiguous, to
lower T where SCFs are more pronounced, we were able to
determine the values of the onset fields H(T') (see Appendix A
for a more detailed discussion).

Figure 2(a) inset shows H/(T), determined from Fig. 1(b)
for the x = 0.07 sample and fitted by a simple quadratic
expression H(T) = H/(0)[1 — (T/ 7»)?], similar to earlier
studies [43,48,56,58,59]. In zero field, SCFs become observ-
able below 7, = 29 K.

In Sec. I B, we show explicitly that the exact determination
of p,, and thus the determinations of H/(T) and 75, do not
affect our conclusions. Hereafter, we focus only on the zero-
field behavior.

Figure 2(a) shows that Aoscp(H = 0)/0,(H = 0), where
0, = 1/p,, increases by several orders of magnitude as
temperature is reduced towards Tr—¢ ~ 4 K, reminiscent of
the exponential divergence expected at the BKT transition.
Indeed, in 2D the paraconductivity can always be expressed as

2
Aoscr/on = [@} , 3)
&0
where £(T) is the SC correlation length, whose temperature
dependence depends on the nature of the SC fluctuations.
The usual Aslamazov-Larkin [45—47] (AL) paraconductivity
describes the fluctuating Cooper pairs above the mean-field
temperature T, and leads to a power-law divergence of the
coherence length & 2 ~(T —T,)"". In contrast, within BKT
theory, £2(T) ~ 1/n measures the inverse density 1 of free
vortices above Tk, and diverges exponentially as 7 — Tgkr.
An interpolation formula between these two regimes was first
proposed by Halperin and Nelson [44]
AUSCF 2 . b 2
. = <A smh ﬁ) s T z TBKTv (4)
where t = (T — Tgkr)/ Tk, and A and b are numerical
constants. More recently, a renormalization-group (RG) study
[63] of the BKT transition showed that parameter b is strictly
connected to two relevant physical quantities:

b ~ 2a/t.,

where ¢, is the distance between the mean-field and BKT
critical temperatures

= u/iuxy, (5)

T, — Tkt

L
Tkt

, (6)

while « is the vortex-core energy u expressed in units of the
conventional value pxy that it assumes in the XY model [see
also Eq. (16)]. According to Eq. (3), the exponential BKT
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FIG. 1. x = 0.07 LSCO film. (a) Resistivity vs transverse mag-
netic field (H || ¢) up to 18 T for different 7', as shown. The highest
T data are also shown in the inset for clarity. (b) Magnetoresistance
data from (a) plotted vs H2. Symbols (black diamonds) show H/(T),
the fields above which SCFs are fully suppressed and the H?
dependence of the normal-state resistivity p, is observed. Dashed
lines are linear fits representing the contributions from normal-state
transport, i.e., they correspond to [p(H) — p(0)]/p(0) = [0,(0) —
P(0)1/0(0) + [0(0)/ () gans H2.
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FIG. 2. x = 0.07 LSCO film. (a) Symbols show Acscp(T,H =
0)/0,(H = 0) vs T, as determined from Fig. 1. The solid line is a fit to
Eq. (4) with Tgxt = 3.8 K and fitting parameters A = 17.9,b = 2.9;
the dashed line corresponds to Tgxr = 4.0 K, A = 29, b = 3.3. Inset:
the onset field H/(T) below which SCFs become observable. The
dashed line is a fit H' = H/(O)[1 — (T/ T»)*], with uoH/(0) = 15T
and 7, =29 K. (b) pvs T in H = 0. Arrows pointat Tgxr = Tr—¢ and
T,; T, was estimated as shown in the inset. Inset: the temperature at
the inflection point of the p(T") curve, where dp/d T has a maximum,
is taken as an estimate of 7, in the calculation of o from Eq. (5).

behavior is limited to the range of temperatures ¢ < t., while
above it, one recovers the usual AL paraconductivity.

The paraconductivity shown in Fig. 2(a) has been fitted to
Eq. (4) by taking Tkt = Tr—o = (3.9 £0.1) K [Fig. 2(b)].
Surprisingly, it is possible to get a good fit to the data even
up to very high temperatures ~20 K with reasonable values of
A and b [e.g., dashed line in Fig. 2(a)]. However, within the
error for Tgkr, the lower-T data up to ~10 K are described
better with the fitting parameters in the range A = 13-20 and
b =2.5-3.0 [e.g., solid line with A =17.9 and b =2.9 in
Fig. 2(a)]. Assuming that 7, ~ 7 K, i.e., of the order of the
temperature where dp/dT has a maximum [Fig. 2(b) inset],
Eqg. (5) then yields enhanced values of the vortex-core energy
w/iuxy =~ 1.4-1.7, consistent with previous work [23,32].

