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Injection of nonequilibrium quasiparticles into Zeeman-split superconductors: A way to create
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A theory of spin transport and spin detection in Zeeman-split superconducting films at low temperatures is
developed. It is shown that an injection of spin-unpolarized quasiparticles into a Zeeman-split superconductor
gives rise to a spin imbalance. The relaxation length of such a spin signal is determined by the energy relaxation
length and can be extremely large as compared to the usual spin relaxation length. There can exist two types of
signals: due to nonthermalized quasiparticle distribution and due to thermalized overheated electron distribution.
They have different decay lengths and can be distinguished by their different dependencies on the applied voltage.
The decay length of the nonthermalized signal is determined by the electron-electron scattering rate, renormalized
due to superconductivity. The decay length of the thermalized signal is determined by the length on which energy
leaves the electronic subsystem and can be very large under special conditions. Applications of the theory to
recent experimental data on spin relaxation in Zeeman-split and exchange-split superconductors are discussed.
In particular, it can explain the extremely high spin relaxation lengths, experimentally observed in Zeeman-split
superconductors, and their growth with the magnetic field and with the applied voltage.
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I. INTRODUCTION

The superconducting spintronics now is a very active
field of research [1]. It is based on the recent progress in
realization of superconductor/ferromagnet heterostructures.
One direction of the research activity has been focused on
the study of proximity induced triplet superconducting corre-
lations in equilibrium [2–13]. The other direction is to study
spin-polarized quasiparticle transport and spin accumulation
in superconducting wires [14–23]. In particular, it is very im-
portant to transmit spin signals over mesoscopic length scales.

Usually spin signals are created by injection of spin-
polarized quasiparticles into normal or superconducting wire
from ferromagnetic leads. It was shown in transport experi-
ments [17,18,24] that for Al thin films in the normal state the
spin relaxation length λN is of the order of 400–500 nm. It was
also measured that the spin relaxation length is reduced upon
Al transition into the superconducting state [16].

However, it was demonstrated recently that in Zeeman-
split superconducting films the spin signals can be created by
injection of unpolarized electrons. Such spin signals can spread
over distances of several micrometers [17–19,21]. In these
experiments the spin relaxation length exceeds considerably
the superconducting coherence length, the normal-state spin
relaxation length, and the charge-imbalance length. Moreover,
the decay length of the spin signal grows with the applied
magnetic field, while the charge-imbalance relaxation length
is only reduced.

The origin of such long-range spin signals has been
addressed by several theoretical groups recently. It is known
that in the absence of the magnetic or the exchange field
(Zeeman splitting of the DOS) and at low temperatures the
main mechanisms of the spin relaxation in superconductors
are elastic spin flips by magnetic impurities and by spin-orbit

interaction [15,16,25–27]. In order for these mechanisms of
spin relaxation to work there should be a difference between
distribution functions for quasiparticles with opposite spins. It
has been shown [28,29] that for realistic parameters of the
films the relaxation length provided by these mechanisms
in the Zeeman-split superconducting state does not exceed
the normal state relaxation length. Hence it is unlikely that
the experimentally observed long-distance spin relaxation is
provided by such elastic spin-flip processes.

Instead, it was proposed [28–30] that for the observed spin
signal a difference between distribution functions for quasi-
particles with opposite spins is absent. But the quasiparticle
current injected into the superconductor is accompanied by
the energy flow that creates a nonequilibrium quasiparticle
distribution in it. The role of elastic spin-flip processes is
only to rapidly relax the distribution function to the spin-
independent value. The observed spin signal is formed by this
spin-independent nonequilibrium quasiparticle distribution
weighted by the spin-split DOS. The relaxation length of such
a spin signal is the energy relaxation length.

In the framework of this mechanism the shape of the
spin signal is well reproduced [28,29]. However, there is no
full and detailed theoretical investigation of the long-range
spin signal relaxation so far. In Refs. [29,30] the relaxation
length was considered as a phenomenological parameter, in
Ref. [28] the renormalization of the energy relaxation time
due to superconductivity was not taken into account and the
overheating of the electron subsystem was neglected.

In the present paper we develop a theory of spin relaxation in
Zeeman-split superconducting films at low temperatures and
focus on the relaxation mechanisms of the long-range spin
signal. It has been reported in the literature [31,32] that the
energy relaxation provided by the electron-electron scattering
in Al at low temperatures is faster than the relaxation due
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to electron-phonon scattering. In this framework we show
that the long-range spin signal can be naturally divided into
two parts: due to nonthermalized quasiparticle distribution
and due to thermalized overheated electron distribution. They
can be distinguished by their different dependencies on the
applied voltage. The decay length of the nonthermalized
signal is determined by the electron-electron scattering rate,
renormalized due to superconductivity. It depends crucially
on the temperature of the overheated electron subsystem and
superconducting gap. The decay length of the thermalized
signal is determined by the length on which the injected
energy leaves the electronic subsystem. In dependence on
the particular sample design it can be determined by an
electron-phonon relaxation length or by the geometry, that
is the distance between the injector and the heat reservoir. In
realistic systems this length can be very large.

Applications of the theory to the recent experimental data
[17,19,21] on spin relaxation in Zeeman-split and exchange-
split superconductors are discussed. In particular, it can explain
the extremely high spin relaxation lengths, experimentally
observed in Zeeman-split superconductors, their growth with
the magnetic field and with the applied voltage. It also
reproduces the characteristic two-peak shape of the signal,
measured for the exchange-split samples [21].

The paper is organized as follows. In Sec. II we describe
the system under consideration and discuss qualitatively the
physics of the effect. In Sec. III the developed theoretical ap-
proach is formulated. In Sec. IV the results of our calculations
are presented, discussed, and compared to the experimental
data. Our conclusions are given in Sec. V.

II. MODEL AND QUALITATIVE DESCRIPTION
OF THE EFFECT

Following the experiments [17–19] we consider the system
depicted in Fig. 1. It consists of a thin superconducting
film (S) overlapped by the injector (I) and detector (D)
electrodes. The distance between them is L. Both the injector
and the detector are coupled to the film by tunnel contacts.
A current is injected into the superconducting film via I.
This electrode can be normal or ferromagnetic. The detector
electrode is ferromagnetic. In this case the spin imbalance in
the superconductor can be converted into an electric current
at the S/D interface. For the tunnel case, considered here, the
current ID measured by the detector can be calculated as

ID = GD(μ + PDS), (1)

where GD = G↑ + G↓ is the total conductance of the S/D
interface and PD = (G↑ − G↓)/GD is its polarization. μ in
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FIG. 1. Scheme of the system under consideration.

the right-hand side of Eq. (1) is the shift of quasiparticle
chemical potential, determined by the charge imbalance, and
the second term in the parentheses is proportional to the
local nonequilibrium spin accumulation S in the film at the
detector point. Furthermore, we are interested in large enough
L, where the charge imbalance has already relaxed: μ = 0. As
a result we assume that the electric current at the detector
point is proportional to S and focus on this quantity. In
the real experimental situation the charge imbalance indeed
relaxes much more rapidly than the spin imbalance [17–19].
Physically, the main source of the low-temperature charge
imbalance relaxation is the orbital effect of the applied
magnetic field [29,33]. The magnetic field is applied in plane
of the film and is parallel to the ferromagnetic wires. In our
study the quantization axis is chosen along the magnetic field.
The magnetization of the wires is also along this direction.

Now we discuss the qualitative physics lying behind
these measurements. As it was already mentioned in the
Introduction, it is desirable to make the spin relaxation length
as large as possible. In the absence of the magnetic or the
exchange field (Zeeman splitting of the DOS) and at low
temperatures the main mechanisms of the spin relaxation in
superconductors are elastic spin flips by magnetic impurities
and by spin-orbit interaction [15,16,25–27]. The resulting
relaxation length is not large: of the order of a few hundred
nanometers for Al. It was also shown experimentally and
theoretically that it can be only reduced upon transition into
the superconducting state [16,26,27].

