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Interacting tails of asymmetric domain walls: Theory and experiments
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In this paper, we address the structure and interaction of neighboring asymmetric Néel and Bloch walls in soft
ferromagnetic films. First, we review a recent reduced model for the structure of parallel systems of asymmetric
walls with potentially interacting tails and provide a derivation via the method of matched asymptotic expansions,
starting from the micromagnetic-torque equation. Then, we report on experimentally observed domain-wall
transitions under a varying hard-axis field in Co40Fe40B20 films. Upon the wall transition, the average hard-axis
magnetization in the domains increases significantly, by an amount that depends on the width of the domains. For
films of moderate thickness, the hard-axis magnetization jump that the theory predicts excellently agrees with
the experimental data. Hence, we conclude that interacting tails of neighboring asymmetric Néel walls cause the
observed additional rotation of the magnetization towards large hard-axis fields.
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I. INTRODUCTION

Even though magnetic domain walls in ferromagnetic films
have been under experimental and theoretical investigation for
a long time, a general theory that describes their properties
and structure is not yet available. Depending on the film
thickness, the magnetic properties of the material, and applied
magnetic fields, different wall types may be energetically
favored. Figure 1 shows a phase diagram that indicates the
wall type of least energy in films of permalloy and CoFeB,
depending on the normalized film thickness t/d and the

reduced field H = | �H |
HK

, for the two material-dependent quality

factors Q = Ku

Kd
. Here, HK denotes the anisotropy field, Ku

the first-order anisotropy constant, d = √
A/Kd the Bloch

linewidth, A the exchange constant, and Kd = 1
2μ0M

2
s the

demagnetizing constant of the material with the vacuum
permeability μ0 and the saturation magnetization Ms . In this
paper, we will only consider soft materials, i.e., Q � 1.

In very thin films, symmetric Néel walls are observed with a
magnetization profile that splits into a narrow core region with
an extension of the order of ∼d2/t and extended tails with a
logarithmically decaying magnetization over a width wtails ∼
t/Q. For low-anisotropy materials, the dominant contribution
to the energy of symmetric Néel walls is the stray field
generated in their tails.

*L.Doering@math1.rwth-aachen.de

For intermediate film thicknesses, cross-tie walls are ob-
served which consist of a series of Bloch lines and 90◦ Néel
wall segments in between [2–5]. Note that the results presented
below do not allow for a prediction of the cross-tie wall energy,
which is therefore not present in the phase diagram (see Ref. [5]
for a recent numerical treatment of the case of 180◦ walls).

In thicker films, partially or completely stray-field free do-
main walls are energetically favored, namely the asymmetric
Néel wall and asymmetric Bloch wall [6,7]. In contrast to
the asymmetric Bloch wall, the asymmetric Néel wall reduces
its energy by splitting off an extended tail. A vortex pattern
is formed within the wall core, which avoids most of the
dipolar charge. Typically, about 10% of the dipolar charges
are distributed in the tails of asymmetric Néel walls. With
increasing hard-axis field, the contribution of the tails to the
total magnetization rotation increases until—at a critical field
value—the asymmetric core disappears in favor of a symmetric
Néel wall structure [cf. Ref. [1], Sec. 3.6.4 (E)]. A similar
continuous transition from symmetric to asymmetric Néel
walls occurs with increasing film thickness [5,8]. For a more
detailed review on magnetic domain walls in thin films, we
refer the reader to Ref. [1] and references therein.

The existence of different wall types as well as the
occurrence of domain wall transitions in an applied field is of
practical relevance for various applications. For instance it has
been shown recently that the high-frequency magnetization
response of domain structures is significantly altered due
to a network of interacting neighboring walls [9]. As the
acoustic domain resonance frequency depends on the effective
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FIG. 1. Phase diagram according to (5) for nanocrystalline
permalloy and amorphous CoFeB, i.e. Q = 2.5 × 10−4 (solid lines)
and Q = 1.55 × 10−3, respectively. Note that compared to Ref. [1],
Fig. 3.80, the transition between symmetric and asymmetric Néel
walls is shifted towards larger fields.

domain wall width and on the interaction strength between
neighboring domain walls, either smooth or step-like changes
(of the order of 0.5 GHz) of the domain resonance frequency
can be observed due to domain wall transformations. For the
quantification of such effects, the knowledge of the internal
structure of a domain wall, i.e., its width and the strength of
interaction with walls in the neighborhood is indispensable.