The above analysis of the SCFs above a SC transition,
which occurs at Tggt = Tg—g, suggests the presence of a BKT
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fluctuation regime at Tgxr < T < T, ~ 7 K, followed by a
crossover to the AL regime at T > T,. It is worth noting that
the crossover to the AL regime gives some indication on the
transverse length scale controlling the Gaussian fluctuations
in the sample. Indeed, when ¢ > 7., Eq. (4) reduces to

AO’SC]: 4]92 TBKT T.
i~ > KBKRT 7 @)

o, A2 T — Texr T-T°

where, on the right-hand side, kpxt = 45> Tgxr/(A>T,) and we
replaced T — Tgkr with >~ T — T, which is correct when T is
sufficiently larger than 7, so that the difference between 7, and
Tsk can be neglected. We note that, in films of conventional
superconductors [14,64], usually ¢, is at most of order 0.1, so
the crossover from the pure BKT behavior to the AL one occurs
for relatively small reduced temperatures 7. In our samples, 7,
is as large as 0.7, so the asymptotic AL behavior (7) is reached
at higher temperatures. On the other hand, since the SCFs
regime extends up to reduced temperatures as large as ¢ ~ 3—4
[Fig. 2(a)], there is still a large temperature regime where the
approximation (7) is valid. This expression has to be compared
with the usual AL formula [45-47] that gives

AoaL  pu/daL  Tc — T,
o,  16R. T—T, “T_T.

, ®)

where R, = h/e? = 4.1 k. By mapping the expressions (7)
and (8), we can see that the high-7" limit of the interpolating
HN formula also fixes the prefactor xap that controls the
strength of the AL fluctuations in the Gaussian regime at
T > T.. The latter one depends in turn on the transverse
length scale day, that identifies the 2D unit for AL fluctuations
[see Eq. (8)]. By using the estimates of b,A given above,
we obtain that kgxt = 46> Tekr/(A%T,) ~ 0.1. Thus, from the
measured p, >~ 1 mQ cm and by matching xggr and kar, we
conclude that da is of the same order as the interlayer distance
d., in full agreement with previous work in the literature
[41,42]. In other words, as far as the Cooper-pair fluctuations
are concerned, the fluctuation regime displays marked 2D
character with decoupled layers, consistent with the standard
expectation for a weakly coupled layered superconductor
[47]. On the other hand, the BKT paraconductivity does not
allow us to extract any precise information on the scale dggr
controlling the vortex physics below Tgkr. To address this
issue, and to confirm the fit based on the paraconductivity data
extracted from the high-field magnetoresistance measurements
[Fig.2(a)], we analyze the I-V characteristics, whose behavior
is, in fact, one of the key signatures of the BKT transition.

C. Current-voltage characteristics and superfluid stiffness

The most famous hallmark of the BKT transition is
observed by approaching Tgkr from below. In particular, the
superfluid stiffness J, defined in Eq. (1), exhibits the so-called
universal jump at the transition, i.e.,

_ 2
Js(Tgkr) = ;TBKT, Js(Tgr) = 0. )

Here, the T dependence of J(T) includes both the quasi-
particle excitations, which would drive J; continuously to
zero at T,, and vortexlike phase fluctuations, which are
instead responsible for the discontinuous jump (9). The latter
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directly influences the behavior of the exponent a in the 7-V
characteristics:
7 Js(T)

T

Vo I'D, a(T) = + 1. (10)
The superlinear behavior in Eq. (10) is due to the ability of
a sufficiently large current to unbind vortex-antivortex pairs.
From Eq. (9), it follows then that a should jump from a = 3 at
T =Tggrtoa=1latT = TB+KT. Below Tk, the exponent a
is expected to increase with decreasing 7 since the superfluid
density increases.

The voltage-current characteristics are shown in Figs. 3(a)
and 3(b) on a log-log scale for the x = 0.07 and 0.08 films,
respectively. The power-law behavior V oc 14T is observed
at all T in the low-current limit. In that regime, the V(I)
dependence is thought to arise from the thermally dissoci-
ated vortex-antivortex pairs for 7 > Tggr and from current-
induced dissociation for 7' < Tggt. At the highest currents
in Figs. 3(a) and 3(b), heating effects become important. The
temperature-dependent exponents a(7) were determined as
the slopes of the linear fits of the data at the lowest currents
[Figs. 3(a) and 3(b)]. We note that, due to a large value of ¢,
the fitting range, both in current and in temperature, is much
wider than usual, i.e., compared to systems that are clearly 2D,
such as interfaces [65] and films [66]. The values of a(T) are
presented in Fig. 3(c) for both samples. A steep change of a
from its Ohmic value (¢ = 1) at high T to large values >3 is
indeed observed with decreasing 7. In particular, a(T) in the
x = 0.08 sample exhibits a jumplike behavior as expected, but
the a(T') dependence is smoother in a more highly underdoped
sample. Nevertheless, a reaches 3 at T = (3.6 = 0.1) K and
(9.4 £0.1) K for samples x = 0.07 and 0.08, respectively,
close to their Tg—( values and consistent with the assumption
in Sec. II B that Tg—y = Tgkr.

Even though the Tkt values will be determined more
precisely in Sec. III A by the theoretical analysis that takes
into account the smearing of the BKT jump by the presence of
inhomogeneities, we can estimate the order of magnitude of
Jy(Tskr) from the temperature where a(7") = 3 using Eq. (9).
In the x = 0.07 sample, for example, we have J,(Tgxr ~
3.6 K) &~ 2.3 K. Using this value and Eq. (1) expressed as [64]

dpkr [A]
JS K = 0.62 — k)
(K] A% [um?]

we find that, if the effective transverse length scale dgkr
coincides with the film thickness (x 103 A), A(Tgkr) ~
16 um, while for dgkr ~ d. ~7 A we obtain A(Tgkr) ~
1.4 um. Based on the doping and temperature dependencies
of the penetration depth measured in similar LSCO films
[67], we estimate that A(Tgkr) does not exceed a value of 2-3
um for our x = 0.07 sample. Therefore, we find much better
agreement between the results of our /-V measurements and
penetration depth studies by assuming that the effective sample
thickness is somewhat larger than the interlayer spacing, but
not as large as the whole thickness of the sample. As we shall
see in the following, this conclusion is confirmed by a detailed
comparison between J;(T') extracted from the a(7T) exponent
and the theoretical prediction for the BKT behavior, when the
nontrivial role of the vortex-core energy is taken into account.