The discussed above spin imbalance is caused by the
difference in the distribution functions for spin-up and spin-
down electrons. Therefore, the length of the corresponding
spin relaxation is controlled by the length at which this
difference disappears. At first glance one can think that the
Zeeman splitting of the superconducting DOS can greatly
enhance the spin relaxation length. The idea is that in the
energy window of the Zeeman splitting elastic spin flips
cannot relax the nonequilibrium spin distribution function.
This is because the processes are blocked by the absence of
available DOS in one of the spin subbands [see Fig. 2(a)].
However, it was obtained [28] that this mechanism does not
work (at least for real values of elastic scattering rates).
The reason is the following. The true energy gap is from
−� + h to � − h and is the same for both spin subbands,
where � is the superconducting order parameter in the film
and h is the Zeeman field. There are no true energy gap in
the energy window of the Zeeman splitting. Due to nonzero
elastic scattering rates the DOS is redistributed between the
spin subbands there [see Fig. 2(b)]. Consequently, the elastic
flips in the energy window of the Zeeman splitting are not
blocked and the fast elastic spin-flip processes cancel the
difference between spin-up and spin-down distributions in
this energy window, as it is schematically shown in Fig. 2(c).
As a result, the injected difference between the spin-up and
spin-down distribution functions relaxes in the Zeeman-split
superconductor even faster than in the normal metal [28].

But inspecting Fig. 2(c) one can suspect that the spin
signal is still present in the superconductor in spite of the
zero difference between spin-up and spin-down distribution
functions. This is due to the different DOS in the spin
subbands. Indeed, the quasiparticle current injected into the
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FIG. 2. Schematic picture of the Zeeman-split superconducting
DOS for both spin subbands versus the quasiparticle energy. Its filling
by the quasiparticles is also shown. (a) Only Zeeman splitting is taken
into account upon calculating the DOS. There is a strict gap in the
energy window of the Zeeman splitting for one of the spin subbands.
There is a difference between spin-up and spin-dow distributions,
but the elastic spin flips are blocked. (b) Spin-orbit scattering and
magnetic impurities are taken into account upon calculating the DOS.
The spin-flip processes are not blocked. The initial spin-dependent
quasiparticle distribution is shown. (c) The same as in (b), but spin-
up and spin-down distribution functions are already made equal by
elastic spin flips.

superconductor is accompanied by the energy flow that
creates a nonequilibrium quasiparticle distribution in it, and
the measured long-range spin signals were attributed to this
spin-independent nonequilibrium quasiparticle distribution
weighted by the spin-split DOS [28–30]. Such spin signals can
be created even by normal (instead of ferromagnetic) injectors,

as it was observed experimentally [19]. For such a spin signal
a difference between distribution functions for quasiparticles
with opposite spins is absent. The relaxation length of such a
spin signal is the energy relaxation length. The role of spin-flip
processes is only to rapidly relax the distribution function to
the spin-independent value.

It is worth to note here that the different density of states for
spin-up and spin-down quasiparticles by itself is not enough
in order to create the long-range spin signal. One also needs a
breaking of symmetry with respect to ε → −ε in the DOS
for each spin subband. Otherwise the nonequilibrium spin
vanishes after integrating over energy in each of the subbands.
In superconductors spin splitting of the quasiparticle density of
states breaks this symmetry for each spin subband separately
(while the symmetry of the overall DOS is preserved). Conse-
quently, under the Zeeman splitting in superconductors both
conditions are fulfilled. On the contrary, while in conventional
ferromagnets the spin-up and spin-down DOS are different,
the breaking of ε → −ε symmetry in the DOS is only due
to the electron-hole asymmetry and is very small. Therefore,
even if a nonequilibrium quasipaticle distribution is created in
a ferromagnet, the corresponding spin signal is very small.

Therefore, the driving force of the measured signal is the
spin-independent difference between the distribution functions
of electrons in the superconductor and in the detector. It
simply can be converted into the spin signal by the spin-split
DOS even if the spin-split DOS exists only near the detector.
The long-range spin signal of the discussed type can be
naturally divided into two parts according to the nature of this
difference: due to nonthermalized quasiparticle distribution
and due to thermalized overheated electron distribution.
They can be distinguished by their different dependencies
on the applied voltage. The first part of the signal is due
to nonthermalized electrons. It is always present near the
injector, where the injected high-energy electrons cannot be
described by the Fermi distribution with a definite temperature.
It is shown below that this part of the signal as a function
of the injection voltage VI has typical one-peak shape,
where the peak is located at VI ≈ � − h. The main process
providing thermalization is the electron-electron scattering.
So, the decay length of this part of signal is determined
by the electron-electron scattering rate, renormalized due to
superconductivity.

The second part of the signal is due to overheating of the in-
jected electrons. It is determined by the difference between the
effective electron temperature in the superconductor and in the
detector. The typical shape of this signal is directly connected
to the dependence of electron overheating temperature on the
injection voltage: Te(VI ). In its turn, Te(VI ) is determined
by superconducting density of states. That is, it has two
steps at VI ≈ � ± h. Correspondingly, the measured nonlocal
differential conductance gnon = dID/dVI manifests typical
two-peak shape, where peaks are located at these voltages
[30]. The two peaks can be clearly observed in the signal
if the coherent peaks in the superconducting DOS are well
pronounced. It is worth to note here that this contribution can
be viewed as a kind of a thermoelectric effect. The other types
of giant thermoelectric effect were also predicted [34,35] and
experimentally observed [36] for superconductor/ferromagnet
heterostructures.
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FIG. 3. Space evolution of the distribution function, see text. The
corresponding DOS, appropriately filled by quasiparticles, is also
plotted.

The relaxation length of this thermalized contribution to
the signal is controlled by the length, over which the effective
electron temperature relaxes to its equilibrium value, that is

the energy relaxation length. In dependence on the particular
sample design it can be determined by the electron-phonon
relaxation length or correspond to the distance between the
injector and an equilibrium bulk reservoir. The latter case
takes place if the heat leakage into the phonon subsystem
can be neglected and the heat transport is controlled by the
temperature gradient. Below it is shown that this scenario is
more relevant to the existing low-temperature experiments
with superconducting Al films. On the other hand, if one
excludes the heat leakage into the reservoir, the resulting
relaxation length, controlled by the electron-phonon relaxation
rate, can become very large.

The total measured nonlocal conductance has contributions
from both types of signal. Typically it manifests a pronounced
peak at VI ≈ � − h, provided by as thermalized, so as
nonthermalized electrons. The second peak at VI ≈ � + h

is only provided by thermalized electrons. It can be absent if
the coherent peaks in the superconducting DOS are smeared
enough by various depairing factors (first of all, by the orbital
effect of the applied field) or if the electron overheating
by the injected current is small, or if the detector is also
overheated. It is also obvious that the peaks at VI ≈ � − h and
at VI ≈ � + h should have different relaxation lengths. The
former relaxes over the electron-electron relaxation length,
while the relaxation of the latter is controlled by the length
over which the electron subsystem is cooled.

It has been reported in the literature [31,32] that the
relaxation provided by the electron-electron scattering in Al at
low temperatures is faster than the relaxation due to electron-
phonon scattering. According to this reason in the present
work we have clear hierarchy of length scales. The smallest
length scales are the superconducting coherence length, elastic
spin-flip length λs , and charge relaxation length (hundreds
of nanometers). The larger scale is the electron-electron
scattering length λe-e, renormalized due to superconductivity,
applied magnetic field, and electron overheating (it is of the
order of several microns). And the largest scale is the length
Lh over which the electron subsystem is cooled.

The space evolution of the distribution function is schemat-
ically shown in Fig. 3. The distribution of injected electrons
is spin split [see Fig. 3(a)]. Also, it is nonthermalized. At
distances ∼λs it becomes spin independent, as it is shown in
Fig. 3(b). In addition, now it has a standard symmetry with
respect to ε → −ε because the injected charge has already
relaxed. Then, at distances ∼λe-e the distribution function is
thermalized, as in Fig. 3(c). Finally, the electrons are cooled
at distances ∼Lh, as it is shown in Fig. 3(d).

Due to this hierarchy the second peak at VI ≈ � + h decays
at larger distances than the first peak at VI ≈ � − h. This
conclusion is in agreement with the experimental results [21].

