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Finite-temperature magnetism of FeRh compounds
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The temperature dependent stability of the magnetic phases of FeRh were investigated by means of total
energy calculations with magnetic disorder treated within the uncompensated disordered local moment approach.
In addition, Monte Carlo simulations based on the extended Heisenberg model have been performed, using
exchange coupling parameters obtained from first principles. The crucial role and interplay of two factors in
the metamagnetic transition in FeRh has been revealed, namely the dependence of the Fe-Fe exchange coupling
parameters on the temperature-governed degree of magnetic disorder in the system and the stabilizing nature of
the induced magnetic moment on Rh-sites. An important observation is the temperature dependence of these two
competing factors.
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I. INTRODUCTION

FeRh with composition close to being equiatomic crys-
tallizes in the CsCl structure and exhibits rather interesting
magnetic properties attractive for investigation for various
reasons. It is antiferromagnetically (AFM) ordered in the
ground state and reveals a first-order metamagnetic transition
to the ferromagnetic (FM) state at Tm ≈ 340–350 K [1].
A transition to a paramagnetic (PM) state occurs at TC =
675 K [1]. It is worth noting that the temperature of the
metamagnetic transition is very sensitive to the conditions of
sample preparation. Despite several attempts to shed light on
the physical origin of the magnetic properties of FeRh-based
alloys, both within experimental [2–4] and theoretical [5–13]
investigations, they are still under debate.

Various mechanisms have been suggested to explain the
driving force for the AFM-FM transition. The early model
suggested by Kittel [14], namely the exchange-interaction-
inversion model, associated the AFM-FM phase transition with
the dominant role of the change of magnetoelastic energy.
More recent investigations, however, demonstrated a minor
role of the exchange magnetoelastic energy[15].

The experimentally observed large change of the entropy,
i.e., 14.0 mJ/g/K [15] or 12.58 mJ/g/K [16], is mainly attributed
to the electronic contribution related to spin fluctuations on
the Rh atoms. This observation implies a key role of the
Rh induced magnetic moments for the stabilization of the
FM state [16–18]. This idea was supported by theoretical
investigations based on first-principles electronic structure
calculations [3,5–7,10,12].

So far there is no clear understanding of the finite tem-
perature magnetic properties of FeRh when small amounts
of impurities are present [15,19–21]. Recent first-principles
investigations by Staunton et al. [12], based on the analysis
of the electronic entropy highlights the impact of small com-
positional changes on the temperature of the metamagnetic
transition.

The reversibility of this transition and the small relaxation
time makes it attractive for applications. Transport measure-
ments demonstrate a strong drop of the electrical resistivity
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during the metamagnetic phase transition [16,22] from the
AFM to the FM state. As the metamagnetic transition can be
manipulated by an external magnetic field, this feature of the
resistivity leads to a giant magnetoresistance phenomena in
the system around Tm, that makes FeRh an appealing material
for future data storage devices [13,23].

II. COMPUTATIONAL DETAILS

Within the present study spin-polarized electronic structure
calculations have been performed using the fully relativistic
multiple scattering Korringa-Kohn-Rostoker (KKR) Green
function method [24,25]. All calculations have been performed
in full-potential (FP) mode. Density functional theory employ-
ing the generalized gradient approximation (GGA) was used
with the parametrization of the exchange-correlation potential
as given by Perdew, Burke, and Ernzerhof (PBE) [26]. For
the angular momentum expansion of the Green function a
cutoff of �max = 3 was applied. For determining configura-
tional averages in substitutionally disordered alloys, the self-
consistent coherent potential approximation (CPA) method
was employed. The magnetic disorder in the DFT calculations
for systems in the paramagnetic (PM) state (T > TC) was
treated within the disordered local moment (DLM) method.
To simulate the temperature induced partial magnetic disorder
below the Curie temperature, the so-called uncompensated
Disordered Local Moment (uDLM) approximation (see, e.g.,
Ref. [27]) was used. In this case the Fe subsystem was rep-
resented by the pseudoalloy Fe↑

1−xFe↓
x with Fe sites occupied

by two-components Fe↑ and Fe↓ with the opposite directions
of magnetic moment, “up” and “down”, respectively, and x

varying in the interval [0.0,0.5].
The finite temperature magnetic properties have been

investigated via Monte Carlo (MC) simulations based on
the extended Heisenberg model, using a standard Metropolis
algorithm [28,29]. The exchange coupling parameters Jij for
these calculations were obtained using the expression given by
Lichtenstein [30,31].

