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η collective mode as A1g Raman resonance in cuprate superconductors
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We discuss the possible existence of a spin singlet excitation with charge ±2 (η mode) originating the A1g

Raman resonance in cuprate superconductors. This η mode relates the d-wave superconducting singlet pairing
channel to a d-wave charge channel. We show that the η boson forms a particle-particle bound state below the
2� threshold of the particle-hole continuum where � is the maximum d-wave gap. Within a generalized random
phase approximation and Bethe-Salpeter approximation study, we find that this mode has energies similar to the
resonance observed with inelastic neutron scattering below the superconducting (SC) coherent peak at 2� in
various SC cuprate compounds. We show that it is a very good candidate for the resonance observed in Raman
scattering below the 2� peak in the A1g symmetry. Since the η mode sits in the S = 0 channel, it may be
observable via Raman, x-ray, or electron energy loss spectroscopy probes.
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I. INTRODUCTION

The study of collective excitations of a condensed matter
system can provide information about the symmetries of an
order parameter or the nature of the interactions between
particles. The analysis of collective modes can also help
us to understand the origin of high critical temperature
superconductivity (SC) in cuprate compounds (see schematic
cuprate compound phase diagram in Fig. 1).

The existence of a collective spin excitation in the SC state
of cuprates has been highlighted by inelastic neutron scattering
(INS) experiments with the observation of a resonance at
41 meV in YBCO compounds and at similar energies in
other compounds [1–3] around the antiferromagnetic (AF)
ordering vector Q = (π,π ). This resonance, which stands
below the 2�0

SC threshold of the particle-hole continuum (�0
SC

is the maximum of the d-wave SC gap), seems to scale with
the superconducting gap energy above optimal doping (at least
until p = 0.19 hole doping in Bi2212) [4].

This INS resonance has initially been explained in the
framework of the SO(5) emergent symmetry model for
cuprates as a π mode [5,6]. However this π mode lies
at higher energies than experimentally observed, and the
neutron resonance is now explained as a spin triplet exciton or
resonance which emerges in the SC state because of a residual
spin-spin interaction in the system [7,8].

A resonance very similar to the neutron resonance has also
been observed in Raman scattering experiments in the A1g

symmetry channel [9–13]. In YBCO the A1g Raman resonance
is located at 41 meV at optimal doping, and follows the neutron
resonance energy with nickel and zinc substitutions [14,15].
This resonance is not seen in the B1g symmetry, which is
scanning the antinodal region of the Fermi surface, nor in the
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B2g channel, which is scanning the nodal region. In the B1g

channel, a SC coherence peak is observed at higher energy than
the A1g resonance. Its energy matches well twice the maximum
of the d-wave SC gap 2�0

SC observed in other spectroscopies.
The A1g Raman resonance has initially been attributed

to the 2�0
SC SC pairing gap. However, later considerations

showed that long-range Coulomb screening washes out the
single-particle pair-breaking contribution to the Raman re-
sponse in the A1g channel leaving the position and the intensity
of the A1g Raman resonance essentially unexplained [16–19].
A two-magnon process has been proposed to explain the
A1g Raman resonance [18]. However, this process produces
a resonance at twice the energy of the neutron resonance and
thus cannot explain the near perfect energy matching between
the A1g Raman resonance and the Neutron resonance around
the optimal doping.

From a theoretical point of view there are several open
questions regarding the Raman resonance in the A1g channel:
Since the A1g symmetry scans the whole Brillouin zone (BZ),
how can we explain the absence of a superconducting coherent
peak in the A1g channel whereas it is observed in the B1g

channel? How can we explain that the A1g resonance emerges
at lower energy than the SC coherent peak one? How can we
explain the perfect match between the energy of the Raman
resonance in the A1g channel and the INS frequency resonance
at optimal doping? What is the information that this A1g Raman
resonance could give us about the physics of cuprates?

In this paper, we present a coherent scenario that provides
an answer to the latter questions. Our scenario builds on
recent experimental developments [20–30] that pinpointed the
existence of a charge density wave (CDW) state, with ordering
vector qc = (qx,0) and qc = (0,qy) with qx = qy ≈ 0.3π

which exists between hole doping p ≈ 0.1 until p ≈ 0.19 [31]
(see Fig. 1; note that the end point of the CDW order is still
under debate). We explain the Raman resonance in the A1g

symmetry as a collective mode that allows excitations between
the d-wave SC pairing sector and the observed d-wave CDW
charge sector. The proposed scenario is supported by the fact
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FIG. 1. Schematic temperature–hole doping (T ,p) phase diagram
of superconducting cuprates. At low hole doping, the system exhibits
a Mott-insulator antiferromagnetic phase (AF). With increasing
doping, d-wave superconductivity (SC) develops below the critical
temperature Tc (dotted line). The maximum of critical temperature
Tc is obtained at the optimal doping p = po. In the underdoped
regime p < po, the pseudogap (PG) phase appears below the critical
temperature T � (dashed line). Above T �, cuprate compounds exhibit a
metallic phase with a linear temperature dependence of the resistivity
called strange metal (SM). In the overdoped regime p > po, Tc

decreases and T � meets Tc. Note that this behavior is true in the
Bi2212 compound only. In other compounds, the behavior of the
T � line can be different. At very high doping, the system recovers
a conventional Fermi liquid (FL) state. The charge density wave
(CDW) order appears in the underdoped regime below T � and above
Tc (blue area). The hole doping where the CDW state disappears is
still debated and thus we do not finish the transition line.

that the A1g Raman resonance exists between p = 0.12 and
p = 0.22 [32] which overlaps with the hole-doping range
where a coexistence between a d-wave SC and a d-wave
CDW ordered state have been observed [31] (see Fig. 1). This
collective mode is a spin singlet (S = 0) excitation with a
charge ±2 and we call it an η mode of the system.

In order to explain the A1g Raman resonance, we assume
the coexistence between a d-wave SC phase and a d-wave
CDW ordered phase. The CDW phase has the same ordering
vector as the observed one qc = (qx,0) and qc = (0,qy) with
qx = qy ≈ 0.3π . This coexisting phase has been observed with
STM in the Bi2212 compound [31].

A study of the Raman response in a coexistent d-wave
SC and d-wave CDW order through an effective t-J model
qualitatively explains the doping dependence of the frequency
of the A1g Raman resonance in the underdoped phase [33,34].
However, the authors considered a charge-ordering wave
vector Q = (π,π ), which is not observed experimentally, and
the results did not reproduce the peak in the B1g symmetry.

Here, we argue that the A1g Raman resonance is the
collective mode describing the proximity of the charge and
pairing channels. Fluctuations between those two sectors are
typically described by nonlinear σ models [35,36]. Within a
model of itinerant electrons interacting through an effective
AF spin-spin coupling, we find that the η resonance forms
a particle-particle bound state situated below the 2�0

SC
threshold, in a very similar way to the triplet spin exciton
revealed by neutron scattering [7].