III. THEORETICAL APPROACH

A. Basic equations

As it was already mentioned above, we focus on the
nonequilibrium spin accumulation S. This quantity can be
written in terms of the Keldysh quasiclassical Green function
as S = − ∫ ∞

−∞ dεTr[τ3σ3(ǧK − ǧK
eq)]/16, where τi and σi are
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Pauli matrices in the particle-hole and spin spaces, respec-
tively. ǧK is the Keldysh component (4 × 4 matrix) of the

quasiclassical Green’s function ǧ = (ǧ
R ǧK

0 ǧA), where ǧR(A)

are retarded and advanced Green’s functions. ǧK
eq means the

value of the Keldysh component in equilibrium. We assume
the superconductor to be in the diffusive limit, so the matrix ǧ

obeys the Usadel equation [3,37]

D∂̂y(ǧ∂̂y ǧ)+ [�̌ − 	̌so − 	̌mi − 	̌e-e − 	̌e-ph,ǧ] = 0. (2)

Here �̌ = i(ετ3 − hσ3τ3 − �iτ2), ε is the quasiparticle en-
ergy, D is the diffusion constant, and h = μBH + hint(H ) is
the Zeeman field. Here we assume that there are two sources
of the Zeeman field in the film: the first contribution is caused
by the applied magnetic field H and the second contribution
is the effective internal exchange field hint(H ), which can be
induced in the superconducting film if it is fabricated on top of
the ferromagnetic insulator. In real experimental situation the
internal exchange field depends on the applied magnetic field
[21]. In our study we take the simple phenomenological model
hint(H ) = 0.4�0 tanh[μBH/0.08�0] for this dependence. �0

is the zero-temperature superconducting order parameter in the
absence of the magnetic field and the ferromagnetic insulator.
This model corresponds qualitatively to the experimental data
[21], and the exact law hint(H ) does not influence qualitatively
our results.

∂̂y is a matrix in particle-hole space, accounting for the
orbital suppression of superconductivity by the magnetic
field. For a general matrix Ǧ in particle-hole space ∂̂yǦ =
∂yǦ − (ie/c)(Hx + A0) [τ3,Ǧ], where x is the coordinate
normal to the film. Equation (2) should be supplemented by
the normalization condition ǧ2 = 1.

The terms 	̌so = τ−1
so (σ ǧσ ) and 	̌mi = τ−1

mi (σ τ3ǧσ τ3) in
Eq. (2) describe elastic spin relaxation processes of spin-orbit
scattering and exchange interaction with magnetic impurities,
respectively [27,38–40]. Here we consider only scattering by
isotropic magnetic impurities. The last terms 	̌e-e and 	̌e-ph

describe electron-electron and electron-phonon relaxation,
respectively.

We assume that the transparencies of the injector and
detector interfaces are small, so that up to the leading
(zero) order in transparency the retarded, advanced Green’s
functions and the order parameter take their bulk values.
The Green’s functions can be represented in the form ǧR =
gR

0 τ3 + gR
t σ3τ3 + f R

0 iτ2 + f R
t σ3iτ2. Please note that in the

problem under consideration the Green’s function is diagonal
in spin space. While the Zeeman field is a source of a difference
between the spin subbands, and the spin-flip terms lead to the
coupling between the subbands, it does not give rise to the
off-diagonal in spin space components of the Green’s function.
Since the Green’s function is diagonal in spin space, it is con-
venient to use the following θ parametrization, which satisfies
the normalization condition: gR

0,t = (cosh θ+ ± cosh θ−)/2 and
f R

0,t = (sinh θ+ ± sinh θ−)/2. The advanced Green’s functions
can be found as ǧA = −ǧR∗.

We assume that the film thickness in the x direction is
smaller than the superconducting coherence length. Then θ±
does not depend on x. Integrating the retarded part of Eq. (2)
over the width d of the film along the x direction, one can

obtain from Eq. (2) that θ± obeys the following equation [41]:

(ε ∓ h) sinh θ± + � cosh θ±

+Di
e2

6c2
H 2d2 cosh θ± sinh θ± ± 2iτ−1

so sinh(θ+ − θ−)

+ 2iτ−1
mi [cosh θ± sinh θ± + sinh(θ+ + θ−)] = 0. (3)

Here the third term describes the orbital depairing of super-
conductivity. Usually this orbital depairing can be disregarded
for thin films in parallel magnetic field. However, it can be
estimated that for magnetic fields of the order of 1–2 T,
which are applied in experiment, the orbital depairing can even
exceed the other depairing factors (spin-orbit and magnetic
impurity scattering). For this reason it cannot be neglected in
Eq. (3).

� is calculated self-consistently taking into account its
suppression by the applied field, internal exchange field,
spin-orbit depairing, and depairing by magnetic impurities.
The corresponding self-consistency equation is as follows:

� =
∫ ωD

−ωD

dε

4
�

∑
σ

Re sinh θσ tanh
ε

2T
. (4)

Here � is the dimensionless coupling constant and ωD is the
high energy cut-off. The suppression of the order parameter
due to nonequilibrium quasiparticle distribution in the film is
not taken into account by Eq. (4) and the distribution function
is taken equal to its equilibrium value. As it is shown below, the
distribution function in the film can be represented as ϕ(ε) =
tanh(ε/2Te) + δϕε. When the transparency of the I/S interface
is small, the second term in this expression is of the first
order in this transparency and, therefore, can be disregarded
up to the leading order. However, the electron overheating
temperature is a nonanalytic function of the transparency. So,
our assumption of the equilibrium distribution function in Eq.
(4) is strictly valid only for low enough electron overheating.
When the electron overheating rises, Eq. (4) underestimates
the suppression of the order parameter.

The terms 	̌e-e and 	̌e-ph, in principle, also enter Eq. (3)
as another depairing factor, but it is neglected because at low
temperature it is small as compared to other depairing factors.
It is important only for the calculation of the distribution
function.

The normalization condition allows us to write the Keldysh
component as ǧK = ǧRϕ̌ − ϕ̌ǧA, where ϕ̌ is the distribution
function with the following general structure in particle-hole
and spin spaces: ϕ̌ = (1/2)[ϕ0

+ + ϕt
+σz + ϕ0

−τz + ϕt
−τzσz].

Physically the charge imbalance is controlled by the dis-
tribution function ϕ−, while the spin, accumulated in the
system, is controlled by ϕ+. The components ϕ0

± describe
the spin-independent part of the quasiparticle distribution,
while ϕt

± give its spin polarization. In the equilibrium ϕ
0,eq
+ =

2 tanh(ε/2T ) and the other components of ϕ̌ are zero. Via the
distribution function the nonequilibrium spin accumulation S

can be written as follows:

S = −1

4

∫ ∞

−∞
dε

{
Re

[
gR

t

](
ϕ0

+ − 2 tanh
ε

2T

)
+ Re

[
gR

0

]
ϕt

+
}
.

(5)
It is worth to note here that for the Zeeman-split super-
conductor the triplet part of the normal Green’s function
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gR
t is nonzero, while it is vanishes for h = 0. Due to this

fact the nonequilibrium spin accumulation S can be nonzero
in the Zeeman-split superconductor even for the case of
spin-independent quasiparticle distribution, that is for ϕt

+ = 0.
In principle, for a Zeeman-split superconductor there is an
equilibrium spin accumulation near the Fermi energy Seq =
− 1

2

∫ ∞
−∞ dεRe[gR

t ] tanh(ε/2T ). But we do not consider this
quantity here because it does not contribute to the measured
signal.