III. RESULTS

The calculated total energies of the FM and AFM states
of FeRh as a function of the lattice parameter, represented in
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FIG. 1. Total energy calculated for the FM and AFM states of
FeRh as a function of the lattice parameter a

Fig. 1, are in full agreement with the experimental results as
well as with calculations of others authors [6,32]. The energy
minimum for the AFM state for the lattice parameter a = 5.63
a.u. is about 17 meV lower than that for the FM state occurring
at a = 5.66 a.u. Thus, the AFM-FM transition should be
accompanied by a lattice expansion with a magnetovolume
effect of 1.6% which slightly overestimates the value observed
experimentally, 1% [18].

The Fe magnetic moment obtained for the energy minimum
in the FM state is 3.3 μB , which is in line with the neutron
scattering measurements giving 3.0 μB per Fe atom [33]. Its
magnitude remains almost unchanged in the AFM ground
state (3.2 μB). The induced total magnetic moment on the
Rh atomic sites calculated for the FM state is equal to 1.0 μB

and vanishes in the AFM state.
The density of states (DOS) curves for the FM, AFM and

DLM states are shown in Fig. 2(a), 2(b), 2(c), respectively.
Only a weak dependency on the volume is observable for the
DOS calculated for the FM (a) and AFM (b) states. In the
FM state a strong spin-dependent hybridization of Rh states
is apparent [Fig. 2 (a)], which leads to the formation of a
magnetic moment of 1 μB on the Rh atomic site. In the AFM
state the Rh DOS for the majority- and minority-spin states are
identical due to symmetry, resulting in a Rh magnetic moment
equal to 0 μB . The Rh-related electronic states for both of
the DOS spin channels in these cases exhibits hybridization
with Fe minority-spin states (essentially, above the Fermi
energy) and majority-spin states (below the Fermi energy), in
line with the discussion by Sandratskii and Mavropoulos [7].
This demonstrates that in the AFM state the vanishing total
magnetic moment on the Rh site is a result of the hybridization-
governed redistribution of spin density and not because of
vanishing spin density within the Rh atomic site.

Note also, that the Rh DOS at the Fermi level is rather
small and, therefore, a pronounced Stoner enhancement of the
magnetic moment induced on Rh can be ruled out. Thus, as
will be also discussed below, the large Rh magnetic moment
in the FM state should be attributed to a strong spin-dependent
hybridization.

As the AFM-FM transition occurs at finite temperature
it is necessary to take into account the temperature induced

magnetic disorder in the system when comparing the total
energies of the two states. For this reason the calculations
have been performed accounting for magnetic disorder treated
within the uDLM approximation. For the system under
discussion, the parameter x describing the degree of magnetic
disorder can be represented within this approach in terms
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FIG. 2. Density of states for the FM state (a), AFM state (b), and
random-spin state treated within the DLM approach (c). The solid
and dashed lines in (a) and (b) represent the results for FeRh with the
lattice parameters corresponding to the minimum of total energy for
the AFM state (solid line, a = 5.63 a.u.) and FM state (dashed line,
a = 5.66 a.u.)
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FIG. 3. Top: Difference between the total energies, EAFM − EFM

as a function of ξ , obtained by uDLM calculations for the FeRh
compound having FM and AFM magnetic order, with lattice
parameters corresponding to the total energy minimum in the AFM
state, a = 5.63 a.u. Bottom: Enhanced and non-enhanced magnetic
moment on the Rh-site in the FM (uDLM) state, as a function of the
order parameters average normalized magnetic moment on Fe sites,
m̄Fe.