The paper is organized as follows: In Sec. II, we present
the theoretical model we use to reproduce the experimental
Raman data. We explain how we describe the different

phases of the cuprates (Sec. II A). We present the different
susceptibilities that we consider (Sec. II B) and give details
about the evaluation of the different Feynman diagrams
(Sec. II C). We also explain the calculations of the full Raman
response (Sec. II D). In Sec. III, we present the results of our
theory and we compare them to the experimental data before
concluding (Sec. IV). Explanations and information about the
spin-fermion model and the experimental setup are given in
detail in Appendices A and B, respectively.

II. THEORETICAL MODEL

A global explanation of the phase diagram of
cuprate compounds is still lacking. For example, we
still do not know whether the cuprates are fundamen-
tally doped Mott insulators admitting a Coulomb en-
ergy repulsion of 1 eV which is crucial to explain
the emergence of superconductivity (see, e.g., [37–39]),
or whether an itinerant electron picture with strong antiferro-
magnetic (AF) fluctuations is a good approximation to explain
the main features of the phase diagram (e.g., [40–42]). A
consensus exists in the recognition that three main players are
present in the phase diagram: d-wave superconductivity, AF
order and fluctuations, and Mott-insulating phase. Note that
the charge order could be a fourth key player of the cuprate
compounds physics.

Below T ∗, the PG phase critical temperature [43–45] (see
Fig. 1), the influence of charge orderings seems to be stronger
than previously thought [46]. On the theoretical point of view,
the proximity between pairing and charge channel is well
described by the spin-fermion approach. Such approach has
been used through simplified eight hot spots (EHS) models
in order to explain the PG phase [36,47]. In the framework
of these models, the PG phase has been interpreted as a phase
with a composite d-wave SC and d-wave bond order parameter
related by SU(2) symmetry [36]. Note that the SU(2) symmetry
relating the charge and spin channels is only realized in a
strict sense in the eight hot spots model where the electronic
dispersion has been linearized around each hot spot.

However, the CDW and PG phases are different phases as
the CDW phase appears on the tips of the Fermi arcs after the
antinodal zone has been gaped out (see Fig. 1). The study of
SC and CDW competing orders related by angular fluctuations
was performed in a model based on Landau theory [35].
In this model, the SU(2) symmetry can be recovered by
ignoring the quartic and anisotropic couplings. Note that a
spin-fermion approach was developed to explain the stability
of the CDW phase related to modulated SC order called the
pair density wave (PDW) [48]. In the following, we leave aside
the complexity of the spin-fermion approach and we describe
the SC/CDW coexisting phases with another model.

A. Description of the system

1. The two-body Hamiltonian

We consider a system of itinerant fermions interacting
through an effective AF spin-spin coupling close to vector
Q derived from the spin-fermion approach [36] (detailed in
Appendix A). We then describe a system of fermions with a
kinetic energy and nearest-neighbor interaction Hamiltonian
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involving both spin and charge in the weak-coupling
regime. The Hamiltonian is written H = ∑

i,j,σ tij c
†
iσ cjσ +∑

〈i,j〉 (Jij Si · Sj + Vijninj ) where ni = ∑
σ c

†
iσ ciσ and Si =∑

αβ c
†
iασα,βciβ are the density and spin operators, respectively,

with σαβ the Pauli matrix vector. 〈ij 〉 denotes summation over
nearest neighbors and tij is the hopping parameter. Jij is the
nearest-neighbor superexchange coupling and Vij the nearest-
neighbor Coulomb term. Long-range Coulomb effects will be
considered later while discussing the Raman response. We will
neglect them for the study of the collective mode. Involving
the Fourier transform ci,σ = 1√

N

∑
k eik·ri ck,σ , where N is the

total number of lattice sites, the Hamiltonian is written

H =
∑
k,σ

ξkc
†
kσ ckσ +

∑
k,k′,q

(Jqc
†
k,ασ T

αβck+q,βc
†
k′+q,γ σγ δck′,δ)

+
∑

k,k′,σ,σ ′
Vqc

†
k,σ ck+q,σ c

†
k′,σ ′ck′−q,σ ′ , (1)

where c
(†)
p,α is the annihilation (creation) operator of

an electron with spin α and impulsion p. ξk is the
one-particle energy with a tight-binding form obtained
to fit ARPES data [49]: ξk = −2t[cos(kxa) + cos(kya)] +
4t ′ cos(kxa) cos(kya) + t0[cos(kxa) − cos(kya)]2 − μ where
t,t ′ are respectively the first and second neighbor hopping
terms with t ′ = −0.3t and t0 = 0.084t , which are third and

fourth neighbor hopping terms. a is the cell parameter set
to unity and μ is the chemical potential determined to
adjust the hole doping. Jq = − J

2 [cos(qxa) + cos(qya)] is
the Fourier transform of Jij developed around Q, while
Vq = V

2 [cos(qxa) + cos(qya)] denotes the amplitude of the
nearest-neighbor Coulomb interaction for small values of q.
Vq accounts for repulsion between charge and vanishes in the
conventional t-J model. In the following, we treat Vq and Jq
as independent parameters [5,50].

2. Order parameters and effective Hamiltonian

In the following, we focus on the superconducting phase
where the Raman A1g resonance peak has been observed.
We consider that the superconducting phase around optimal
doping is a coexistence between a d-wave SC order and the
d-wave CDW order. Thus, we decouple the Hamiltonian (1)
in the SC pairing channel and in the charge channel by
introducing the two order parameters �SC,k and �CDW,k.
�SC,k is the superconducting order parameter which describes
the d-wave SC order. �CDW,k is the CDW order parameter
which describes the d-wave charge order with ordering vector
qc. Applying the Hubbard-Stratanovitch transformation to the
Hamiltonian (1), the effective Hamiltonian of the system can
be written in the basis �

†
k = (c†k,σ ,c−k−qc,σ̄ ,c

†
k+qc,σ

,c−k,σ̄ ) as

Ĝ−1(k,ω) =

⎛
⎜⎜⎜⎜⎝

iω − ξk 0 �CDW,k �SC,k

0 iω + ξ−k−qc �
†
SC,k+qc

−�CDW,k

�
†
CDW,k �SC,k+qc iω − ξk+qc 0

�
†
SC,k −�

†
CDW,k 0 iω + ξ−k

⎞
⎟⎟⎟⎟⎠ (2)

with ξ−k = ξk. Note that the Green’s function inverse matrix is very similar to previous studies with d-wave SC and d-wave
CDW coexisting phase [33,34]. From inverting the matrix (2), one can find the Green’s functions of the system. Particularly, the
CDW quasiparticle Green’s function G�CDW (k,ω) and the anomalous SC Green’s function G�SC (k,ω) are written

G�CDW (k,ω) = �CDW,k
�

†
SC,k+qc

�SC,k + |�CDW,k|2 − ξk+qcξk + ω2 − iω
(
ξk+qc + ξk

)
det[Ĝ(k,ω)]

, (3)

G�SC (k,ω) =
(
ω2 + ξ 2

k+qc
+ ∣∣�SC,k+qc

∣∣2)
�SC,k + �SC,k+qc |�CDW,k|2

det[Ĝ(k,ω)]
, (4)

with

det[Ĝ−1(k,ω)] = |�CDW,k|4 + 2|�CDW,k|2
(
�SC,k�SC,k+qc + ω2 − ξk+qcξk

)
+ (

ω2 + ξ 2
k + |�SC,k|2

)(
ω2 + ξ 2

k+qc
+ ∣∣�SC,k+qc

∣∣2)
. (5)

The Green’s functions of the system will be crucial to
estimate the different susceptibilities of the system (see
Sec. II B).