The equations for the distribution functions ϕ
0,t
+ , entering

Eq. (5), can be derived from Eq. (2) and take the form

D
(
κ1∂

2
yϕ0

+ + κ2∂
2
yϕt

+
)

− (I↑,e-e + I↓,e-e)

2
− (I↑,e-ph + I↓,e-ph)

2
= 0, (6)

D
(
κ2∂

2
yϕ0

+ + κ1∂
2
yϕt

+
) − Kϕt

+

− (I↑,e-e − I↓,e-e)

2
− (I↑,e-ph − I↓,e-ph)

2
= 0. (7)

Here κ1 = 1 + |gR
0 |2 + |gR

t |2 − |f R
0 |2 − |f R

t |2 and κ2 =
2Re[gR

0 gR∗
t − f R

0 f R∗
t ] account for the renormalization of the

diffusion constant by superconductivity. K = Kso + Kmi is
responsible for the spin relaxation by elastic processes: spin-
orbit scattering and spin-flip scattering by magnetic impurities,
and

Kso(mi) = 8τ−1
so(mi)

[
Re

(
gR

0
2 ∓ f R

0
2) + ∣∣gR

0

∣∣2 ∓ ∣∣f R
0

∣∣2

− Re
(
gR

t

2 ∓ f R
t

2) − (∣∣gR
t

∣∣2 ∓ ∣∣f R
t

∣∣2)]
. (8)

The collision integrals Iσ,e-e and Iσ,e-ph in Eqs. (6) and (7)
describe electron-electron and electron-phonon relaxation pro-
cesses, respectively. They are expressed via the corresponding
self-energies as follows:

Î e-e
(e-ph)

= Tr2[	̌RǧK + 	̌KǧA − ǧR	̌K − ǧK	̌A], (9)

where Tr2[· · · ] means trace over particle-hole space and
	R,A,K ≡ 	

R,A,K
e-e(e-ph) for Ie-e(e-ph). Because for the problem under

consideration the Green’s function is diagonal in spin space,
the e-e and e-ph self-energies and the corresponding collision
integrals are also diagonal in spin space: Î = I↑(1 + σ3)/2 +
I↓(1 − σ3)/2.

Kinetic equations (6) and (7) should be applied by the ap-
propriate boundary conditions at the injector/superconductor
interface. These boundary conditions are to be obtained from
the general Kupriyanov-Lukichev boundary conditions [42],
generalized for spin-filtering interfaces [34,43]. Up to the
leading order in the junction transparency we can neglect
the superconducting proximity effect in the injector electrode.
In this case the spectral function in it has a trivial spin
and particle-hole structure: ǧ

R,A
I = ±τ3. Then the boundary

conditions take the form

ǧ∂̂y ǧ = − Ǧ

2σs

[ǧ,ǧI ]. (10)

If the injector is biased with respect to the superconductor
by the voltage VI , the Keldysh Green’s function there

takes the form ǧK
I = τ3(ϕ0

I+ + ϕ0
I−τ3), where ϕ0

I± = tanh[(ε −
VI )/2T ] ± tanh[(ε + VI )/2T ]. The tunnel interface between
the injector and the superconductor is assumed to be spin
polarized with the conductance matrix Ǧ = G0 + Gtτ3σ3. σs

is the conductivity of the superconductor.
In the tunnel limit the injected current polarization is mainly

determined by the spin polarization of the tunnel conductance
PI = Gt/G0. While in experiment as ferromagnetic, so as
normal injectors were used, for simplicity in the present
work we show and discuss the numerical results only for
normal injectors with PI = 0. The results for the ferromagnetic
injectors are qualitatively the same, the only difference is
that the nonlocal conductance shape disturbs slightly from
the purely antisymmetric form [28,29]. This is in agreement
with the experimental results [17,19].

Boundary conditions for the distribution functions at y = 0
are to be obtained making use of the Keldysh part of Eq. (10).
For ϕ

0,t
+ they take the form

κ1∂yϕ
0
+ + κ2∂yϕ

t
+ + 2G0

σs

{[
RegR

0

](
ϕ0

I+ − ϕ0
+
) − [

RegR
t

]
ϕt

+
}

+ 2Gt

σs

{[
RegR

t

](
ϕ0

I− − ϕ0
−
) − [

RegR
0

]
ϕt

−
} = 0, (11)

κ2∂yϕ
0
+ + κ1∂yϕ

t
+ + 2G0

σs

{[
RegR

t

](
ϕ0

I+ − ϕ0
+
) − [

RegR
0

]
ϕt

+
}

+ 2Gt

σs

{[
RegR

0

](
ϕ0

I− − ϕ0
−
) − [

RegR
t

]
ϕt

−
} = 0. (12)

It is worth to note here that, while the distribution functions
ϕ+ and ϕ− obey the independent kinetic equations, they are
coupled by the boundary conditions, if the interface barrier is
spin polarized, as it is seen from Eqs. (11) and (12).

As it was already mentioned above, we assume that the
elastic spin-flip processes are much faster than the electron-
electron and electron-phonon relaxation, that is there is a small
parameter τ−1

ε /K � 1 in the considered problem. Here τ−1
ε is

the characteristic scattering rate of the e-e and e-ph relaxation.
This assumption is in good agreement with the experimental
situation [17,18].

Under this condition the solution of Eqs. (6) and (7) takes
the form

(
ϕ0

+
ϕt

+

)
= α

(
− κ2

κ1

1

)
e−λsy +

(
ϕ̃0

+(y)

ϕ̃t
+(y)

)
, (13)

where λ2
s = κ1K/D(κ2

1 − κ2
2 ). The first term in Eq. (13)

describes fast spin relaxation of the distribution function due
to elastic spin-flip processes. The second term corresponds to
slow e-e and e-ph relaxation to the equilibrium form. This
term is spin independent up to the leading order in the small
parameter τ−1

ε /K , that is ϕ̃t
+ ∼ (τ−1

ε /K)ϕ̃0
+. We would like to

stress here the role of the elastic spin flips in the considered
problem. Although the corresponding characteristic length is
small, the elastic spin flips qualitatively influence the results at
any distances from the injector when the electron distribution is
nonequilibrium. The point is that the superconducting DOS is
spin dependent. Under this condition the electron-electron and
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electron-phonon scattering makes the electron distributions
for spin-up and spin-down electrons to be different even if
the injected electron distribution is spin independent. It is
the elastic spin flips that average the spins providing the
spin-independent electron distribution.

Below, we are interested in the slow e-e and e-ph relaxation
of this approximately spin-independent distribution function.
The next subsection is devoted to the electron-electron colli-
sion integral.

B. Electron-electron relaxation

Being far from the Stoner instability we neglect the
triplet channel for the electron-electron interaction. In this
case there are two possible processes allowed: (i) in the
initial state quasiparticles have the same spin projections on
the quantization axis, which remain unchanged during the
collision and (ii) in the initial state quasiparticles have different
spin projections, which again remain unchanged during the
collision. Each process corresponds to a certain term in the
collision integral:

J (1)
σ =

∫
dε′Nσ (ε)Nσ (ε + ω)Nσ (ε′)Nσ (ε′ + ω)[(ϕε+ω

−ϕε)(1 − ϕε′ϕε′+ω) − (ϕε′+ω − ϕε′)(1 − ϕεϕε+ω)],

(14)

J (2)
σ =

∫
dε′Nσ (ε)Nσ (ε + ω)Nσ̄ (ε′)Nσ̄ (ε′ + ω)[(ϕε+ω

−ϕε)(1 − ϕε′ϕε′+ω) − (ϕε′+ω − ϕε′)(1 − ϕεϕε+ω)],

(15)

where Nσ (ε) is the superconducting DOS normalized to
the normal-state DOS NF at the Fermi level. It can be
obtained from the retarded part of the Green’s function in
a standard way. ϕε ≡ ϕ0

+(ε) is the distribution function. It
is assumed to be spin independent here according to the
discussion above. In equilibrium ϕ+,eq(ε) = 2 tanh(ε)/2T .

The two-quasiparticle collision integral can be represented
as [44]

Iσ,e-e(ε) =
∑

p=1,2

∫
dω

2πNF

Kp(ω)J (p)
σ (ε,ω), (16)

where Kp(ω) describes the strength of relaxation due to
the corresponding processes. First of all, these quantities do
not depend on spin, because they correspond to the singlet
processes. Second, K1(ω) = K2(ω) because we neglect the
Fermi-liquid constant corresponding to the triplet interaction
channel. In addition, for simplicity we assume that the
interaction region is shorter than the mean free path l, so for the
collision integral the quasiparticle dynamics can be considered
as ballistic. In this case the kernel K does not depend on ω [45].
However, all the results can be generalized for the disordered
quasiparticle dynamics as well.