of the order parameter ξ . In the case of the FM state with
partial magnetic disorder, the order parameter is given by the
normalized average magnetic moment per Fe atom ξ = m̄Fe =
〈MFe〉/MFe = (MFe(1 − x) − MFex)/MFe = (1 − 2x). On the
other hand, in the case of the partially disordered AFM state
the order parameter can be represented as ξ = 1

2 [〈M↑
Fe〉 −

〈M↓
Fe〉]/|MFe| = (1 − 2x), where 〈M↑

Fe〉 and 〈M↓
Fe〉 are the

average magnetic moments of Fe sublattices having opposite
orientation with respect to each other, while the total magnetic
moment is equal to 0 μB for each ξ value.

Figure 3 shows the total energy difference EAFM − EFM as a
function of ξ for FeRh with the lattice parameter a = 5.63 a.u.
corresponding to the energy minimum of the AFM state. At
ξ = 1, the difference is negative, demonstrating the stability
of the AFM state in line with the results shown in Fig. 1. An
increase of the disorder represented by a decrease of ξ leads to
a decrease of stability of the AFM state such that at ξ � 0.8 the
FM state becomes more stable up to the fully disordered state
with ξ = 0., when both types of magnetic order, FM and AFM,
have the same energy. The Rh magnetic moment in the case of
FM order (Fig. 3, bottom) exhibits almost a linear dependence
on ξ changing from MRh = 0.0 μB in the fully disordered
DLM state to MRh = 1.0 μB in the ordered FM state.

In summary, these results demonstrate the following effects
of increasing magnetic disorder: (i) a stabilization of the FM
state with respect to the AFM state and (ii) the stability of
the FM state is a result of the decrease of the Rh magnetic
moment.

Therefore, when discussing the driving forces behind the
metamagnetic AFM-FM phase transition, other additional
effects than just the magnetization of the Rh sublattice have

to be considered. This has already become apparent within
various investigations [5–8,11–13]. Below we will investigate
the features of the interatomic exchange interactions to demon-
strate their crucial role for the AFM-FM phase transition.

First we discuss some features of the Rh magnetic moment
which are related to the magnetic disorder in the system.
The magnetic moment of Rh is induced by a spin dependent
hybridization of its electronic states with the electronic
states of surrounding Fe atoms. This hybridization plays a
crucial role during the transition from the FM to the AFM
state. To demonstrate the strong covalent character of the
Rh magnetism, SCF calculations have been performed by
suppressing for the spin-dependent part of the exchange-
correlation potential (BRh

xc = 0) that is responsible for an
enhancement of the spin magnetic moment induced by the
hybridisation with the Fe states. Figure 3 (open symbols)
shows that the non-enhanced Rh magnetic moment is only
∼25% smaller than the proper one. The same is observed
for the total energy. This demonstrates the significant role of
the spin dependent hybridization for the formation of a large
magnetic moment on the Rh site. As a result, the varying
magnetic disorder in the Fe sublattice in the presence of the
weak Rh exchange enhancement leads to an almost linear
change of MRh as a function of m̄Fe.

To investigate the stability of the FM and AFM ordered
magnetic states at finite temperature the exchange coupling
parameters Jij have been calculated for different reference
states: AFM, FM, and DLM. These interactions can be seen to
map the magnetic energy of the system onto the Heisenberg
Hamiltonian accounting for the bilinear interatomic exchange
terms. The corresponding results are presented in Fig. 4.

Discussing these results, it is convenient to distinguish
between the two Fe sublattices with opposite directions of
the magnetic moments in the AFM state. For each Fe atom
its first and third neighbor in the Fe subsystem belongs to
another sublattice. One can see that for all reference states
the exchange couplings with these neighbors are negative
indicating the trend towards the formation of AFM order. The
interaction with the third Fe neighbor depends only weakly on
the reference state, while the interactions with the first neighbor
are close to 0 meV in the case of FM reference state and is about
−8.0 meV for the AFM state. Since the Rh magnetic moment
in the AFM state is equal to 0 μB , it does not contribute to the
magnetic energy. As a consequence only the Fe-Fe exchange
interactions are responsible for the stabilization of this state.
In contrast to this situation, the FM order in the system can
be stabilized by a rather strong Fe-Rh interaction since the Rh
magnetic moments are non-zero, giving a negative contribution
to the magnetic energy competing with the positive one due to
the Fe-Fe interatomic exchange. Thus, the transition from the
AFM to FM state is essentially a result of the competition of
these interactions.