3. Phenomenology and symmetries of the SC and CDW orders

In principle, we have to solve the self-consistent equations
to determine �SC(k,ω) and �CDW(k,ω). However, the goal of
this paper is not to explain the (T ,p) phase diagram. Based
on experimental evidence that the charge is modulated inside
the superconducting phase of cuprates [31], we assume that

the SC phase is composed of a competition between a d-wave
SC phase and a d-wave CDW order. The amplitude of the
order parameters �SC,k and �CDW,k is expected to vary with
the hole doping. The CDW order has the same ordering wave
vector qc as the one observed experimentally. In this paper, we
do not address the problem of the PG state. We then neglect
the PG energy scale and we assume that the PG state does
not interfere with the Raman response in the SC state. This
assumption is expected to be valid around optimal doping and
in the overdoped regime.
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In Bi2212, the SC order parameter decreases above optimal
doping p = 0.16 and vanishes around doping p = 0.25 as
mentioned in [31]. The CDW order is maximal at doping p =
0.12 and vanishes around p = 0.19 at zero temperature [31],
while the PG transition line meets the superconducting transi-
tion line at a slightly higher doping, around p = 0.22 [30,51].

We assume a simple momentum and frequency de-

pendence of the SC pairing �SC(k,ω) = �0
SC
2 [cos(kxa) −

cos(kya)]f (ω,�0
SC) and CDW order �CDW(k,ω) = �0

CDW
2

[cos(kxa) − cos(kya)]f (ω,�0
CDW) where �0

CDW (�0
SC) is the

maximum of the d-wave CDW (SC) order and f (ω,X) =
e
− ω2

2σ2 with a variance σ = X/1.177 ensuring a half width
at half maximum equal to X. Recent STM experiments
demonstrate the d-wave character of the CDW order [52].

Above optimal doping, the phase diagram (Fig. 1) shows
that the superconducting state disappears at a higher temper-
ature than the CDW state and we can consider that the CDW
gap amplitude is lower than the SC one: �0

SC > �0
CDW. In the

underdoped regime, the decreasing of Tc which goes below
the CDW critical temperature (see Fig. 1) can be described by
the opposite regime �0

SC � �0
CDW.

The frequency dependence of the order parameters is a
consequence of the spin-fermion model [36,53]. We choose a
frequency dependence of the order parameters that is a good
approximation of the one coming from the spin-fermion model
(see Appendix A).

4. SU(2) symmetry between SC and CDW order

The concept of emerging symmetries has first been intro-
duced to explain PG phase of cuprate compounds. Particularly,
a representation with a pseudospin operator was introduced
which rotates the d-wave SC state into a charge order with
ordering vector qc = (π,π ) [54,55]. In systems with coexisting
d-wave SC and CDW states, one can define a pseudospin
respecting the SU(2) symmetry which rotates from the SC
state onto a CDW order [56]. Indeed, in d-wave SC and
CDW coexisting orders, we can define a pseudospin where
each components is a SC or CDW operator with �0 = �CDW,
�1 = �

†
SC, and �−1 = −�

†
1,

�1 = − 1√
2

∑
k

dkc
†
k↑c

†
−k↓, (6a)

�0 = 1

2

∑
k,σ

dkc
†
kσ ck+qcσ , (6b)

�−1 = 1√
2

∑
k

dkck↓c−k↑, (6c)

with dk = 1
2 [cos(kxa) − cos(kya)] the d-wave form factor. The

lowering and raising pseudospin operators η+, η− = (η+)†,
and ηz follow the definition

η+ =
∑

k

c
†
k↑c

†
−k+qc↓, (7a)

ηz =
∑

k

(
c
†
k↑ck↑ + c

†
k+qc↓ck+qc↓ − 1

)
. (7b)

The operators (7) form an SU(2) Lie algebra. The SU(2)
spin operators (7) rotate each component of the pseudospin (6)
into another [56].

A typical approach to study this underlying SU(2) sym-
metry is nonlinear σ models [35,36]. Such models have
been proposed to explain the physics of cuprate superconduc-
tors [35,36,47,48]. In the following, we calculate the response
of the operators η+ and η− that connect SC and CDW orders.

B. Susceptibilities of the system

1. The collective modes

In order to study the collective mode physics, we analyze
the linear response for the two following operators. First, the
INS resonance originates the excitation from the SC singlet
state to the spin triplet at wave vector Q associated with the
AF order [7]. It is described by the operator S+ (S− = S

†
+):

S+ = N−1/2
∑

k

c
†
k↑ck+Q↓, (8)

which destroy a bosonic excitation at momentum Q with a
0 charge and spin 1 as presented in Fig. 2(d). The η mode
excites from the SC order parameter 〈c†k↑c

†
−k↓〉 to the CDW

order 〈c†k↑ck+qc↑〉. It is described by the operator

η = N−1/2
∑

k

ck+qc↑c−k↓, (9)

where qc is the ordering vector of the charge density wave
(CDW) order. The η operator destroy a bosonic excitation
at momentum qc with a 0 spin, a −2 charge, and is fully
symmetric as presented in Fig. 2(e). Upon action of it, the
SC state transforms into the CDW state in the same way as
the operators (7a). The η mode is obtained at wave vector qc
with qc = (0,qy) = (qx,0) and qx = qy = 0.3π , contrasting
with the typical Q = (π,π ) location of the spin triplet exciton.
Within the framework of the eight hot spots spin-fermion
model, where the electronic dispersion has been linearized

(a) (b) (c)

(e)(d)

(f)

FIG. 2. Graphical representation for (a) the photon-electron
vertex at q and for the symmetry λ and (b) the neutron-spin vertex
at Q = (π,π ). Graphical representation for (c) the Coulombian
interaction vertex [17], (d) the spin triplet exciton vertex, and (e) the
η-mode vertex. In (f) are presented the diagrammatic representation
of the normal Green’s functions, the CDW Green’s function, and the
SC anomalous Green’s function.
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(a)

(b) +

+

+

+...