)

024519-5



BAITY, SHI, SHI, BENFATTO, AND POPOVIC

10°

1E-5 1E-4

i ..:I..EI-G i
I(A)

104}

10° |

V(V)

10°

107k

/] PRErATY { /]

.
1(A)

6 v T v T v T v T T v T v T v T v T

1E-6

T (K)

FIG. 3. (a), (b) Voltage-current characteristics on a log-log scale
for x = 0.07 and 0.08 samples, respectively, at different 7', as shown.
At the lowest excitations, V oc 1T, where the solid lines are linear
fits with the slopes corresponding to a(7'). In both panels, the dashed
lines with slopes @ = 1 and 3 guide the eye. (c) a(T') for both samples.
The dashed line a = 3 crosses the data at (3.6 £0.1) K and (9.4 +
0.1) K for samples x = 0.07 and 0.08, respectively.

Finally, we remark that, in our samples, we do not expect to
observe the Ohmic response in the /-V characteristics caused
by finite-size effects [68—71]. Indeed, it is known that the
dc I-V curves probe the contribution of dissociated vortex-
antivortex pairs separated by a distance r* = 2w J;cW /Pyl
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Therefore, at small currents, which probe r* larger than
the sample width (W < L), the free vortices will dominate
the resistance and the /-V characteristics will be Ohmic.
On the other hand, the nonlinear behavior (10) of the -V
characteristics can only be seen when r* < W, i.e., above a
threshold current [4,63] I*:

N ZJSJTC N 4kBTBKTC
9y @y

I* (12)
By using the above estimate Tkt ~ 3.6 K for the x =
0.07 sample, one gets I* ~2.68 x 1078(A/K) Tgkr [K] ~
1 x 1077 A. In the presence of inhomogeneous domains of
size L' < L, the threshold current I* is expected [63] to
increase with respect to the estimate (12). However, since
the homogeneous value (12) we found is considerably smaller
than the currents at which the measurements are performed,
finite-size effects are not expected to manifest themselves in
our experiment. Indeed, Figs. 3(a) and 3(b) show that, below
Tgkr, the crossover from the nonlinear behavior (10) back to
the Ohmic one is not observed even at the lowest measured
current.

III. THEORETICAL ANALYSIS OF THE DATA
A. Superfluid stiffness

We extract from Eq. (10) the temperature dependence
of the superfluid stiffness J;(7), which we analyze along
the lines of the approach discussed earlier for both conven-
tional [14,33,63,64] and cuprate superconductors [23,32]. In
Eqg. (10), the temperature dependence of the superfluid stiffness
Jy(T) is due to both quasiparticle excitations, which induce a
BCS-like suppression of JBCS(T) at all temperatures up to
T., and vortexlike excitations, which become relevant near
Tsxt < T.. Since our I-V measurements are rather close to
T., we can assume for JBS(T) a linear behavior

JBCS(T) = JO(T"T_ T). (13)

c

The effect of vortices is taken into account by solving the BKT
renormalization-group equations, whose relevant variables are

JBCS T
k"D (14)
T
g = 2me P, (15)

where g is called the vortex fugacity (8 = 1/kpT). Here,
JBCS(T) determines the value of K at the shortest length scale
of the problem, i.e., the SC coherence length &j, while the
large-distance behavior will be determined by the presence or
not of free-vortex excitations, described by the large-distance
behavior of the vortex fugacity. The physical superfluid
stiffness J; is then obtained by the numerical solution of the RG
equations at large distances (see Appendix B for more details).

Apart from the starting value of JBS(T'), which can be
determined by comparison with the data far from Tgkr, the
second relevant energy scale in the problem is the ratio w/J;.
Here, we take it as a free parameter, to be determined by the fit
to the experimental data. This has to be contrasted to the usual
XY-model description of the BKT transition, where w/J; is
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constrained to the value

2
mxy = —J;. (16)
2
In general, the value of 1/ J; determines the temperature scale
where significant deviations of J; from the BCS temperature
dependence J BCS(T) start to become visible. Indeed, even
though free vortices only start to proliferate at Tgkr, if a
significant density of vortex-antivortex pairs already exists
below Tgkr, it can renormalize (i.e., suppress) the large-
distance superfluid stiffness Jg(7") with respect to its BCS
behavior counterpart much before the BKT transition. In thin
films of conventional superconductors it has been shown that
thisis the case [14,64]. Here, i/ J; =~ 1, as expected in ordinary
BCS superconductors, and the measured J;(7T") deviates from
the BCS behavior significantly before the universal jump (9)
occurs. In contrast, it has been argued [23,32] that, in cuprate
superconductors, v/ Js can even exceed the (large) value ~4.9
in Eq. (16), where J; is now the stiffness of a single layer [i.e.,
with dgxr = d. in Eq. (1)]. As we shall see in the following,
this has relevant consequences for the determination of the
effective transverse scale dgkr for the BKT transition in a bulk
material or in a thick film, as it is in our case.