Thus, the behavior of the FM and AFM energy variation
shown in Fig. 3 and demonstrating the stabilization of the FM
state upon increase of the magnetic disorder, can be attributed
to the modification of the Fe-Fe exchange coupling parameters,
in particular, to a strong decrease of the AFM interactions
with the first neighbors. In the DLM state the situation is very
different. The Fe-Fe exchange interactions are rather close to
those obtained for the FM state, but the Rh magnetic moments
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FIG. 4. (a) The Fe-Fe interatomic exchange coupling parameters
calculated for the FM (open circles), AFM (open diamonds), and
DLM (squares) states; (b) the Fe-Rh exchange coupling parameters
calculated for the FM state (the Rh magnetic moment is m ≈ 1 μB ).

are equal to zero and therefore give no contribution to the
magnetic energy.

Two remarks concerning the approximations used for the
calculations are in due place concerning the Monte Carlo
simulations. The conventional Heisenberg Hamiltonian should
be generalized beyond the classical form: (i) in order to account
for the contribution due to induced Rh magnetic moments;
(ii) to account for not only bilinear terms of the magnetic
energy expansion but also for terms of higher order. The second
generalization is required since the insufficient conventional
dipolar form of the Hamiltonian gets appreciable corrections
from bilinear exchange coupling parameters calculated for
different reference states. The general form of the expansion
of magnetic energy around a reference state may therefore be
represented as follows (see, e.g., [34–36])

E = Eref + �E(|Mi |) −
∑
ij

J
(2)
ij (êi · êj )

−
n∑

ν=2

∑
ij

J
(2),(ν)
ij (êi · êj )ν − 1

4!

∑
ijkl

J
(4)
ijkl[(êi · êj )(êk · êl)

+ (êj · êk)(êl · êi) + (êl · êi)(êj · êk)] − · · · , (1)

where �E(|Mi |) is the change in energy due to the change
of absolute values of local spin magnetic moments. This can
be reduced to the conventional form of the Hamiltonian with
redefined bilinear exchange interaction parameter J̃ :

Hext = −
∑
Fe:i,j

[
J̃ Fe-Fe

ij (m̄) +
∑
Rh:k

J̃ Fe-Rh
ik χkj

]
(Mi · Mj ).

(2)

The first term in Eq. (2) characterizes the bilinear Fe-Fe
transverse-fluctuation exchange energy with i,j indicating
sites on the Fe sublattice.

The exchange coupling parameters defined in this case as
J̃ Fe-Fe

ij = ∂2〈H 〉
∂Mi∂Mj

, with 〈· · · 〉 standing for the thermal average
(see, e.g., [37]), can be calculated within the DLM approach
based on the DFT Hamiltonian. The directions of the magnetic
moments Mi and Mj are assumed to be collinear and
aligned along the direction of the total magnetic moment.
A modification of the electronic structure due to an increase
of magnetic disorder for rising temperatures results in turn
in a temperature dependence of the interatomic exchange
interactions. On the other hand, evaluating the thermal average
for the Heisenberg Hamiltonian in its extended form, Eq. (1),
and using it in the expression for J̃ Fe-Fe

ij (T ), one can get
the finite temperature exchange parameters in terms of the
parameters of the Heisenberg model given by Eq. (1). As
a result, one can see explicitly that they are determined by
the bilinear exchange parameters J Fe-Fe

ij as well as by the
higher order terms of the extended Heisenberg Hamiltonian,
e.g.,

∑
kl J

(4)
ijkl〈(êk · êl)〉, etc. Accounting for higher order terms

results this way in the dependence of J̃ Fe-Fe
ij parameters on the

magnetic order in the system and as a consequence on the
temperature.