FIG. 3. (a) The bare polarization bubble we use for the spin mode.
For the spin mode, the external momentum equals the AF ordering
wave vector Q = (π,π ). (b) Series of Feynman diagrams of the spin
mode resulting from the RPA approximation. The spin susceptibility
χS is the result of this series of diagrams which can be evaluated with
the formula (10).

around the Fermi points, the operator described in Eq. (9)
represents an SU(2) rotation between the CDW and SC states.

2. Susceptibilities in the random phase approximation and
Bethe-Salpeter approximation

We rewrite the Hamiltonian (1) with the spin operators
[S± of Eq. (8)] and the η-mode operator [see Eq. (9)]
H = ∑

k,σ ξkc
†
kσ ckσ + JSS+S− + Jηη

†η. The magnitude of
the interactions is Jη = 3J − V in the η-mode channel
and JS = 2J in the spin channel. We compare the spin
susceptibility derived from the random phase approximation
(RPA) with χS = −iθ (t)〈[S+(t),S−(0)]〉 as depicted in Fig. 3
and the η-mode susceptibility derived from Bethe-Salpeter
ladder approximation with χη = −iθ (t)〈[η(t),η†(0)]〉 shown
in Fig. 4. Within the RPA and Bethe-Salpeter approximation,
the full susceptibilities are given by

χλ
η (ω) = χλ,1

η (ω)

1 − Jηχ0
η (ω)

, χS(ω) = χ0
S (ω)

1 + JSχ
0
S (ω)

, (10)

where χ0
S is the bare polarization bubble for the spin mode

[see Fig. 3(a)], χ0
η is the single segment of the ladder diagrams

describing the η mode [see Fig. 5(a)], and χλ,1
η is the first

term of the diagram series for the η mode [see Fig. 5(b)] in
the λ symmetry. Note that the detailed calculation of the bare
polarization bubble and diagrams is done in Sec. II C.

C. Evaluation of the diagrams

In this section, we focus on the diagram calculation
presented in Fig. 3(a), for the bare polarization of the spin
mode χ0

S , in Fig. 5(a) for the single segment of the ladder
diagrams describing the η-mode χ0

η and in Fig. 5(b) for the first
term of the η-mode diagram series. The explicit internal and
external momenta dependence of each diagram is explicitly
presented in Figs. 3(a) and 5.

In order to include the frequency dependence of the order
parameters in the diagram calculation, we develop the order
parameters depending on the internal frequency standing
inside the summation terms around the external frequency,

(a)

(b) = +

+ +...

FIG. 4. (a) The Feynman diagram of the η collective mode. The
red circle represents the CDW quasiparticle Green’s functions G�CDW

of Eq. (3). The blue circle represents the anomalous SC function G�SC

of Eq. (4). γ λ
k is the Raman vertex in the λ symmetry. (b) � is the

diagram resulting from the Bethe-Salpeter series of diagrams. �nqn

is the summation over the internal momenta qn. qc is the charge
density ware ordering vector. The value of the η collective mode
susceptibility χλ

η is evaluated by the formula (10) in the approximation
of a frequency- and momentum-independent Jη.

�(εint) ≈ �(εext) + (εint − εext) ∂�
∂εint εint=εext

+ · · · , and we keep
only the zeroth-order term [with εint(ext) the internal (external)
Matsubara frequency]. This implies that our susceptibility will
be underestimated at high frequency.

We also assume that the η-mode interaction Jη and the spin
interaction JS do not depend on the frequency and the momen-
tum. This approximation allows us to decompose the ladder
diagram of Fig. 4 in the diagram of Fig. 5. The momentum sum
is done over the first Brillouin zone with meshes of 400 × 400
after doing the summation over internal Matsubara frequencies
at zero temperature T = 0. We do the analytical continuation
on the external Matsubara frequency writing iω ≡ ω + iδ in
the energy denominators. A small broadening is introduced by
the parameter δ and can be understood as a residual scattering.

(a)

(b)

FIG. 5. (a) χ 0
η is the single segment of the ladder diagrams

describing the η mode. This term is evaluated in formula (12) in
Sec. II C 1. (b) χη

λ,1 is the first term of the series of ladder diagrams.
γ λ

k is the Raman vertex in the λ symmetry. This term is evaluated
in formula (14) in Sec. II C 2. Both terms are evaluated in the
approximation of a momentum- and frequency-independent Jη.
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Im(χ)

(a)

(b)

χ0 S
(a

.u
.)

ω (eV)

χ0 η(
a.

u.
)

SC/CDW

FIG. 6. Imaginary part (dashed line) and real part (solid line)
of (a) the spin bare function χ 0

S at q = Q = (π,π ) and (b) the
η-mode bare function χ 0

η at q =(0,0) at T = 0 K in a d-wave
superconductor with 2�0

SC = 60 meV mixed with a d-wave charge
order with 2�0

CDW = 35 meV. A broadening δ of 5 meV was
employed.

1. Calculation of the bare polarization bubbles

The bare polarization χ0 is the response function of
the nonlocal density operator: χ0 = −iθ (τ )〈ρq(τ )ρq(0)〉 with
ρq = 1/N

∑
k c

†
kck+q. From Fig. 3(a) and following the

academic way to evaluate these diagrams, we find [50,57]

χ0
S (q,iω) = T

∑
ε,k

Tr[Ĝ(iε + iω,k + q) · Ĝ(iε,k)], (11)

where ε(ω) is a fermionic (bosonic) Matsubara frequency, T

the temperature, and Tr means trace of the Green’s function
matrix Ĝ [see expression (2)]. Ĝ is the Green’s function matrix
deduced from the inversion of the matrix (2). From Fig. 5(a),
and assuming that Jη is frequency and momenta independent,
the ladder diagram χ0

η can be determined in the form [50,57]

χ0
η (k,q,ω,ε) = T

∑
ω1,q1

Tr[Ĝ(iε + iω + iω1,k + q + q1 + qc)

· Ĝ(−iε − iω1,−k − q1)] (12)

where ω1 is a bosonic Matsubara frequency. Note that we put
Jη outside of the expression (12). We do the internal Matsubara
frequency and momentum summation by doing the change of
variable k̃ = k + q1 and ω̃ = ω1 + ε. Then, χ0

η (k,q,ω,ε) can

-0.2 -0.1 0.0 0.1 0.2
-3

0

3

-4

-2

0

2

ω (eV)
χ0 S

(a
.u

.)
χ0 η(

a.
u.