A second effect to be taken into account in the analysis of
the experiments is the presence of inhomogeneity of the local
SC properties, which have been clearly shown to be relevant in
underdoped cuprates by means of STM analysis of underdoped
samples [72,73]. Here, we model [14,32,64] the presence
of inhomogeneities by assuming that the local BKT critical
temperature has a finite distribution about the most probable
value, represented by the curve labeled “homogeneous” in
Fig. 4. The main effect of the inhomogeneity is then to smear
out the universal jump (9), the effect being larger for a wider
probability distribution of the local Tk values. More details
are given in Appendix B.

The results for the two samples x = 0.07 and 0.08 are
shown in Fig. 4, and the fitting parameters are summarized in
Table I. The BCS temperature dependence (13), shown in the
figure with a dotted line, reproduces the data below the BKT
transition very well, in particular for the x = 0.08 sample
where more experimental points are available. Here, the
sample inhomogeneity is very small (width of the distribution
8/Jo = 0.01; see also Appendix B) and, accordingly, the
homogeneous and inhomogeneous curves almost coincide,
with a sharp downturn of Jg(T) near Tggr. Tpkr is defined
here as the transition temperature for the homogeneous curve,
which represents the most probable transition temperature for
the sample. We note that, since we also included the effects
of the finite size of the system, which lead to some rounding
of the J,(T') jump before Tgkr, even in the homogeneous case
we do not observe a strictly discontinuous jump as in Eq. (9),
but J; vanishes continuously over a temperature range of a
few mK. For the x = 0.07 sample, the inhomogeneity is larger
(8/Jo = 0.1), as expected for a more underdoped sample, and
this leads in particular to a longer superfluid tail above Tgkr.
In both samples, we extract a large value of the vortex-core
energy, i.e., u/Jy = 6-7or u/uxy = 1.4. Asexplained above,
this implies that the deviations of J(T) from the BCS curve
only occur near Tgkr. As a consequence, Tgkr can be very
well estimated by using the universal relation (9) with J,(Tgyr)
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FIG. 4. Temperature dependence of the superfluid stiffness for
the x = 0.08 (a) and x = 0.07 (b) samples: comparison between the
experiment and the theory, as described in the main text. The fitting
parameters are listed in Table I.

replaced by JBCS(TB_KT), ie.,

2T; 2T.
JBCS (Tagr) ~ “28L = 4, ~
b Jy

which is in very good agreement with the 7. values listed in
Table I, obtained by the RG results. It is apparent that the
large separation between T, and Tkt in our samples is due to
the presence of two concomitant effects in underdoped cuprate
films: (i) the large mean-field critical temperature and (ii) the
low superfluid stiffness, proportional to Jy in Eq. (17), due to
correlations [25,26]. This has to be contrasted to conventional
superconductors, where the BKT regime can only become
visible when Jj is suppressed by strong disorder, which also
brings along unavoidable spurious effects connected to the
inhomogeneity [14,33,64]. In addition, in systems like NbN,
it has been shown that pu/J; ~ 1, so the deviations of J,(T')

, a7

TABLE I. Fitting parameters for Fig. 4.

Doping  Jo (K) T.(K) Tgxr (K) wu/Js 8/Jo I bineo
0.07 6.5 6.5 4 6.3 0.1 0.625 2.02
0.08 41 11.3 9.7 7 0.01 0.16 1.15
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from the BCS behavior occur much before the intersection
with the BKT line [14,64], making the approximate estimate
(17) much less reliable.

Our finding of the large value of p is an important result
since it confirms previous theoretical analysis [23,32] in
cuprates, and it allows us to understand the estimated value
of dgkr 2 d,. in our film, as discussed in Sec. II C. Since the
measurements of a(7T") only access the areal superfluid stiffness
(1) and thus do not allow for a separate determination of dgkr
and A, the comparison of the experimental data and the theory
shown in Fig. 4 has been done for the BKT transition in the pure
2D case. On the other hand, we also know that our films are
comprised of ~10% layers, with a weak interlayer Josephson
coupling between them. In this case, it has been proven by
previous theoretical work [23,32] that, when u/uxy > 1, the
BKT transition 7Tggr moves away from the value expected
for a single, isolated layer Tyi. In particular, according
to the analysis of Refs. [23,32], for the value of p found
above, one could expect that Tgyr is about 30% larger than
T2}, corresponding to dpxr = (2-3) d... Indeed, by assuming
dgkr = 2d, for the x = 0.07 sample, for example, one can
easily estimate Tpxr = Tr = 1.3 Ty using the right-hand
side of Eq. (17). The value dgkt >~ (2-3) d, is consistent with
the estimate based on the comparison to the penetration-depth
measurements discussed in Sec. II C.