The second term in Eq. (2) describes the energy changes re-
lated to longitudinal spin fluctuations on the Rh atoms [10,38]
with k numbering Rh sublattice sites. Accounting for Rh
magnetic moment via linear response formalism it is derived
as follows:

HFe−Rh = −
∑

Fe:k,j

J̃ Fe-Rh
ik (mk · Mi) (3)

= −
∑
Fe:i,j

J̃ Fe-Rh
ik

⎛
⎝

⎡
⎣∑

j

χkj Mj

⎤
⎦ · Mi

⎞
⎠ (4)

= −
∑

Fe:k,j

[∑
Rh:k

J̃ Fe-Rh
ik χkj

]
(Mi · Mj ) . (5)

The magnetic moments on the Fe site are denoted as Mi(j ).
Considering the DLM state as reference state the dependence
on the average magnetic moment in the first term can be
considered in linear approximation to have the following form:

J̃ Fe-Fe
ij (m̄) = J̃ DLM

ij + [
J̃ FM/AFM

ij − J̃ DLM
ij

]
m̄ . (6)

The term characterizing the longitudinal contribution was
discussed previously [38].

The response function χkj occurring in Eq. (2) describes the
Rh magnetic moment induced by surrounding Fe atoms and
is dependent on the orientation of their magnetic moments. A
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linear approximation expressed by a constant χkj was used,
that is based on the results above showing the almost linear
dependence of induced Rh magnetic moment on the average
magnetic moment in Fe subsystem (see Fig. 3). As the Rh
magnetic moment occurs essentially due to the spin-dependent
hybridization of the Rh electronic states with the electronic
states of neighboring Fe atoms, it is represented in MC
simulations through the average magnetic moment on the
first Fe neighbor shell around the Rh atoms, leading to an
approximate form for the susceptibility function [38]

mRh =
∑

j

χRh-Fe
0j Mj = XRh-Fe

∑
j

Mj , (7)

where the summation is performed over the magnetic moments
Mj corresponding to Fe atoms within the first-neighbor shell
around the “non-magnetic” Rh atom on site i = 0.

It should be pointed out in addition that the same DLM
reference state for both the re-scaled FM and AFM exchange
interactions has been used. This means that the exchange
interactions should change abruptly at the metamagnetic
transition point that accounts for latent heat connected with
the first-order phase transition.

One should mention that the approach described above
is rather close to the one used recently by Barker and
Chantrell [11]. These authors point out the crucial role of
the biquadratic exchange interactions to describe the AFM
to FM phase transition in FeRh. Thus, in their as well
as the present work, additional terms in the Heisenberg
Hamiltonian are required to make a correction to the bi-
linear Fe-Fe exchange interactions due to the change of
the degree of magnetic order in the system. It should be
noted, however that Barker and Chantrell [11] attribute the
biquadratic exchange interactions to the Fe-Rh-Fe type of
exchange, referring to the calculations of Mryasov [10]. In
the present work, the temperature dependence of the Fe-Fe
exchange parameters is attributed primarily to the temperature
dependent behavior of delocalized sp-electrons responsible for
the indirect Fe-Fe exchange interactions. This dependence is
accounted for by explicit calculations of the J̃ Fe-Fe

ij parameters
using the approach described above. We demonstrate also
a linear dependence of the Rh magnetic moment on the
magnetization of the Fe sublattice that allows to describe
the Fe-Rh-Fe exchange interactions using the second term in
Eq. (2).