)

(b)

Re(χ)
Im(χ)

Fermi Liquid

(a)

FIG. 7. Imaginary part (dashed line) and real part (solid line) of
(a) the spin bare function χ 0

S at q = Q = (π,π ) and (b) the η-mode
bare function χ 0

η at q =(0,0) at T = 0 K in the Fermi liquid phase. A
broadening δ of 5 meV was employed.

be simplified as χ0
η (q,iω) and becomes

χ0
η (q,ω) = T

∑
ω̃,k̃

Tr[Ĝ(iω̃ + iω,k̃ + q + qc) · Ĝ(−iω̃,−k̃)].

(13)

The bare polarization in the spin and η channels in the
SC/CDW coexisting phase is presented in Fig. 6 (with 2�0

SC =
63 meV and 2�0

CDW = 35 meV) and in the Fermi liquid phase
in Fig. 7. The bare polarization in the spin channel χ0

S develops
a gap in the SC/CDW phase [Fig. 6(a)]. The presence of a
threshold in Imχ0

S at the frequency ω ≈ 60 meV allows the
emergence of a resonance of the collective response below
the gap. This gap closes in the Fermi liquid phase as seen in
Fig. 7(a).

On the other hand, the η mode couples an electron with
momentum k + qc to a counterpropagating electron with
momentum −k. Consequently, χ0

η has an opposite sign of χ0
S

in both Fermi liquid and superconducting state [see Fig. 6(b)
and Fig. 7(d)]. In the η channel χ0

η develops a gap in the
SC/CDW phase [Fig. 6(b)]. This quasiparticle gap closes in
the Fermi liquid phase as seen in Fig. 7(b). We clearly see a
gap with a threshold occurring around ω ≈ 60 meV which is
the value of 2�0

SC. Note that a gapped quasiparticle continuum
develops at low frequency in χ0

η as in χ0
S . The reason is that

we evaluated χ0
η at q = 0 while the CDW order has a nonzero

ordering vector qc. For comparison, χ0
S is evaluated at finite

momentum q = Q which also results in a gapped quasiparticle
continuum.
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2. Calculation of the term χλ,1
η

The ladder diagram χλ,1
η can be determined in the

form [50,57]

χλ,1
η (q,ω) = −T 2

∑
ε,ω1,k,q1

Jη(ω1,q1)γ λ
k γ λ

k+q+q1

× [G�CDW (iε + iω,k + q) · G�SC (iε,k)

× G�CDW (iε + iω + iω1,k + q + q1 + qc)

× G�SC (−iε − iω1,−k − q1)]. (14)

Considering our initial approximation, we can factorize by the
interaction Jη and we determine, from the Green’s function
matrix (2), that G�SC (−iε − iω1,−k − q1) = G�SC,�(iε +
iω1,k + q1) and G�CDW (iε + iω + iω1,k + q + q1 + qc) =
G�CDW,�(iε + iω + iω1,k + q + q1). We do the internal Mat-
subara frequency and momentum summation by doing the
change of variable k̃ = k + q1 and ω̃ = ω1 + ε.

This susceptibility is proportional to the product of both
SC and CDW order parameters �CDW�SC. Consequently, the
η-mode susceptibility χλ,1

η only exists in a coexisting SC/CDW
phase. A careful study of the symmetry of the η-mode response
is done in the following section.

D. The full Raman response

We now argue that the η collective mode is seen in the A1g

Raman channel only. The study of the Raman susceptibility
requires a careful examination of the symmetries of the system.
These symmetries are taken into account by considering
vertices in the photon-matter interaction different from unity
(see Figs. 4 and 8). Three symmetries are typically considered
for the Raman vertices in the cuprate superconductors which
write within the effective mass approximation:

γ A1g = 1

2

[
∂2ξk

∂2kx

+ ∂2ξk

∂2ky

]
, γ B1g = 1

2

[
∂2ξk

∂2kx

− ∂2ξk

∂2ky

]
,

(15)

γ B2g = 1

2

[
∂2ξk

∂kx∂ky

+ ∂2ξk

∂ky∂kx

]
,

where A1g probes the whole Brillouin zone, B1g the antinodal
zone, and B2g the nodal zone. Here we assume that there
is no response in the A2g symmetry [19] (γ A2g = 0). In the

(a)

(b)

+

+

+...

FIG. 8. (a) The Raman bare polarization bubble with γ λ the
Raman vertex in the λ symmetry. (b) χλ

coul is the Coulomb screening
term resulting from the RPA series of diagrams. Note that the
dark triangle in the diagram denotes the presence of the Raman
vertex.

presence of the η collective mode, the full Raman susceptibility
is written in the λ symmetry

χλ
Raman = χ0

γ λγ λ + χλ
coul + χλ

η , (16)

where χ0
γ λγ λ is the bare Raman response [Fig. 8(a)], χλ

coul the

Coulomb screening [Fig. 8(b)], and χλ
η the η-mode response

[Fig. 4(a)].
The value of χλ

η depends on the momentum dependence
of the product γ λ

k G�CDWG�SC . The product of the two Green’s
functions G�CDWG�SC is proportional to the product �SC�CDW

which is proportional to the square of the d-wave factor.
The sum over the internal momenta in the first BZ of the
square of the d-wave factor is finite. The sum over the internal
momenta in the first BZ of the Raman vertex γ

B1g

k and γ
B2g

k

vanishes (
∑

k γ
B1g

k = ∑
k γ

B2g

k = 0) while it is finite for the

Raman vertex γ
A1g

k (
∑

k γ
A1g

k �= 0). The sum over the internal
momenta of the product γ λ

k G�CDWG�SC therefore vanishes in
the B1g and B2g symmetry while it is nonzero in the A1g

symmetry. Consequently, the η-mode response only exists in
A1g symmetry.

In addition long-range Coulomb interaction U ∼ 1/q2

plays an important role in screening the Raman in the A1g

channel [19]. Doing the summation over all the Coulomb
diagram [Fig. 8(b)], one can find easily

χλ
coul =

Uχ0
γ λ1χ

0
1γ λ

1 − Uχ0
11

, (17)

where χ0
γ λ1 is the Raman susceptibility with one of the

vertex put to unity and χ0
11 the bare polarization bubble.

In the limit q → 0, the “Coulomb screened” susceptibility
simplifies as χλ

coul = −χ0
γ λ1χ

0
1γ λ/χ

0
11. In the A1g symmetry, the

contribution of χ
A1g

coul cannot be neglected [17]. Its contribution
will screen partly the bare Raman susceptibility χ0

γ
A1g γ

A1g
.

Consequently, the Raman response in the A1g symmetry

is written χ
A1g

Raman = χ0
γ

A1g γ
A1g

+ χ
A1g

coul + χ
A1g

η . Around optimal

doping, we will see that the contribution of the η mode (last
term) is of the same order of magnitude as the bare screened
A1g Raman response (first two terms). By increasing the
doping, because of the weakening of the CDW order we expect
a decrease of the η-mode intensity and the A1g spectra will be
dominated by the bare screened Raman response.