B. Paraconductivity

We note also that the value of u extracted from the behavior
of Jy(T) is consistent with that obtained in Sec. II B from the
analysis of the paraconductivity above Tgkr, even though the
fits presented there do not include the effect of SC inhomo-
geneities. Indeed, we can show that for our samples the inho-
mogeneity has a relatively minor effect on the determination
of the parameters entering the paraconductivity fit. To show
this, we analyze the paraconductivity above Tkt by refining
the analysis of Sec. II B with the inclusion of inhomogeneity.

We can describe the measured resistivity as

R AUSCF - 2 . b 2 -

R, (1 + . ) |:1 + <A sinh \/;> :| . (18)
In order to compare the theoretical predictions to a larger
number of data points, in Aoscp(T) = p(T)~! — p,(T)7!,
we approximate p, = 1/0, with a constant, zero-field value
measured at 7 3> Tggr. Even though this procedure is less
accurate far from Tgkr, this is not relevant for the discus-
sion of the effects near Tgxt, where the SCFs contribution
diverges. This is exemplified in Fig. 5, where paraconductivity
obtained using this method is compared to that extracted from
measurements in high magnetic fields (Sec. IIB). Indeed,
the exact determination of p, becomes crucial only far from
T,, where Aoscg/o, becomes comparable to the difference
(~10%) between its values obtained using those two methods.

For the x = 0.07 sample, we choose R, = R(T = 20 K),
where the SCFs contribution to conductivity is only a few
percent [Fig. 2(a)]. To account for the inhomogeneity, we
follow the procedure discussed in Ref. [14], and outlined in
Appendix B. We use the same distribution of local critical
temperatures extracted from the analysis of J;(7T') to generate
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FIG. 5. Comparison between the R(T")/ R, experimental data and
the theoretical prediction obtained in the homogeneous or inhomoge-
neous case. In the latter case, R(7T') is obtained as solution of arandom-
resistor-network problem in the effective-medium approximation,
as explained in Appendix B. Solid diamonds: paraconductivity was
extracted from measurements in high magnetic fields (Sec. I B).

a distribution of local resistivity values R;/R, described by
Eq. (18) with the same local values Ty, 7, computed above.
Thus, only A,b in Eq. (18) are the fitting parameters. The
global resistance of the sample is then determined by the
corresponding random-resistor-network problem by means of
the effective-medium approximation. Once again, to elucidate
the role of inhomogeneity, we compare the results for the
homogeneous and inhomogeneous cases. The “homogeneous”
curve in Fig. 5 refers to the paraconductivity of a system with
a single Tgxr and T, realization, corresponding to the most
probable value in the sample. Thus, this is the paraconductivity
expected for a homogeneous system whose superfluid stiffness
below Tpkr is described by the “homogeneous” J,(T') curve
in Fig. 4(b).

The results are shown in Fig. 5 for the parameters A = 14
and b = 2.55, which are in good agreement with the results of
the analysis in Sec. II B. The differences are due to the effect
of the inhomogeneity, which is known [74] to affect the slope
of R(T') above the transition. More importantly, b = 2.55 is
very close to the theoretical value by, = 2 calculated from
Egs. (5),1i.e.,

4 pn
btheo = n___\/t_ca (19)

by using the values of n/J; and 7. extracted from the analysis
of the 7-V characteristics below Tk, and listed in Table 1. The
fit accurately reproduces the data up to 7 >~ 10 K, which is an
extremely large range of SCFs, similar to Fig. 2(a). However,
the BKT fluctuation regime only extends up to 7. =~ 6.5 K and,
above it, ordinary AL-like Gaussian fluctuations are at play.
Finally, we note that some deviations start to occur above 7' ~
10 K. As we discuss in Appendix B, this effect has already been
observed in several families of cuprates [41,42], and it can be
interpreted as a signature of a pseudogap state above 7, [41,75].
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IV. DISCUSSION

The analysis carried out in the previous sections clearly
demonstrates the occurrence of a BKT-like transition in our
LSCO samples. This is confirmed both by the analysis of
the paraconductivity above Tkt and by the analysis of the
superfluid stiffness below Tk, as extracted from the 7-V
measurements. Even though our films are thick, in the sense
that d is much larger than the SC coherence length, the
possibility to see BKT physics is guaranteed by the layered
nature of the system. As we discussed in Sec. I, a weakly
coupled layered superconductor is an ideal candidate for
observing the BKT physics since a layered structure ensures
the best screening of the charged supercurrents. Indeed, in
this case the interaction between vortices in each plane is
logarithmic up to a scale Ay >~ &/,/J1/J) that grows as the
stiffness anisotropy increases. While the behavior of J, /J
as a function of doping in the LSCO family has not been
systematically explored, in other cuprates it has been shown
to decrease significantly with underdoping [76], along with a
general suppression [27,67] of J; due to correlation effects
[25,26]. Under these conditions, one could expect to identify
signatures reminiscent of the typical 2D BKT physics, such
as an almost discontinuous suppression of the superfluid
stiffness, even in a layered bulk sample [19,20,23,24]. On
general grounds, the starting point of this reasoning is that,
as demonstrated within several models [19-24], the physics of
a layered superconductor with a very weak interlayer coupling
closely approaches that of an isolated 2D system. Indeed, even
though the transition will ultimately have a 3D character, the
3D critical region is extremely reduced for weak interlayer
Josephson coupling [19,21], and it could even be masked in
the experiments due to finite-size effects or inhomogeneities
of the type discussed in this paper.