It is worth to note here that Eqs. (14)–(16) do not
take into account all the possible processes leading to e-e
relaxation. While the superconducting renormalization of the
DOS is fully accounted for, the interaction of the injected
quasiparticles with the superconducting condensate is not
included into these equations. The electron-electron collision
integral for the superconducting state in the general form
can be found in Ref. [46]. The general consideration of the
electron-electron interaction is quite cumbersome, but already
our simple model gives results, which are in good agreement
with the experimental data. This is because we are interested
in low enough injection voltages of the order of the spectral
gap. At such voltages in the low-temperature regime the
renormalization of the DOS is the most crucial: it takes into
account that the number of the quasiparticles, which appear
above the gap and, consequently, available for collisions, is
exponentially small.

To proceed further we linearize the collision integral
with respect to the deviation of the distribution function
from its thermalized value δϕ+(ε) = ϕ+(ε) − 2 tanh(ε/2Te).
Here Te ≡ Te(VI ,y) > T is the effective temperature of the
electronic subsystem. The resulting expressions are as follows:

J (1)
σ =

∫
dε′Nσ (ε + ω)Nσ (ε′)Nσ (ε′ + ω)Nσ (ε)

{
δϕε

[
tanh

ε + ω

2Te

(
tanh

ε′ + ω

2Te

− tanh
ε′

2Te

)
− 1 + tanh

ε′

2Te

tanh
ε′ + ω

2Te

]

+ δϕε+ω

[
tanh

ε

2Te

(
tanh

ε′ + ω

2Te

− tanh
ε′

2Te

)
+ 1 − tanh

ε′

2Te

tanh
ε′ + ω

2Te

]

+ δϕε′

[
tanh

ε′ + ω

2Te

(
tanh

ε

2Te

− tanh
ε + ω

2Te

)
+ 1 − tanh

ε

2Te

tanh
ε + ω

2Te

]

+δϕε′+ω

[
tanh

ε′

2Te

(
tanh

ε

2Te

− tanh
ε + ω

2Te

)
− 1 + tanh

ε

2Te

tanh
ε + ω

2Te

]}
, (17)

J (2)
σ can be obtained from Eq. (17) by substitution Nσ (ε′)Nσ (ε′ + ω) → Nσ̄ (ε′)Nσ̄ (ε′ + ω).

Our final goal is to calculate the nonlocal conductance gnl = dID/dVI . For this purpose we only need the derivative dϕ0
+/dVI ,

according to Eq. (5). At low injector temperatures the derivative dδϕε/dVI can be divided into the singular and regular
contributions:

dδϕε/dVI = ϕ̃1(VI )δ(ε − VI ) + ϕ̃2(−VI )δ(ε + VI ) + ϕreg. (18)

For the singular parts the electron-electron collision integral in the kinetic equation becomes local by energy, or, in other words,
it can be treated in the τ approximation. The corresponding inverse relaxation time can be found from Eqs. (16) and (17) and
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takes the form

τ−1
e-e,σ = −γe-e(Tc)

4T 2
c

∫
dωdε′Nσ (ε + ω)Nσ (ε)[Nσ (ε′)Nσ (ε′ + ω) + Nσ̄ (ε′)Nσ̄ (ε′ + ω)]

×
[

tanh
ε + ω

2Te

(
tanh

ε′ + ω

2Te

− tanh
ε′

2Te

)
− 1 + tanh

ε′

2Te

tanh
ε′ + ω

2Te

]
. (19)

For a normal metal limit Nσ (ε) → 1 and at low temperatures
Eq. (19) takes the well-known form τ−1

e-e = [γe-e(Tc)/T 2
c ]ε2. In

our calculations we assume τe-e(Tc) = 1 ns.
We assume that the contribution of the regular part of

the nonthermalized quasiparticle distribution ϕreg into the
nonlocal conductance can be neglected as compared to the
contribution of the singular part. In this case the total electron-
electron collision integral in Eq. (6) can be treated in the τ

approximation as follows:

Ie-e,σ (ε) = δϕε

τe-e,σ (ε)
, (20)

with τ−1
e-e,σ determined by Eq. (19).

For the considered problem the discussed above assumption
of “dominating singular part” can be violated in two cases: (i)
for small voltages VI less than the gap value. However, the
nonlocal conductance is practically zero in this region due
to the absence of nonzero DOS, so this voltage region is not
essential. (ii) If the electron temperature Te in the film depends
strongly on VI . In this case our τ approximation can give only
qualitative results.

Typical dependence of τ−1
e-e,σ , determined by Eq. (19), on

quasiparticle energy is ∼ε2 (like in the normal metal), but this
is valid starting from ε ∼ 3εg , where εg is the spectral gap.
It is natural, because in order for an injected electron to be
scattered by an equilibrium electron, the former should have
an energy more than 3εg . For energies less than 3εg τ−1

e-e,σ
decreases exponentially when the temperature goes down.

C. Electron overheating and relaxation of the electron
temperature

The next our goal is to calculate the electron overheating
temperature Te(y). First of all, Te(y = 0) enters Eq. (19) for the
inverse electron-electron relaxation time, therefore it affects
crucially the relaxation length of the nonthermalized part of
the spin signal. Second, the difference Te(y) − T determines
the thermal part of the signal.

Te(y) should be calculated from the heat balance equation.
This equation can be obtained by multiplying the kinetic
equation (6) by ε and integrating over the quasiparticle
energy and over the y coordinate. The contribution of the
electron-electron collision term equals zero because this term
conserves the total energy. Then the heat balance equation
takes the form

η�I = �(y) −
∫ y

0
dy

∫ ∞

−∞
εdε

Ie-ph,↑ + Ie-ph,↓
2

, (21)

where

�(y) = D

∫ ∞

−∞
εdε[κ1∂yϕ

0
+ + κ2∂yϕ

t
+] (22)

is the heat current at distance y from the injector and �I =
�(y = 0) is the heat current injected at y = 0. This injected
heat current can be calculated from the boundary condition
Eq. (11). 0 < η < 1 is a dimensionless phenomenological
parameter, accounting for the fact that only a fraction of the
injected heat travels along the Al strip towards the detector. In
case the system is symmetric with respect to the injector point
and there is no reverse heat leakage into the injector η = 1/2.
The second term in the right-hand side of Eq. (21) describes
the heat leakage into the phonon subsystem.

Equation (21) should be supplied by the boundary con-
dition, which depends on the particular model of electron
cooling. One can assume that all the injected heat goes into
the phonon subsystem. In this case the boundary condition is
Te(y) → T at y → ∞. The other possible realistic situation is
that the superconducting strip is attached to a massive reservoir
at a distance Lh from the injector, so there is a heat current
into the reservoir. Also the heat can leak into the detector
electrode. Of course, in real setup all these channels of heat
leakage contribute, but we assume the transparency of the
interface between the film and the detector to be small, so the
corresponding heat current can be disregarded.

First of all, we estimate the characteristic length of electron
cooling due to electron-phonon relaxation. The corresponding
electron-phonon collision integral can be obtained from the
general expression in terms of the quasiclassical Green’s
functions [47]. For our kinetic equation, which is written for
the distribution function ϕ+, it takes the form

Ie-ph,σ

= γe-ph

2T 3
c

∫
dε′(ε′ − ε)2sgn(ε′ − ε)

×4

{
coth

ε′ − ε

2T
[ϕ+(ε) − ϕ+(ε′)]−1

2
ϕ+(ε)ϕ+(ε′) + 2

}

×[
RegR

σ (ε)RegR
σ (ε′) − Ref R

σ (ε)Ref R
σ (ε′)

]
. (23)

At distances y  λe-e, which are of interest for the electron-
phonon relaxation, the distribution function is already ther-
malized: ϕ+ ≈ 2 tanh[ε/2Te]. In principle, the distribution
function ϕ− also enters the electron-phonon collision integral,
but it disappears on the charge relaxation length, which is
even much smaller than λe-e, so it can be omitted in Eq.
(23). In normal state at low temperatures the linearized (with
respect to ϕ+ − 2 tanh[ε/2T ]) version of Eq. (23) gives a
well-known answer τ−1

e-ph,N = (γe-ph/T 3
c )ε3. In our calculation

we choose γ −1
e-ph = 100 ns. It corresponds to the normal

state electron-phonon relaxation length λN
e-ph ≈ 180ξ0, where

ξ0 = √
D/�0 is the zero-temperature coherence length in the

considered superconducting film. Typically ξ0 is of the order

024513-8



INJECTION OF NONEQUILIBRIUM QUASIPARTICLES . . . PHYSICAL REVIEW B 93, 024513 (2016)