To investigate the magnetic properties of FeRh-based
systems at finite temperatures, Monte Carlo (MC) simulations
have been performed based of the model Heisenberg Hamil-
tonian given in Eq. (2). Periodic boundary conditions have
been used with the MC cell containing L × L × L number
of FeRh unit cells. Several sets of calculations have been
performed for L = 6 to 10. Only the directions of the Fe
moments (in the case of substitution of Fe by Ni atoms also
the Ni moments) are considered as independent degrees of
freedom. For the sequential update the Metropolis algorithm
has been used. After each rotation of a Fe magnetic moment the
induced moments on the neighboring Rh atoms are calculated,
which in turn depend on the magnetic configuration of the
surrounding Fe atoms. The total change of the energy due to
both types of changes was accounted for the configuration

update. Up to 5000 MC steps (including trial rotations for
all Fe atoms) have been used to reach the equilibrium and
further 50 000–10 0000 MC steps—for computing averages.
In the case of Ni substitution for Fe the results are in addition
averaged over 10–20 random distribution of Fe and Ni atoms.
For all sizes L used in the MC simulation the difference in
AFM-FM transition temperature varied within ±20 K without
noteworthy changes for the other properties.

In a first step the calculations have been performed for
the pure FeRh compound. The magnitude of the Fe magnetic
moments have been fixed and only changes in orientation have
been considered. On the other hand, the magnetic moments
treated as induced magnetic moment according to Eq. (7),
change their absolute value as well as the orientation depending
on the orientations of the magnetic moments of the surrounding
Fe atoms. At the same time, the total magnetic moment in the
system can be rather small approaching 0 μB at low (AFM
state) and high (PM state) temperatures. Figure 5 shows the
relative magnetization as a function of the temperature in
comparison to experimental results. The calculated AFM-FM
transition occurs at T = 320 K, rather close to the experimental
value T = 350 K. As it was discussed above, it is caused
by the increasing magnetic disorder in the system when
the temperature increases. Two mechanisms are the major
driving force for the transition. Firstly, the disorder-induced
modification of the exchange coupling parameters. Secondly,
the increase of the amplitude of randomly oriented fluctuations
of the Rh magnetic moments in the AFM state due to
increasing temperature-induced short-range FM order in the
Fe subsystem [see Fig. 5(c)]. Therefore, it is the occurrence of
magnetic moments on the Rh sites above a certain temperature
that leads to a stabilization of the FM order in the system [see
Fig. 5(d)]. A further temperature increase results in a decrease
of the Rh magnetic moment, and to a transition to the PM
state at T = 720 K. One has to stress the asymmetry of the
metamagnetic transition in FeRh upon heating and cooling
of the sample. This was demonstrated recently by a robust
experimental investigation on the formation of FM and AFM
phases. The authors concluded that the formation of the AFM
phase upon a temperature decrease is dominated by a nucle-
ation at defects in contrast to the formation of the FM phase
for increasing temperature due to heterogeneous nucleation
at different sites [39]. The latter results are in line with the
present results of MC simulations [e.g., see Fig. 5(c),(d)].
However, different mechanism of nucleation upon cooling
requires further generalization of the Hamiltonian and more
sophisticated spin dynamics simulations to reproduce the
temperature dependent behavior of magnetization in this
case.

To investigate the influence of impurities on the metamag-
netic transition, the calculations have been performed for the
FeRh systems with 5 at.% and 10 at.% substitution of Fe by
Ni atoms, and with 1 at.% and 2 at.% substitution of Rh by Fe
atoms.

The presence of Ni impurities results in a decrease of the
temperature of the metamagnetic transition. As one can see
in Fig. 5(a), 5 and 10 at.% Ni in the Fe sublattice leads to
transition temperatures of Tm = 230 and 180 K, respectively.
The decrease of Tm is mainly governed by the difference in
the Fe-Ni exchange interactions when compared to the Fe-
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FIG. 5. Temperature dependent relative magnetization M(T )/M0

(M0 is the magnetization at T = 0 K) obtained within the MC
simulations for L = 8: (a) M(T )/M0 for pure FeRh (circles) in
comparison with the experimental result; squares and diamonds
represents the results for FeRh with 5 (diamonds) and 10 at. %
(squares) substitution of Fe by Ni atoms; (b) M(T )/M0 calculated for
FeRh with 1 and 2 at. % of Fe (closed symbols) in the Rh sublattice,
in comparison with the results for FeRh (open symbols). (c) and (d)
show the induced magnetic moments on the Rh sublattice of pure
FeRh at T = 300 and 340 K, respectively.