The interaction between neighboring symmetric Néel walls
by an overlap of their extended tails has been demonstrated
to significantly determine the energy balance and structure of
the domain walls [1]. Whereas wall interaction does not play
a dominant role for stray-field free asymmetric Bloch walls,
it can still be significant for the energy and magnetization
configuration of neighboring asymmetric Néel walls [10].

The analysis of domain walls very much depends on the
specific wall type: On one hand, the one-dimensional nature
of symmetric Néel walls makes both their numerical [11] and
analytic [12–15] treatment possible. On the other hand, the
structure of asymmetric Bloch walls is only accessible to Ritz
methods [6,7] or numerical micromagnetics [5,16,17], which
is feasible due to the small wall width. For asymmetric Néel
walls, the combination of a two-dimensional wall pattern with
long-range extended tails makes this type of wall difficult to
study by numerical simulation [1,5,17].

The numerical results in Ref. [18] show that the transition
between the asymmetric wall types is hysteretic (see also
Ref. [19]). However, the interaction of extended wall tails
seems to influence the domain magnetization more strongly
than expected (see Fig. 7).

Recently, a step towards a quantitative understanding of
the splitting of asymmetric Néel walls into stray-field free
core and logarithmic tails has been undertaken. In Ref. [20]
an asymptotic limit of the micromagnetic energy functional
was derived that yields a precise description of the relative

FIG. 2. Domain configuration (top) considered in the reduced
model for (a) an isolated domain wall (blue) and (b) a system of
domain walls at distance w in an extended film of thickness t . The
bottom row schematically illustrates the magnetization component
mx on the film surface with core (mx > cos θ ) and tail region (mx >

cos α) of asymmetric walls.

amount of rotation in stray-field free wall core and logarithmic
wall tails for an isolated domain wall. The results have been
generalized to systems of interacting domain walls [21].

Here, we briefly summarize the main results of Refs. [20,21]
and compare the theoretical with experimental results for
Co40Fe40B20 films. Thereby we aim to demonstrate the validity
of the proposed model, which can be easily applied for various
magnetic thin film materials. Additionally, we provide an
alternative derivation of the reduced models that focuses on
the torque balance between magnetic moments and effective
field instead of energy considerations.

II. THEORY

Consider a ferromagnetic film with uniaxial anisotropy
(||y), a thickness t with − t

2 � z � t
2 , and infinite extensions in

the film plane (xy plane). For the presence of magnetic domain
walls in the film two cases will be distinguished, as sketched
in Fig. 2.

In a first case (a) we assume that two domains of constant
magnetization �m(x = ±∞) = (cos α,± sin α,0) have formed
and are separated by a domain wall. Then, in a second case
(b) a system of domain walls is considered that are equally
spaced at a distance w and which may interact via extended
wall tails. The energy of isolated and interacting domain walls
in an external field �Hext||x is derived starting from the Landau-
Lifshitz energy (see, e.g., Ref. [1], Sec. 3.2):

E = A

∫
| grad �m|2dV − 1

2
μ0Ms

∫
�Hd · �m dV

+Ku

∫
(1 − ( �m · �e)2)dV − μ0Ms

∫
�Hext · �m dV, (1)

with the magnetization vector �m = �M
Ms

, the stray or demagne-

tizing field �Hd , and �e ||y the anisotropy axis. By dV we denote
the volume element.

To make the problem accessible to a mathematical treat-
ment, we assume that all domain walls are parallel to the y axis
and the magnetization configuration is translation invariant in
y, so that it suffices to study the energy density per length in
the y direction. Note, however, that this assumption excludes
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the formation of Bloch lines and wall segmentation as it occurs
for cross-tie walls.

A. A reduced model for domain walls in moderately thin films

In order to reduce the number of physical parameters in
the problem, we employ the Kd -based nondimensionalization
[22] of Eq. (1). On a cross section of the sample in the xz plane
with area element dA, we obtain:

E = d2
∫

| grad �m|2dA +
∫
R2

|�hd |2dA

+Q

∫ (
(mx − H )2 + m2

z

)
dA, (2)

with �Hd = Ms
�hd and �Hext = HK (H,0,0) = MsQ(H,0,0).

The quantity H denotes the reduced external field. Note that
while passing from Eqs. (1) to (2), we have also added the
normalizing constant Q

∫
H 2dA to ensure that each of the con-

stant magnetization configurations �m = (H,±√
1 − H 2,0)

has vanishing energy density. Moreover, E is only partially
nondimensional and has units of area.