Since in the BKT picture there exists a universal relation (9)
between the transition temperature and the smallest superfluid
stiffness beyond which vortex unbinding occurs, the idea that
each layer is isolated can lead to the naive expectation that Tgxr
is controlled by the stiffness of each isolated layer, i.e., the
value (1) with dgkt = d.. However, as predicted theoretically
[23], this simple picture should be in part revised when the role
of the vortex-core energy w, controlling the vortex fugacity
g~ e P is taken into account. Indeed, in a layered BKT
model the transition temperature is not controlled by the
“bare” (i.e., short-distance) values of J, /J| and of the vortex
fugacity g, but by their large-distance behavior. Both energy
scales grow at large distances, with opposite consequences: the
increasing of J /J| tries to keep the system superconducting,
while the increase of g implies that vortices would like to
proliferate making the system nonsuperconducting. While at
some temperature g will ultimately win, the counteraction
of the interlayer coupling can move Tpgr away from the
temperature scale connected to the single-layer stiffness. Thus,
the effective stiffness to be used in Eq. (9) has to be computed
from the definition (1) with a transverse length scale dgkr
somewhat larger than d.. In particular, as p increases, the
transition temperature moves farther away from the single-
layer temperature scale [23]. The large value of the vortex-
core energy obtained in our measurements suggests that, in
strongly underdoped LSCO samples, the relevant length scale
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controlling the BKT transition involves a few coupled layers,
i.e., dpxr 2 d.. This conclusion is in agreement with the
estimate based on the measured superfluid stiffness (1), i.e., a
combination dggr/A%, and the comparison to A measured in
similar films.

These findings, based on the analysis of the superfluid
stiffness below Tgkrt, are confirmed by the analysis of the
paraconductivity above it. In particular, we have shown that
the SC fluctuations above Tgkt exhibit a BKT character near
the transition, and then evolve into the ordinary Aslamazov-
Larkin-type behavior expected for Gaussian (amplitude and
phase) fluctuations. We fitted the data with the well-known
Halperin-Nelson formula [44], which interpolates between the
two regimes, by constraining the fitting parameters according
to the theoretical expectations for them [63]. This procedure
not only provides a consistency check of the validity of
the BKT analysis, but it also allows us to confirm the
estimate of the vortex-core energy extracted by the analysis
of superfluid density. In agreement with previous findings
in bulk cuprates [42,43,56], most of the fluctuation regime
is dominated by Gaussian fluctuations with a marked 2D
character, where the characteristic 2D unit is represented by
a single layer, i.e., dap = d,. It is worth stressing that this
result is not in contradiction with the finding dgkt 2 d. for the
BKT behavior. Indeed, in the case of Gaussian fluctuations,
the dimensionality of the fluctuations is controlled only by
the band-parameter anisotropy, i.e., the ratio ¢, /f; between
interlayer and intralayer hoppings, respectively. When this
ratio is small, as it is in cuprates, one can see 2D fluctuations
over a a broad temperature range [47]. The crossover to 3D
behavior, expected in bulk materials, is here preceded by the
vortex fluctuations, which drive the system towards a 2D BKT
transition. Even if the transition will ultimately have a 3D
character, we do not identify the crossover to 3D fluctuations.
This is consistent with the fact that the 3D critical regime,
especially above the transition [21], is extremely reduced in
a weakly coupled layered system and, in addition, it gets
masked by inhomogeneous effects that are mostly relevant
at the transition.

V. CONCLUSIONS

We have presented measurements of the in-plane trans-
port properties of two strongly underdoped thick films of
La,_,Sr,CuQy. Our results have (i) established the occurrence
of a BKT-like transition and (ii) identified the typical transverse
length scale that defines the equivalent two-dimensional unit
controlling the BKT signatures in this layered system.

The most striking signature of a vortex-driven phase
transition emerges from the superfluid stiffness Jg, extracted
from the exponent of the nonlinear /-V characteristics across
Tgxr. In both samples, we observe a rapid downturn of J
reminiscent of the well-known universal jump expected in a 2D
superconductor. A quantitative comparison with the theoretical
predictions, which also include the effect of some unavoidable
degree of inhomogeneity in the samples, strongly suggests a
large energetic cost to create the vortex cores in the SC state. As
a consequence, even though the interlayer Josephson coupling
is weak, the vortex-pair unbinding occurs at a temperature
larger than the one where each isolated layer would undergo
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the BKT transition [23]. In other words, the characteristic
energy scale controlling the BKT properties corresponds to the
superfluid stiffness of a few layers. These results are confirmed
by the analysis of the paraconductivity above Tgkr. Thanks to
the few-K distance between the BKT (7gkr) and mean-field
(T.) critical temperatures, we can clearly see that an initial
BKT regime of fluctuations crosses over to an extended regime
of 2D Aslamazov-Larkin-type Gaussian fluctuations.