Fe exchange interactions. As one can see in Fig. 6, the Fe
exchange interaction with the Ni atom at the first-neighbor
position becomes positive. The Fe-Ni exchange interactions,
when Ni occupies third-neighbor position, are negative but
are much smaller in magnitude when compared to the Fe-Fe
interactions. Both of these effects lead to a stabilization of the
FM state, and as a consequence to a decrease the temperature
of metamagnetic AFM-FM transition.

Substitution of 1 and 2 atomic % of Rh by Fe atoms results
in a decrease of the transition temperature from Tm = 320
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FIG. 6. (a) The Fe-Ni interatomic exchange coupling parameters
calculated for the FM (open circles) and AFM (open diamonds) FeRh
compound with 5 at. % substitution of Fe by Ni atoms: The Fe and
Ni atoms correspond to different Fe sublattices having in the AFM
state an opposite orientation of the magnetization.

to Tm = 260 and 220 K, respectively. In contrast to Fe
substitution by Ni, the decrease of Tm is controlled by strong
FM interactions between Fe atoms in the different (Fe and Rh)
sublattices (see Fig. 7).

Thus, in line with experiment, for both types of impurities
we have obtained a decrease of the temperature of the
metamagnetic transition. On the other hand, the effect of
impurities is much weaker than observed in experiment. This
is clearly the result of approximations used in our calculations,
in particular, for the exchange coupling parameters: (i) we use
here the re-scaled bilinear exchange interactions in the model
Hamiltonian, Eq. (2); (ii) the first-principles calculations of
Jij are performed for the collinear magnetic state at T = 0 K,
which can be crucial for such a delicate system as FeRh. This
problem can be avoided for example by the self-consistent

1 2 3
R

ij
 (units of lattice parameter)

0

10

20

30

40

J ij
 (

m
eV

) FM: Fe(Fe)-Fe(Rh)
AFM: Fe(Fe)-Fe(Rh)

FIG. 7. (a) The Fe-Fe interatomic exchange coupling parameters
calculated for the FM (open circles) and AFM (open diamonds) FeRh
compound with 1% substitution of Rh by Fe atoms: one Fe atom
belong to the Fe sublattice, and another one to the Rh sublattice.

024423-6



FINITE-TEMPERATURE MAGNETISM OF FeRh COMPOUNDS PHYSICAL REVIEW B 93, 024423 (2016)

DLM approach by Staunton et al. [12], that leads, however,
to much more time-consuming calculations of the temperature
dependent properties.

IV. SUMMARY

To summarize, we have studied here the AFM-FM metam-
agnetic transition in FeRh on the basis of the first-principles
DFT calculations. The temperature dependent stability of these
phases was investigated performing total energy calculations
for the systems with a different degree of magnetic disorder
treated within the uDLM approach. The first-principles calcu-
lations supply in addition the parameters (element projected
magnetic moments, exchange coupling parameters) for the ex-
tended Heisenberg model Eq. (2). Based on this Hamiltonian,
Monte Carlo simulations have been performed. The results of
both calculations allow to identify the crucial role and interplay
of two factors: (i) the dependence of the Fe-Fe exchange
coupling parameters on the temperature-governed degree of
magnetic disorder in the system; (ii) the Rh induced magnetic

moment, also dependent on the magnetic disorder in the
system, that stabilize the FM state. An important observation
is the competing effect of the temperature dependence of
these two factors. Increase of disorder for rising temperature
leads to a decrease of the Rh magnetic moments and as a
result to a decrease of Fe-(Rh)-Fe FM exchange interactions
responsible for lowering the energy of the FM state. On
the other hand, the decrease of the AFM Fe-Fe J̃ Fe-Fe

ij (m̄)
exchange interactions [see extended Hamiltonian Eq. (2)
together with the temperature induced magnetic disorder leads
to a stabilization of the FM state]. Suppressing the interplay of
these two effects leads to a shift of the point of metamagnetic
transition. This was demonstrated by studying the impact of
impurities either on the Fe or on the Rh sublattices.
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