The Coulomb screening can be neglected in the B1g and
B2g channels for symmetry reasons [17]. Consequently, the
full Raman susceptibility is simply given by the unscreened
response: χλ

Raman ≈ χ0
γ λγ λ with λ = B1g (B2g).

III. RESULTS AND DISCUSSION

The theoretical spectra are calculated without solving the
self-consistent equation derived from the spin-fermion model.
As a consequence, we need to adjust the amplitude of the
order parameters as well as the value of J and V to reproduce
the experimental data. The parameter values are adjusted
in the following way: the value of �0

SC is chosen to reproduce
the Raman peak frequency in the B1g channel. The value of
�0

CDW is chosen to adjust the intensity of the resonance in the
A1g channel. Note that the value of �0

CDW does not influence
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FIG. 9. (a) Calculated spin response. (b) Experimental (solid line)
and calculated (dashed line) Raman response in the A1g symmetry
and (c) in the B1g symmetry at optimal doping p = 0.16 (δ = 10
meV, 2�0

SC = 63 meV,2�0
CDW = 45 meV). In (b), the dotted line

presents the calculated bare screened Raman response without the
η-mode contribution, χA1g� = χ 0

γ
A1g γ

A1g
+ χ

A1g

coul . Phonon lines have

been subtracted out of the experimental Raman spectra for clarity in
(b) but not in (c). The arrows in (c) indicate the location of the phonon
lines superimposed on the electronic background.

the frequency of the η mode. We adjust the value of J to fit
the neutron resonance frequency and the value of V to fit the
frequency of the Raman resonance in the A1g symmetry. A
fully self-consistent determination of the CDW and SC order
parameter amplitude is not done here as our goal is to identify
the main theoretical features necessary to explain the Raman
resonance in the A1g symmetry.

A. Results

The imaginary parts of the neutron spin susceptibility
(spin response) and the full Raman susceptibility in the A1g

symmetry (Raman response) are presented in panels (a) and (b)
of Fig. 9 for optimal doping (p = 0.16) with 2�0

SC = 63 meV
and 2�0

CDW = 45 meV. The theoretical curves are obtained
for J = 107.5 meV and V = 54.5 meV. To the best of our
knowledge, the amplitude of the CDW order parameter �0

CDW
has not been evaluated yet in the experiments. However, in our
effective model, the value of �0

CDW is reasonable compared
with the SC order parameter amplitude.

For this set of parameters, the calculated spin response
exhibits a sharp peak at ω = 364 cm−1 at the same energy as
the energy of the calculated A1g Raman resonance. Note that
the frequency dependence of the CDW order �CDW cuts the
SC coherence peak at 2�0

SC ∼ [510 cm−1(63 meV)] in the A1g

channel but leaves the B1g channel unaffected [see panel (c)].
Figures 9(b) and 9(c) show a qualitative agreement between
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FIG. 10. (a) Calculated spin response. (b) Experimental (solid
line) and calculated (dashed line) Raman response in the A1g symme-
try and (c) in the B1g symmetry for the overdoped regime p = 0.23
(δ = 10 meV, 2�0

SC = 25 meV,2�0
CDW = 0 meV). Phonon lines

have been subtracted out of the experimental A1g Raman spectra
in (b) for clarity.

the peak energies in the A1g and B1g calculated Raman spectra
(red curves) and the experimental Raman spectra obtained
from Bi2212 single crystals (black curves) [51]. We note that
in our approximation, the calculated susceptibility vanishes
in the metallic phase. This implies that we cannot reproduce
the susceptibility at high energy for ω > 2�0

SC. More realistic
electron self-energies are needed in order to reproduce the
spectra at high energy.

In the overdoped regime (p = 0.23), the value of J =
65 meV decreases and the value of V is the same as at
optimal doping (see Fig. 10). Experimentally above optimal
doping, the frequency of the INS resonance at Q decreases
with overdoping and scales with Tc [4]. In the absence of
experimental data, we choose to fit the neutron scattering
peak by assuming that the scaling between the neutron
resonance frequency and Tc observed by INS [4] is still valid
at hole doping p = 0.23. At this doping, the INS resonance
frequency should be at 187 cm−1 with Tc = 50 K. Note
that persistent spin excitation has been observed in a huge
range of hole doping by resonant inelastic x-ray scattering
experiments [58,59], which favors the existence of neutron
resonance at Q vector at high doping. The maximal value
of �SC and �CDW weakens and we take into account this
decreasing by putting 2�0

SC = 25 meV and 2�0
CDW = 0 meV.

The decrease of �0
CDW is due to the larger distance to the AF

quantum critical point at this doping as well as the proximity
of a change of Fermi surface topology [51,60]. The vanishing
of the CDW order in the overdoped regime has been observed
by STM [31].
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For these parameters the calculated spin and A1g Raman
responses exhibit peaks at different energies (187 cm−1 and
205 cm−1, respectively) [see Figs. 10(a) and 10(b)]. The
perfect matching between neutron and raman peak energy is
thus only verified close to optimal doping level. The theoretical
Raman response captures well the energies of both the B1g

SC coherence peak 2�0
SC and the A1g peak detected in the

experimental spectra shown in Figs. 10(b) and 10(c).
The η mode also exists in the overdoped regime but the

decreasing of �SC and �CDW completely weakens its intensity.
The SC coherence peak, which is not detectable in the optimal
doped regime [see Fig. 9(b)], increases its intensity with
overdoping and becomes detectable in the A1g channel around
p = 0.22. Beyond this doping, the CDW order parameter
amplitude vanishes and the η-mode contribution to the A1g

Raman spectrum vanishes. At this doping level the A1g spectra
are entirely given by the bare screened Raman response which
peaks at a different energy than the neutron resonance. To
summarize, the physical mechanism behind the A1g resonance
peak is different below p = 0.22 from what it is above. Below
this doping, the A1g resonance originates the η mode. Above
this doping, the η mode vanishes with the CDW order and the
peak in the A1g channel is a 2� SC coherent peak located at the
same energy as the one in the B1g channel. This is qualitatively
consistent with Raman experiments; more neutron data in the
overdoped regime would be desirable to confirm this picture.
Note that in Figs. 9 and 10, we adjust the units to superimpose
the experimental and calculated data. Consequently, we
cannot comment on the spectral weight of the results.