As we remarked above, the advantage of using highly
underdoped thick films is that the intrinsically low value of the
superfluid stiffness, due to the proximity to the Mott-insulating
phase [25,26], allows us to achieve a large separation between
Tgxr and T, without simultaneously introducing a large
disorder-driven inhomogeneity of the local SC properties.
This has to be contrasted with the case of few-unit-cell
thick films of cuprates [30,31], which are usually much more
sensitive to disorder, so that the BKT jump of the superfluid
stiffness is usually lost with underdoping [31]. We note also
that finite-frequency probes, such as the two-coil mutual
inductance technique used in Ref. [31], can be potentially
much more sensitive to disorder-induced inhomogeneity, as
discussed recently within the context of films of conventional
superconductors [33]. In contrast, the superfluid density
extracted from the /-V characteristics is a purely dc probe, and
this can explain why we see a relatively sharp BKT jump even
in our strongly underdoped samples. Whether these features
are common to other families of cuprates is an interesting
open question that certainly deserves further experimental and
theoretical investigation.
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APPENDIX A: MAGNETORESISTANCE

The H? dependence of the magnetoresistance is clearly
observed at the highest 7 and H [Fig. 1(b)]. As the temperature
is lowered and SCFs become stronger, the H> region gets
pushed to higher fields and the curvature of the p(H)
dependence at high H, in the normal state, becomes less
obvious. The same kind of behavior has been observed in other
cuprates, e.g., in YBayCu30;_, (Ref. [56]) and in overdoped
[55,57,58], underdoped [55], and even nonsuperconducting
[48,55] LSCO very close to the onset of superconductivity.

In underdoped LSCO, it is well known [55,77-79] that
the resistivity at high H increases with decreasing T (i.e.,
dp/dT < 0), as seen also in Fig. 1(a), reflecting the tendency
towards an insulating ground state at high fields [59]. Never-
theless, deviations from Eq. (2) still provide a good estimate of
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H/(T), as discussed in the following. While the precise reason
for the applicability of Eq. (2) remains an open problem beyond
the scope of this study, we note that, in the regime of interest,
the system remains in the (poor) metallic regime, as kpl 2> 1
(kr, Fermi wave vector; [, mean-free path), i.e., the resistance
per square per CuO, layer < h/e?.

The quadratic dependence H/(T) = H!(0)[1 — (T/T»)*]
[see Fig. 2(a) inset] was found also in YBa,Cu3O7_,
(Refs. [43,56]) and overdoped LSCO (Ref. [58]) giving us
further confidence that the values of H/(T) are reliable.
Furthermore, the H = 0 onset temperature for SCFs, T, = 29
K, is consistent with the results from terahertz spectroscopy
[80] obtained on similar films, and those determined from
the onset of diamagnetism [81] and the Nernst effect [82] in
LSCO crystals with similar p(T) and T, values. We also find
that poH/(0) >~ 15 T is in agreement with the value of the
upper critical field obtained from specific-heat measurements
[83] on LSCO with a similar 7,. Therefore, even though the
magnetoresistance method that we employed to determine H
and p, (H) has an inherent limitation in accuracy, we conclude
that both the magnitude and the temperature dependence of
the onset fields H/ are fairly consistent with those from other
types of studies. This consistency check confirms further that
the observed onset of the H> magnetoresistance corresponds
to the return to the normal state.

APPENDIX B: RENORMALIZATION-GROUP
ANALYSIS OF THE BKT TRANSITION FOR
AN INHOMOGENEOUS SYSTEM

The BKT RG equations describe the large-distance behav-
ior of the dimensionless quantities K and g introduced in
Egs. (14) and (15) above. They are given by [3,4,17]

dK 5 9

T —-K-g", B1)
d

ﬁ =2-K)g. (B2)

where £ = Inr/& is the rescaled length scale with respect
to the short-distance cutoff for the problem, represented by
the SC coherence length &j. The initial values of K and g
are determined by the BCS value of the superfluid stiffness
[Eq. (14)], which includes only the temperature dependence
due to quasiparticle excitations. The effect of vortices is
accounted by the RG flow at large distances, so that the
physical superfluid stiffness (1) is identified with the limiting
value of K as one goes to large distances [6]:

_ TK(t — o)
= - .

Js (B3)
The basic idea of the RG equations is to look at the
competition at large scales between the superfluid stiffness and
the vortex fugacity. When g — 0, it means that single-vortex
excitations are ruled out from the system, which then remains
superconducting. Indeed, as one can see from Eqs. (B1) and
(B2), when g — 0, K goes to a constant and then J; from
Eq. (B3)is finite. If instead g — oo at large distances, it means
that vortices proliferate and drive the transition to the non-SC
state since K — 0. The large-scale behavior depends on the
initial values of the coupling constants K,g, which in turn
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depend on the temperature. The BKT transition temperature
is defined as the highest value of 7 such that K flows to
a finite value, so that J; is finite. This occurs at the fixed
point K = 2, g = 0, so that at the transition one always has
K (€ = o0) = 2, corresponding to the universal relation (9)
quoted above. By numerically solving Eqgs. (B1) and (B2)
at each temperature, while taking 7, and u/Jgcs as free
parameters in the initial value, we obtain the curve labeled
as “homogeneous” in Fig. 4, with the parameters reported in
Table I.