0.10 0.15 0.20 0.25
0

200

400

600

800

1000

Te/Δ0

λ
e
−

p
h
/
ξ 0

FIG. 4. λe-ph vs the electron temperature Te,0 at y = 0. τ−1
so =

τ−1
mi = 0.015�0, μBH = 0.10�0, hint = 0. Here and below through-

out the paper the temperature of the reservoirs T = 0.02�0.

of 100–200 nm in superconducting Al, so λN
e-ph is of order of

20–30 μm.
Making use of Eqs. (21) and (23) and the boundary

condition Te(y) → T at y → ∞ we calculate numerically the
corresponding length λe-ph of electron cooling. It is worth to
note that the spin signal S, caused by overheated electrons,
decays nonexponentially. This is because the efficiency of
the heat exchange between electrons and phonons declines
upon the electron cooling and further the electrons cool more
slowly. We define the electron-phonon relaxation length here
as λe-ph = −S/(dS/dy). It is represented in Fig. 4 versus
Te,0 ≡ Te(y = 0). It is seen that due to the superconducting
renormalization this length is typically of the order of hundreds
of microns. For this reason in our further calculation we
consider the other model of electron cooling, where the
superconducting strip is attached to a massive reservoir at
a distance λe-e � Lh � λe-ph from the injector. This model is
technically much simpler and allows for neglecting the heat
leakage into the phonon subsystem.

In this case one can omit Ie-ph term in Eq. (21) and the
heat current approximately conserves: �(y) = const. Then the
electron overheating temperature Te(y) can be obtained from
the following equation:

2D

∫ ∞

−∞
εdεκ1(ε)

[
tanh

ε

2Te

− tanh
ε

2T

]
= η(y − Lh)�I .

(24)

D. Calculation of the distribution function

As it was already discussed in Sec. II, the long-range spin
signal can be divided into two physically different contribu-
tions: due to nonthermalized nonequilibrium quasiparticles
Snth and due to the thermalized overheated quasiparticles Sth.
The resulting expressions are as follows:

Snth = −1

4

∫ ∞

−∞
dεRe

[
gR

t

]
δϕε, (25)

Sth = −1

2

∫ ∞

−∞
dεRe

[
gR

t

](
tanh

ε

2Te

− tanh
ε

2T

)
. (26)

While the contribution Sth can be calculated directly from
Eq. (26) having at hand the electron overheating temperature

Te, in order to obtain Snth one should at first calculate
the nonthermalized part of the distribution function δϕε.
It should be found from the kinetic equations (6) and
(7), where the electron-phonon relaxation term is omitted
and the electron-electron relaxation term is taken in the τ

approximation Eq. (20).
Under these conditions the solution of Eqs. (6) and (7) up

to the leading order in the parameter τ−1
e-e /K takes the form(

δϕε

ϕt
+

)
= α

(− κ2
κ1

1

)
e−λsy + β

(
1

τ−1
e−eκ2

Kκ1

)
e−λe-ey, (27)

where δϕε = ϕ0
+ − 2 tanh ε

2Te
, τ−1

e-e = (1/2)(τ−1
e-e,↑ + τ−1

e-e,↓),

and λ2
e-e = τ−1

e-e /Dκ1. The first term in Eq. (27) coincides with
the first term in Eq. (13) and describes fast spin relaxation of
the distribution function due to elastic spin-flip processes. The
second term is of interest now and gives the nonthermalized
part of the distribution function. As it was discussed above, its
spin part ϕt

+ is small and its spin-independent part δϕε should
be substituted into Eq. (25).

Constants α and β should be found from the boundary
conditions Eqs. (11) and (12) at the injector/superconductor
interface. Up to the leading order in τ−1

ε /K and up to the
leading order in the I/S interface conductance it takes the form

β = 2

σsκ1λe−e

×
{
G0

[
RegR

0

](
ϕ0

I+ − 2 tanh
ε

2Te

)
+ Gt

[
RegR

t

]
ϕ0

I−

}
,

(28)

α = 2κ1

σs

(
κ2

1 − κ2
2

)
λs

{
G0

([
RegR

t

] − κ2

κ1

[
RegR

0

])

×
(
ϕ0

I+−2 tanh
ε

2Te

)
+ Gt

([
RegR

0

]−κ2

κ1

[
RegR

t

])
ϕ0

I−

}
.

(29)

It is worth to note that for small energies less than the
spectral gap these expressions, obtained up to the first order
in the I/S interface conductance, are not enough. The exact
expressions should be used in order to obtain quantitatively
correct answers. It is straightforward to obtain the correspond-
ing formulas from the boundary conditions Eqs. (11) and (12).
We have used the exact expressions in our calculation, but we
do not present them here because they are quite cumbersome.

Now, having at hand the spectral functions gR
0,t , ob-

tained from Eq. (3), the electron temperature Te from
Eq. (24) and the distribution function δϕε = β exp(−λe-ey),
we can calculate the nonequilibrium spin accumulation S from
Eqs. (25) and (26). The results of the calculation are presented
in the next section.

IV. RESULTS AND DISCUSSION

We start with a presentation and discussion of the results
for nonthermalized contribution to the nonlocal conductance
gnth = dSnth/dVI . This quantity vs the injector voltage VI is
presented in Figs. 5(c) and 5(d). Figure 5(c) is for the case of
no internal exchange field in the film hint = 0, while Fig. 5(d)
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FIG. 5. (a) and (b) Spin averaged LDOS N0 (solid line) and the difference between spin-up and spin-down LDOS (N↑ − N↓) (dashed
curve) for (a) μBH = 0.28, hint = 0 and (b) μBH = 0.05, hint ≈ 0.22. (c) and (d) gnth (blue line) and gth (red line) vs VI for (c) μBH = 0.28,
hint = 0 and (d) μBH = 0.05, hint ≈ 0.22. All the energies are measured in units of �0.

is for hint = 0.22�0. The corresponding spin averaged LDOS
N0 = RegR

0 and the difference between spin-up and spin-down
LDOS N↑ − N↓ = RegR

t are shown in Figs. 5 (a) and 5(b),
respectively.

The results represented in the left and right columns
manifest approximately the same degree of the Zeeman
splitting of LDOS. But, physically, for the left column this
Zeeman splitting is entirely provided by the applied field.
For this reason the DOS is strongly smeared by the orbital
effect of the magnetic field. For the right column most of the
splitting is due to the internal exchange, so the peaks are more
pronounced. It is important that, in spite of this difference, the
shapes of the nonlocal conductance dSnth/dVI exhibit only
one peak for both cases. That is, the Zeeman splitting does not
manifest itself in the nonthermalized part of the signal. This is
because gnth(VI ) is proportional to (RegR

0 RegR
t )/(κ1λe-e)|ε=V ,

as it can be seen from Eqs. (25) and (28).
Moreover, the shape of the discussed peak practically

does not depend on how particularly the nonthermalized
quasiparticles are distributed over the energy levels and mainly
determined by the bulk properties of the superconductor. This
is strictly valid only if one disregards the dependence Te(VI ).
If it is not the case, this dependence can essentially disturb the
peak shape.

Now we discuss the relaxation length of the nonthermalized
signal. Due to its characteristic one-peak shape the most
informative quantity for this purpose is the conductance
peak area. One can plot it as a function of L and extract
the corresponding relaxation length, as it was done in the
experiment [17]. The corresponding relaxation length vs the
applied magnetic field is represented in Fig. 6(a) for ζ = 1.
The definition of the parameter ζ and the physical meaning
of the other curves in this figure is explained below in the text.

FIG. 6. (a) λe-e vs the applied field (ζ = 1) and the relaxation
length of the total signal gnth + gth for different values of the
phenomenological parameter ζ (see text). (b) Te vs VI for different
applied fields. For both panels τ−1

so = 0.02�0, τ−1
mi = 0.01�0, hint =

0, Lh = 80ξ0, G0/σsξ0 = 0.002.
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The behavior is very similar to the experimentally observed
[17,19].