Before proceeding with the discussion, we briefly comment
on the choice of parameters. In the AF state, ab initio
calculations determine a superexchange coupling J AF

theo =
125 meV [61–63]. An experimental value of superexchange
coupling J

exp
AF has also been deduced from Raman scattering

experiments in Bi2212 compounds and evaluated at J ≈
125 meV [64,65] in the AF phase. With hole doping, it
is reasonable to assume that the superexchange coupling
decreases J < JAF [65] because of the screening caused by
the presence of holes. The values of J that we deduce from the
fits (see Fig. 9 and Fig. 10) are comparable with the calculated
and the experimental values, and are coherent with a decrease
of the superexchange coupling with the hole doping. The value
of V is weaker than the superexchange J . To the best of our
knowledge, this value has not been evaluated yet. The nonzero
value of the V parameter implies that the charge channel is
important to explain the A1g Raman resonance. The frequency
of the A1g Raman resonance depends on the values of V

and J since it depends on Jη = 3J − V . Note that the A1g

Raman frequency is less sensitive to the value of V than to the
value of J . Note that our effective model does not involve the
strong correlation existing in the system. J and V have to be
considered as effective parameters.

B. Discussion

In this part, we discuss our theoretical results and the main
experimental features that characterize the Raman spectra in
the A1g and B1g channels in the cuprates.

(1) The Raman experiments in the B1g symmetry well es-
tablished a long time ago the presence of the superconducting

coherent peak at the frequency of twice the maximum of the
d-wave SC gap 2�0

SC [9–13]. Note that the value of �0
SC can be

determined by STM experiments [31]. Our theoretical model
reproduces well this superconducting coherent peak for a large
range of doping (see Figs. 9 and 10) [32].

(2) In Raman experiments at optimal doping, the Raman
A1g resonance appears at a frequency below the superconduct-
ing coherent peak frequency 2�0

SC [9–13] and at an energy very
close to the INS resonance frequency at Q = (π,π ) [14,15].
Our model explain this resonance by an η collective mode
which rotates the SC ground state into a CDW state. The
energy of this resonance depends on the interaction amplitude
J and V as shown in Figs. 9(a) and 9(b). Although our model
can reproduce the nearly identical energies of the A1g Raman
resonance and the neutron resonance, the equality is obtained
by adjusting the parameter V. Nevertheless our model is able
to reproduce this equality for a reasonable set of parameters

(3) In the overdoped regime, the Raman A1g resonance is
experimentally observed at an energy very close to the super-
conducting coherent peak frequency 2�0

SC. In our calculations,
the η collective mode vanishes in this regime because of the
disappearance of the CDW order. Consequently, only the bare
screened susceptibility contributes to the Raman response and
the A1g resonance becomes a superconducting coherence peak
as shown in Figs. 10(a) and 10(b).

(4) In the underdoped regime, the transition temperature of
the CDW order is greater than the superconducting critical
temperature. Hence we can consider that the CDW order
parameter amplitude becomes larger than the SC one �0

CDW >

�0
SC. In our theory this regime implies a decreasing of the

η-mode resonance intensity which will become undetectable
at low doping. Existing Raman data seem to be consistent with
a disappearance of the A1g in the underdoped regime [32].
The description of the underdoped regime however requires a
description of the pseudogap phase that we did not take into
account in the present work. Deeper considerations about the
Raman scattering spectra in the underdoped regime will be
considered in detail in a forthcoming work.

(5) To fit the Raman resonance in the A1g symmetry, we
propose an explanation based on the coexistence between
two orders with a d-wave symmetry. This d-wave symmetry
remains crucial to explain the resonance in the A1g symmetry
only. Moreover, the d-wave form factor of both SC and CDW
orders has been observed with STM [52]. To explain the
small amplitude of the 2� superconducting coherent peak
in the A1g symmetry, it is necessary to include a frequency
dependence of the order parameters that can be predicted by the
spin-fermion model. This frequency dependence suppresses
the superconducting coherent peak from the η-mode response.
In the bare Raman response, this superconducting coherent
peak is strongly screened by the long-range Coulombian
effects. This screening allows the observation of the η mode
in this channel.

(6) Experimentally, the A1g Raman resonance has been
observed in the SC state and disappears at Tc [9–13]. The
η mode calculated here depends on the magnitude of the
CDW and SC order parameters and then we expect to see
its disappearance for temperature below Tc in the overdoped
part of the phase diagram (where �0

SC > �0
CDW). This is

a limitation of the approach developed here. However, we
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argue that the η mode exists between SC order and all types
of charge orders. In our simplified model, we neglect the
contributions that could come from the PG phase. In the
framework where the PG phase is interpreted as a charge order,
one could observe the emergence of such η resonance at higher
temperature than the CDW critical temperature [66].

IV. CONCLUSION

To conclude, we propose a coherent scenario to explain the
resonance peak in the A1g symmetry seen in Raman scattering.
This scenario is based on the existence of coexisting d-wave
SC and d-wave CDW orders in the SC phase of the cuprates.
The ubiquitous proximity of the CDW and SC states in the
underdoped phase of the cuprates generates a collective “η
mode” allowing rotations between those two states. The η

collective mode results from the coupling between the d-wave
SC and the d-wave CDW state. This mode produces a response
in Raman scattering spectroscopy solely in the A1g symmetry
and matches the spin triplet resonance at q = Q =(π,π ) at
optimal doping. Since the η mode is a charge ±2 spin-zero
spin-singlet excitation other probes such as electron energy
loss spectroscopy and resonant x-ray techniques are also likely
to show the resonance.
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APPENDIX A: SUPPLEMENTARY INFORMATION ABOUT
THE SPIN-FERMION MODEL

In this section, we present the calculation of the effective
Lagrangian derived from the initial spin-fermion Lagrangian.
The goal of this section is to give more physical details for the
completeness of the paper.

1. The spin-fermion model and the effective boson propagator

The starting point of the theoretical model is the spin-
fermion model [36,47]. Note that the models presented
in [36,47] simplify the Fermi surface (FS) in eight hot spots
(EHS) [the hot spots are points of the Fermi surface separated
by the vector Q = (π,π )]. In the following, we develop the
model introduced in [36] in the whole Brillouin zone (BZ).

In the model [36], the physics of cuprates results from the
coupling of the fermions with a bosonic spin mode which
generates at the antiferromagnetic (AF) / pseudogap (PG)
quantum critical point (QCP) a pseudogap in the fermionic
dispersion. This new state, different from the AF one, is a
superposition of a d-wave superconducting (SC) state and a
charge density wave (CDW) order. This bosonic spin mode

(also called paramagnons) survives out of the AF phase and
become the new glue between electrons that leads to the PG
and superconducting (SC) phase. To describe the interaction
between this bosonic spin mode and fermions, we start from
the Lagrangian L = Lc + Lφ , where

Lc = c∗(∂τ + ξk + λφσ )c, (A1)

Lφ = 1

2
φ

[
ω2

v2
s

+ (q − Q)2 + m

]
φ + u

2
(φ2)2. (A2)

The Lagrangian L describes the coupling of the electron (rep-
resented by the fermionic field c) to spin waves (represented
by the bosonic field φ). The dynamic of the fermions and their
coupling with the bosonic mode is described in the Lagrangian
Lc. The strength of this coupling is tuned by the parameter λ

which couples c and φ. The fermionic dispersion is described
by ξk = εk − μ where εk is the fermionic dispersion and μ the
chemical potential and affords us a description of the Fermi
surface of the system.