To account for the presence of inhomogeneities, we follow
the procedure discussed in previous publications for both
conventional [14] and cuprate [32] superconductors. We
assume that the BCS superfluid density is described by Eq. (13)
with the initial value J} randomly distributed according to
a probability density P(J}) that we take, for instance, as
Gaussian:

P = exp [—(Ji — Jo)*/26%]. (B4)

1
V2ns
In the homogeneous case, the Gaussian distribution has zero
width and only the value Jj is allowed. In this case, one obtains
the Js(T) curve labeled as “homogeneous” in Fig. 4, and the
corresponding 7, Tgkr are the ones reported in Table I. As we
remarked in the text, we also add finite-size effects, by stopping
the RG flow at the scale £,,,x = L /&g of the system size. As a
consequence, even for the homogeneous case Jy(7T') does not
display a real jump, but an extremely rapid downturn occurring
over a few-mK temperature range. In the inhomogeneous case,
for each Jé value distributed according to Eq. (B4), we rescale
the corresponding BCS temperatures as Jé/ T! = Jy/T. and
we compute J!(7') and the corresponding BKT temperatures
Tir by the numerical solution of the RG equations (14)
and (15) above. After obtaining this set of Jj(T) curves, we
compute the sample stiffness as the average one J,,, defined
as

Ja(T) =Y PUOJTNT). (BS)

When all the stiffness values Jj( T) are different from zero, as
it is the case at low temperatures, the average stiffness will be
centered around the center of the Gaussian distribution (B4),
so that it will coincide with JBS(T'). However, by approaching
Tk defined by the average JBCS(T), not all the patches make
the transition at the same temperature, so that the BKT jump
is rounded and J,, remains finite above the average Tgkr,
in agreement with the experiments. In this analysis, we then
have a second free parameter that is the width §/Jy of the
Gaussian distribution (B4), However, all four parameters of
the fit (average Jy and T, ratio ;/ J; and §/ Jy) affect in a rather
independent way the shape of the overall stiffness. Indeed, Jy
and T, are essentially determined by the slope of the stiffness
before the BKT transition, ©/J; determines the location of
the universal jump, whose smearing is controlled by §. Thus,
even though some flexibility is possible in the values of the
parameters listed in Table I, these variations are expected to
be within 10%—-20% of the quoted values.

The inhomogeneity also influences the paraconductivity
above Tgkr. To show this, we proceed in analogy with Ref. [14]
by mapping the spatial inhomogeneity of the sample in a
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random-resistor-network problem. In particular, we associate
to each patch of initial stiffness value J; a normalized
resistance p; = R;/R, obtained from Eq. (18) by using the
corresponding local values of T! and Ty, computed as
outlined above. The overall sample normalized resistance p =
R/R, is then calculated in the so-called effective-medium-
theory (EMT) approximation [84], where p is the solution of
the self-consistent equation

A0

(B6)
P+ pi

1

Here, P; is the occurrence probability of each resistor, which
coincides with the distribution function (B4) of the local Jé
value used to compute the corresponding p; (T). The resulting
R(T) = pR, isshowninFig. 5, and itis compared to the one of
the homogeneous case, i.e., the R(7T') curve obtained when only
the most-probable Jy value of the distribution (B4) is realized.
As we observed in Sec. I, for T 2 10 K the experimental
paraconductivity saturates more rapidly than what is predicted
by the HN interpolating formula. Since in this regime we
are already exploring Gaussian fluctuations, such a failure
is not correlated with the BKT character of the fluctuations,
but it pertains instead to the regime of ordinary Cooper-pairs
fluctuations. Interestingly, such behavior has been already
observed in several families of cuprates [41,42], and it has
been interpreted theoretically [41,75] as an effect of the
pseudogap. Indeed, by phenomenological modeling of the
suppression in the electronic density of states characteristic
of a preformed pseudogap, one can reproduce a faster decay
of the Cooper-pairs correlation length £(7') in Eq. (3) with
respect to the standard AL prediction. Even though a detailed
analysis of this issue is beyond the scope of this paper, we
nonetheless observed that a similar effect seems to be at play
also in the case of our sample. To account for it within the

1.0 ——
0.8}
x=0.07
0.6 |
gg —o— R(T)/R(20 K)
S ¢ Paraconductivity
04} Effective Medium .
=+= Homogeneous
0.2} -
o.o Il 1 1 1 1 1

4 6 8 10 12 14 16 18 20
T (K)

FIG. 6. Comparison between the R(T')/ R, experimental data and
the theoretical prediction obtained in the homogeneous or inhomoge-
neous case for the modified HN correlation length (B7), including
phenomenologically the pseudogap effect in the AL fluctuations.
Solid diamonds: paraconductivity extracted from measurements in
high magnetic fields (Sec. II B).
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HN interpolation scheme, we can for instance multiply the

correlation length entering the paraconductivity formula (3)

by a function suppressing it around a temperature 7 larger
than T, such as

2 b

T) = = sinh —= exp[—(T/T*)*].

&(T) 2 NG p[—(T/T")"]

By introducing this correction factor in each normalized

resistivity p; appearing in Eq. (B6), we obtain the (homoge-

B7)
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neous and inhomogeneous) curves displayed in Fig. 6. Here,
we used T* = 19 K, that is, approximately the temperature
where magnetoresistance saturates. As one can see in Fig. 6,
our scheme now gives an excellent agreement with the
experimental data up to 7' 2~ 20 K. In this high-temperature
regime, the deviations of R(7T) from the magnetic-field
extracted paraconductivity (symbols in Figs. 5 and 6) become
sizable, and the expression (B7) reproduces the latter points
well.
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