According to our theory this typical dependence of the
relaxation length on the field is due to the renormalization
of the electron-electron relaxation time by superconductivity.
Because of the superconducting gap the renormalized τe-e is
very sensitive to the value of the effective electron temperature
Te. This quantity controls the number of the quasiparticles,
which appear above the gap and, consequently, available for
collisions. The corresponding dependence of Te on the applied
magnetic field is shown in Fig. 6(b).

In any case Te(VI ) grows monotonically. Furthermore,
it is seen that Te decreases upon growing the field at
any voltage above the spectral gap. The reason for this
decrease can be understood in the following way. When the
effective electron temperature is smaller than the spectral
gap, the number of equilibrium quasiparticles above the gap
should be exponentially small. But, from the other hand,
this number is controlled by injection. Consequently, the
resulting electron temperature is very sensitive to the gap
value. The spectral gap shrinks upon the field growth, so the
effective temperature decreases. In addition, when the applied
field increases, the characteristic energy, making a major
contribution to the conductance (this energy is ∼� − h), goes
down. This means that the peak in the nonlocal conductance
is formed at lower voltages, where Te(VI ) is smaller. These
are two reasons for the initial growth of λe-e on the applied
field.

The final drop of λe-e, seen in Fig. 6(a), has also been
observed experimentally [17,19] and can be explained by
the fact that the superconducting gap is almost fully sup-
pressed by such large enough magnetic fields, what leads to
increase of the number of quasiparticles above the gap. In
its turn, this results in sharp increase of the electron-electron
relaxation.

The other part of the signal gth = dSth/dVI is due the
electron temperature difference between the film and the
detector. This quantity vs the injector voltage VI is presented
in Figs. 5(c) and 5(d). As it was already discussed in Sec. II,
the typical shape of this signal is directly connected to
the dependence of electron overheating temperature on the
injection voltage. Te(VI ) has two smeared steps at voltages
VI ≈ � ± h, corresponding to the split coherence peaks in
the superconducting LDOS. This is because the quasiparticle
flow into the superconductor grows sharply at these voltages.
Correspondingly, the measured nonlocal differential conduc-
tance dSth/dVI manifests typical two-peak shape, where peaks
are located at these voltages. The two peaks can be clearly
observed in the signal if the splitting of the coherent peaks in
the superconducting DOS is well pronounced.

It can be expected for some setups that the detector is also
heated due to injection. In this case the detected spin signal
is still determined by Eq. (5) [or by Eq. (26)], but tanh[ε/2T ]
should be replaced by tanh[ε/2TD], where TD is the detector
temperature. Then the thermalized part of the signal can be
smaller or even absent. In our work we model this possibility
by the phenomenological parameter ζ as follows: TD = T +
(Te − T )ζ . That is, ζ = 0 for the ideally heat insulated from the
superconductor detector, while ζ → 1 corresponds to a very
good heat contact between the superconductor and the detector.

For example, they both can lie on the shared heat-conducting
substrate and have a good heat contact to it.

Since dSth/dVI has no one distinguished peak, it is not
informative to calculate the peak area. So, it is more reasonable
to investigate the relaxation length of the signal for a given
injector voltage. The relaxation length of this thermalized con-
tribution to the signal is controlled by the length, over which
the effective electron temperature relaxes to its equilibrium
value. In dependence on the particular sample design it can
be determined by the electron-phonon relaxation length or
can correspond to the distance between the injector and an
equilibrium bulk reservoir. In the framework of our model the
heat leakage into the phonon subsystem can be neglected and
the heat transport is controlled by the temperature gradient.
Consequently, it does not depend crucially on any parameters.
However, one can imagine another experimental setup, where
the distance between the injector and an equilibrium bulk
reservoir is extremely large. In this case the resulting relaxation
length of dSth/dVI would be controlled by the electron-phonon
relaxation rate. Hence it can become very large in this situation,
as discussed in Sec. III C.

In general, the total measured nonlocal conductance has
contributions from both types of signal. Typically it manifests
a pronounced peak at VI ≈ � − h, provided by as thermalized,
so as nonthermalized electrons. The second peak at VI ≈
� + h is only provided by thermalized electrons. The total
conductance for ζ = 0 (that is, when the contribution of the
thermoelectric effect is maximal) is presented in Fig. 7(b).
The relaxation length of the total conductance dS/dVI at a
given VI is plotted in Fig. 7(c) vs VI . The results are only
presented for an interval VI starting from the first peak position
and ending approximately by the second peak position. For
lower and higher voltages we are not able to calculate the
relaxation length correctly. This is because at lower voltages
our τ approximation for the electron-electron relaxation does
not work very well, and for higher voltages Te is too high
and the order parameter suppression by this heating should
be taken into account in order to obtain the correct relaxation
length.

The typical feature is that the relaxation length grows upon
the voltage increase. The reason is the following. At rather
small voltages less than � the signal is dominated by the
nonthermalized part, so the relaxation length is governed by
the electron-electron relaxation. At larger voltages this part
of the signal is already suppressed (see Fig. 5) and the signal
is dominated by the contribution from overheating electrons.
As it was discussed above, the corresponding length is much
larger. So, the growth of the relaxation length upon voltage
increase can be viewed as a crossover from electron-electron
to electron-phonon dominated relaxation. These finding are
in good agreement with the experimental results obtained in
Ref. [21] (where the superconducting film was fabricated on
top of a ferromagnetic insulator). In this work very similar
two-peak nonlocal conductances and dependencies of the
relaxation length on voltage were observed.

As it was mentioned above, the situations, where Sth is
very small or even is not seen, can exist. It can be absent if
(i) the electron overheating by the injected current is small
or (ii) the detector temperature is close to Te. The possible
reasons for the situation (ii) are already discussed above. The
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FIG. 7. (a) and (b) Total conductance vs VI at different distances
from the injector: L = 5,15,25,35ξ0. For (a) ζ = 0.9, μBH =
0.22�0, hint = 0 and the other parameters as in Fig. 6. For (b) ζ = 0,
μBH = 0.05�0, hint ≈ 0.22�0, τ−1

so = 0.025�0, τ−1
mi = 0.01�0 and

the other parameters as in Fig. 6. (c) Relaxation length of the total
conductance vs VI . Different curves correspond to different applied
magnetic fields. The other parameters as for (b).

total conductance for this situation, modeled by ζ = 0.9, is
represented in Fig. 7(a). The relaxation length of the peak
in the total conductance dS/dVI is plotted in Fig. 6(a) vs
the applied field for different values of the phenomenological
parameter ζ . The calculated dependencies of dS/dVI and
the relaxation length vs the magnetic field make us conclude
that the experimental results, obtained in Refs. [17,19] in the
absence of a ferromagnetic insulator under the film, are in
good agreement with our theoretical findings for dominating
nonthermalized signal, as if the thermoelectric effect is absent
or, at least, very small.

V. CONCLUSIONS

In conclusion, a theory of long-range spin transport and
spin relaxation in Zeeman-split superconducting films at low
temperatures is developed. It is suggested that the main
mechanism, which determines the relaxation length of a
nonequilibrium spin signal in the Zeeman-split superconduc-
tors, is the spin-independent energy relaxation.

The spin signal measured by the detector can be divided
into two physically different contributions. The first is due to
nonthermalized quasiparticle distribution. Its relaxation length
is determined by the electron-electron relaxation, renormalized
due to superconductivity, and grows upon increase of the
applied magnetic field.

The second contribution is due to thermalized overheated
electron distribution. It is controlled by the difference between
the detector temperature and the temperature of the electronic
subsystem in the film. This is a thermoelectric effect. In princi-
ple, the value of this contribution can be varied experimentally
by adjusting the detector temperature. The decay length of this
thermoelectric signal is determined by the length on which
energy leaves the electronic subsystem and can be very large
under special conditions.

In the framework of our theory the extremely high spin re-
laxation lengths, experimentally observed in Zeeman-splitted
superconductors, and their growth with the magnetic field and
with the applied voltage have natural explanations.
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where Ǔ = (1 + τ3)/2 − iσ2(1 − τ3)/2.