The bosonic spin mode physics is described in the La-
grangian Lφ . vs is the velocity of the spin waves, ω is
the bosonic Matsubara frequency, the paramagnon mass m

describes the distance to the QCP (m > 0 in the metallic side
and vanishes at the QCP), and Q = (π,π ) is the ordering wave
vector in the AF phase.

The spin-wave propagator D−1
q = [ω2

v2
s

+ (q − Q)2 + m] is
renormalized by the particle-hole bubble [36]. This renormal-
ization leads us to consider the effective spin-wave propagator
Deff that is written D−1

eff,k = (γ |ω| + |k|2 + m) where γ is a
phenomenological coupling constant and k has formally been
shifted by Q.

In the following, we simplify the notation as k ≡ (iω,k),
where iω are fermionic Matsubara frequencies. To integrate
out the bosonic degrees of freedom, we neglect the spin-wave
interaction (u = 0). The partition function is then written

Z =
∫

d[�]exp(−S0 − Sint), (A3)

S0 =
∑
k,σ

�
†
k,σG−1

0,k,σ �k,σ , (A4)

Sint = −
∑

k,k′,q,σ

Jqc
†
k,σ ck+Q+q,σ̄ c

†
k′,σ̄ c

†
k′−q−Q,σ , (A5)

where the bare propagator is

Ĝ−1
0k =

⎛
⎜⎜⎜⎝

iω − ξk 0 0 0

0 iω + ξ−k+qc
0 0

0 0 iω − ξk−qc
0

0 0 0 iω + ξ−k

⎞
⎟⎟⎟⎠

(A6)

and the spinor field �k = (ck,σ ,c
†
−k+qc,σ̄

ck−qc,σ c
†
−k,σ̄ ). More-

over, J−1
q = 4D−1

q /3λ2, σ = {↑,↓} labels the spin, and qc
stands for the charge density wave ordering vector.

2. The mean-field decoupling and the effective Lagrangian

After the integration on the bosonic degrees of freedom,
we decouple the two-body action Sint using mean-field
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decoupling. Thus, we decouple the interaction Lagrangian
in the SC channel and in the charge channel by introducing
the two order parameters �k and �CDW,k . �k is the super-
conducting order parameter which describes the d-wave SC
order. �CDW,k is the CDW order parameter which describes the
d-wave charge order with ordering vector qc. In the framework
of the EHS model [36], these two order parameters are related
to the SU(2) symmetry which is verified at the hot spot. The
SU(2) symmetry between SC and CDW order exists if their
energy level is the same (the energy splitting �k − �CDW,k

vanishes). In the whole Brillouin zone, the SU(2) symmetry is
verified around the hot spots (at low paramagnon mass) and at
the zone edge (at high paramagnon mass) [53].

Applying the Hubbard-Stratanovitch transformation to the
interaction Sint, the partition function becomes

Z =
∫

d[�]d[�,�CDW] exp(−S0 − Sint,eff)∫
d[�,�CDW] exp(−Sq)

, (A7)

Sq = −
∑
k,q,σ

[
J−1

q �
†
CDW,k�CDW,k̄+q + J−1

q �
†
k�k̄+q

]
, (A8)

Sint,eff = Sq −
∑
k,σ

�
†
k,σ M̂k�k,σ , (A9)

where k̄ = k + Q and the matrix M̂k is

M̂k =
(

m̂k

m̂
†
k

)
, m̂k =

(−�CDW,k −�k

−�
†
k+qc

�CDW,−k

)
.

(A10)

Finally, the effective Lagrangian we will use in the following
will be defined as Ĝ−1 = Ĝ−1

0k − M̂k . One can integrate over
the fermionic degrees of freedom and find the mean-field
equations [53]

M̂ω,k = T
∑
ω′,k′

Jk−k′−QĜω′,k′ . (A11)

The matrix equation can be projected onto the different
components. The exact solution of these equations goes
beyond the goal of the paper. However, we directly see that
the order parameters depend on the frequency as well as on
the momentum.

3. Frequency dependence at the hot spot

The frequency dependence is a key player of the theory.
Then we solve Eq. (A11) for the superconducting component
�ω,k only, putting the CDW order parameter to zero (�CDW

ω,k =
0). Considering a temperature of T = 0.001 and a paramagnon

0 1 2
0.0

0.5

1.0
Δ calculated
Δ gaussian fit

ω/Δ0

FIG. 11. The frequency dependence of the superconducting order
parameter �k at the hot spot calculated from the mean-field
equation (A11). The frequency form factor which is a Gaussian with
a half-width of �0 which is the value of the SC order parameter at
zero frequency.

mass of m = 10−6 with γ = 10−5 and λ = 12, the frequency
dependence of the SC order parameter at the hot spot is shown
in Fig. 11.

As shown in Fig. 11, the Gaussian frequency form factor
can reproduce the frequency dependence of the SC order
parameter. In the main text, we assume that the frequency
dependence of the CDW order parameter can be fitted by the
same form factor. The calculation of the frequency dependence
of the order parameters at each doping and each temperature
is left for later work.

APPENDIX B: RAMAN EXPERIMENTS

Raman experiments were carried out using a
triple-grating spectrometer (JY-T64000) equipped with
a liquid-nitrogen-cooled CCD detector. The 532 nm laser
excitation line was used from respectively a diode pump solid
state laser. Measurements in the SC state were performed
at 10 K using an ARS closed-cycle He cryostat. Raman
study was performed on Bi2212 single crystals with two
distinct levels of doping p = 0.16 (Tc = 90 K) and p = 0.23
(Tc = 52 K). The level of doping was controlled only by
oxygen insertion [51]. The B1g channel was obtained from
crossed polarizations at 45◦ from the Cu-O bond direction.
The A1g channel was obtained from parallel polarizations
along the Cu-O bond (given A1g + B1g) and normalized
subtraction of the B1g channel. All the spectra have been
corrected for the Bose factor and the instrumental spectral
response. They are thus proportional to the imaginary part of
the Raman response function Im χλ

R(ω) (λ = A1g or B1g).
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Zhong, J. Schneeloch, A. Forget, G. D. Gu, D. Colson, and A.
Sacuto, Phys. Rev. B 92, 134502 (2015).

[33] E. Cappelluti and R. Zeyher, Phys. Rev. B 59, 6475 (1999).
[34] R. Zeyher and A. Greco, Phys. Rev. Lett. 89, 177004 (2002).
[35] L. E. Hayward, D. G. Hawthorn, R. G. Melko, and S. Sachdev,

Science 343, 1336 (2014).
[36] K. B. Efetov, H. Meier, and C. Pépin, Nat. Phys. 9, 442 (2013).
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