[41] Equation (3) (in the absence of the orbital depairing term and
� = 0) coincides with the homogeneous version of analogous
equation of Ref. [39] if one takes into account that in this work
a slightly different θ parametrization is used: θ↓, exploited in
Ref. [39], equals to −θ−.

[42] M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163
(1988).

[43] F. S. Bergeret, A. Verso, and A. F. Volkov, Phys. Rev. B 86,
214516 (2012).

[44] O. V. Dimitrova and V. E. Kravtsov, JETP Lett. 86, 670 (2008).
[45] B. L. Altshuler and A. G. Aronov, in Electron-Electron Inter-

actions in Disordered Systems, edited by A. L. Efros and M.
Pollak (Elsevier, New York, 1985).

[46] G. M. Eliashberg, Sov. Phys. JETP 34, 668 (1972).
[47] N. B. Kopnin, Theory of Nonequilibrium Superconductivity

(Oxford University Press, Oxford, 2001).

024513-13

http://dx.doi.org/10.1103/PhysRevB.92.024510
http://dx.doi.org/10.1103/PhysRevB.92.024510
http://dx.doi.org/10.1103/PhysRevB.92.024510
http://dx.doi.org/10.1103/PhysRevB.92.024510
http://dx.doi.org/10.1103/PhysRevB.92.024501
http://dx.doi.org/10.1103/PhysRevB.92.024501
http://dx.doi.org/10.1103/PhysRevB.92.024501
http://dx.doi.org/10.1103/PhysRevB.92.024501
http://dx.doi.org/10.1088/0953-8984/27/23/235301
http://dx.doi.org/10.1088/0953-8984/27/23/235301
http://dx.doi.org/10.1088/0953-8984/27/23/235301
http://dx.doi.org/10.1088/0953-8984/27/23/235301
http://dx.doi.org/10.1103/PhysRevB.77.132501
http://dx.doi.org/10.1103/PhysRevB.77.132501
http://dx.doi.org/10.1103/PhysRevB.77.132501
http://dx.doi.org/10.1103/PhysRevB.77.132501
http://dx.doi.org/10.1038/nmat2781
http://dx.doi.org/10.1038/nmat2781
http://dx.doi.org/10.1038/nmat2781
http://dx.doi.org/10.1038/nmat2781
http://dx.doi.org/10.1103/PhysRevLett.100.136601
http://dx.doi.org/10.1103/PhysRevLett.100.136601
http://dx.doi.org/10.1103/PhysRevLett.100.136601
http://dx.doi.org/10.1103/PhysRevLett.100.136601
http://dx.doi.org/10.1103/PhysRevLett.109.207001
http://dx.doi.org/10.1103/PhysRevLett.109.207001
http://dx.doi.org/10.1103/PhysRevLett.109.207001
http://dx.doi.org/10.1103/PhysRevLett.109.207001
http://dx.doi.org/10.1038/nphys2518
http://dx.doi.org/10.1038/nphys2518
http://dx.doi.org/10.1038/nphys2518
http://dx.doi.org/10.1038/nphys2518
http://dx.doi.org/10.1103/PhysRevB.87.024517
http://dx.doi.org/10.1103/PhysRevB.87.024517
http://dx.doi.org/10.1103/PhysRevB.87.024517
http://dx.doi.org/10.1103/PhysRevB.87.024517
http://dx.doi.org/10.1103/PhysRevLett.112.036602
http://dx.doi.org/10.1103/PhysRevLett.112.036602
http://dx.doi.org/10.1103/PhysRevLett.112.036602
http://dx.doi.org/10.1103/PhysRevLett.112.036602
http://dx.doi.org/10.1103/PhysRevB.90.144509
http://dx.doi.org/10.1103/PhysRevB.90.144509
http://dx.doi.org/10.1103/PhysRevB.90.144509
http://dx.doi.org/10.1103/PhysRevB.90.144509
http://dx.doi.org/10.1103/PhysRevB.91.024506
http://dx.doi.org/10.1103/PhysRevB.91.024506
http://dx.doi.org/10.1103/PhysRevB.91.024506
http://dx.doi.org/10.1103/PhysRevB.91.024506
http://arxiv.org/abs/arXiv:1511.00817
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1103/PhysRevB.52.3632
http://dx.doi.org/10.1103/PhysRevB.52.3632
http://dx.doi.org/10.1103/PhysRevB.52.3632
http://dx.doi.org/10.1103/PhysRevB.52.3632
http://dx.doi.org/10.1103/PhysRevB.70.212508
http://dx.doi.org/10.1103/PhysRevB.70.212508
http://dx.doi.org/10.1103/PhysRevB.70.212508
http://dx.doi.org/10.1103/PhysRevB.70.212508
http://dx.doi.org/10.1103/PhysRevB.72.014510
http://dx.doi.org/10.1103/PhysRevB.72.014510
http://dx.doi.org/10.1103/PhysRevB.72.014510
http://dx.doi.org/10.1103/PhysRevB.72.014510
http://dx.doi.org/10.1134/S0021364015020022
http://dx.doi.org/10.1134/S0021364015020022
http://dx.doi.org/10.1134/S0021364015020022
http://dx.doi.org/10.1134/S0021364015020022
http://dx.doi.org/10.1103/PhysRevLett.114.167002
http://dx.doi.org/10.1103/PhysRevLett.114.167002
http://dx.doi.org/10.1103/PhysRevLett.114.167002
http://dx.doi.org/10.1103/PhysRevLett.114.167002
http://dx.doi.org/10.1103/PhysRevB.91.121407
http://dx.doi.org/10.1103/PhysRevB.91.121407
http://dx.doi.org/10.1103/PhysRevB.91.121407
http://dx.doi.org/10.1103/PhysRevB.91.121407
http://dx.doi.org/10.1103/PhysRevB.80.134502
http://dx.doi.org/10.1103/PhysRevB.80.134502
http://dx.doi.org/10.1103/PhysRevB.80.134502
http://dx.doi.org/10.1103/PhysRevB.80.134502
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://dx.doi.org/10.1007/BF00683918
http://dx.doi.org/10.1007/BF00683918
http://dx.doi.org/10.1007/BF00683918
http://dx.doi.org/10.1007/BF00683918
http://dx.doi.org/10.1103/PhysRevLett.110.047002
http://dx.doi.org/10.1103/PhysRevLett.110.047002
http://dx.doi.org/10.1103/PhysRevLett.110.047002
http://dx.doi.org/10.1103/PhysRevLett.110.047002
http://dx.doi.org/10.1088/1367-2630/16/7/073002
http://dx.doi.org/10.1088/1367-2630/16/7/073002
http://dx.doi.org/10.1088/1367-2630/16/7/073002
http://dx.doi.org/10.1088/1367-2630/16/7/073002
http://dx.doi.org/10.1103/PhysRevLett.112.057001
http://dx.doi.org/10.1103/PhysRevLett.112.057001
http://dx.doi.org/10.1103/PhysRevLett.112.057001
http://dx.doi.org/10.1103/PhysRevLett.112.057001
http://arxiv.org/abs/arXiv:1509.05568
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevB.76.214508
http://dx.doi.org/10.1103/PhysRevB.76.214508
http://dx.doi.org/10.1103/PhysRevB.76.214508
http://dx.doi.org/10.1103/PhysRevB.76.214508
http://dx.doi.org/10.1103/PhysRevB.77.174514
http://dx.doi.org/10.1103/PhysRevB.77.174514
http://dx.doi.org/10.1103/PhysRevB.77.174514
http://dx.doi.org/10.1103/PhysRevB.77.174514
http://dx.doi.org/10.1103/PhysRevB.86.214516
http://dx.doi.org/10.1103/PhysRevB.86.214516
http://dx.doi.org/10.1103/PhysRevB.86.214516
http://dx.doi.org/10.1103/PhysRevB.86.214516
http://dx.doi.org/10.1134/S0021364007220122
http://dx.doi.org/10.1134/S0021364007220122
http://dx.doi.org/10.1134/S0021364007220122
http://dx.doi.org/10.1134/S0021364007220122