In the regime Q � ( t
d

)2 � Q−1 and for a wall angle
2α = 180◦, the minimal wall energy (2) per unit domain wall
length is known [23] to scale as follows (up to a multiplicative
constant):

Ewall ∼
{

t2 ln−1 1
Q

, if
(

t
d

)2 � ln 1
Q

,

d2, if
(

t
d

)2 � ln 1
Q

.

In thin films, the minimal-energy scaling Ewall ∼ π
2 t2 ln−1 1

Q

is satisfied by symmetric Néel walls (see also Refs. [22],
Sec. 4.6.2, and [13]). In thicker films, the minimal-energy
scaling Ewall ∼ d2 is satisfied by, e.g., a stray-field free
asymmetric Bloch wall.

Thus, in order to analyze both symmetric and asymmetric
walls, in particular asymmetric Néel walls with extended tails,
it seems most promising to focus on the critical regime of
the crossover from symmetric to asymmetric wall types, i.e.,
the asymptotic regime ( t

d
)2 ∼ ln 1

Q
as Q ↓ 0. In this regime,

for sufficiently large (reduced) hard-axis field H ∈ [0,1], one
expects to recover a domain wall of Néel instead of Bloch type.
In Refs. [20,21], it has been shown mathematically rigorously
that in this regime and both for isolated and interacting
walls the internal structure of an arbitrary domain wall can
be determined by analyzing a simple scalar minimization
problem.

We will describe the result for the periodic case (b): One
may assume that the width w 
 t of the domains is strictly
smaller than the width t/Q of the tails of symmetric Néel
walls that are constrained only by anisotropy. Otherwise,
one does not expect interaction of the walls and may treat
each domain wall independently. In particular, for w � t/Q

it is expected that the wall tails invade the whole domain.
Thus, to leading order in w/t ↑ ∞, the sum of stray-field
and anisotropy/Zeeman energy of logarithmic wall tails that
connect the magnetization mx = cos θ in the core to mx =
cos α in the center of a domain (cf. Fig. 2) is given by

Etails(θ,α,H ) := π

2
t2 (cos θ − cos α)2

ln w
t

+ Qwt(cos α − H )2.

Optimizing the angle α, we find that the magnetization in the
center of the domain is given by

cos αopt = H + πt

πt + 2Qw ln w
t

(cos θ − H ). (3)

In particular, one identifies the interesting regime of periods

w ∼ t

Q ln(1/Q)
,

in which a nontrivial cos αopt �∈ {cos θ,H } is possible [24].
Surprisingly, the domain width w needs to be by ln(1/Q)
smaller than the guess t/Q (coming from the width of the
anisotropy-constrained Néel wall tails) for the critical regime
of periods.

The optimal angle θ for the transition from stray-field free
wall core to the logarithmic tails under the reduced external
field H can be found by optimizing the sum of the minimal
exchange energy Ecore(θ ) of a stray-field free wall core [25] of
wall angle θ and the energy of the optimal wall tails:

Ewall(H ) ≈ min
θ

(
Ecore(θ ) + min

α
Etails(θ,α,H )︸ ︷︷ ︸

= π
2 t2 2Qw

πt+2Qw ln w
t

(cos θ−H )2

)
. (4)

Choosing [26] w 
 t/(Q ln 1
Q

), one recovers for Q � 1 a
reduced model for the structure of an isolated domain wall (a):

Ewall(H ) ≈ min
θ

(
Ecore(θ ) + π

2

t2

ln 1
Q

(cos θ − H )2

)
. (5)

On the other hand, for w � t/(Q ln 1
Q

), the tail contribution
to Eq. (4) becomes negligible, and one finds θopt ≈ αopt ≈ 0.

The structure of Eqs. (4) and (5) confirms and quantifies
the description of asymmetric Néel walls as an optimal
combination of stray-field free wall cores with extended tails
given in Ref. [1], Sec. 3.6.4 (E). In other words, the above
results demonstrate that asymmetric Néel walls have two
internal parameters—the core and domain wall angles θ and
α—that the wall optimizes automatically to produce the lowest
micromagnetic energy given a reduced external field H .

Note that this explanation (and also the rigorous proof in
Refs. [20,21]) takes an energetic point of view and is precise
only in the limit Q ↓ 0. In the following section, we will
demonstrate that asymptotically the same result (4) can be
derived starting from the micromagnetic equations in the form
of a torque balance, using the method of matched asymptotic
expansions. Moreover, this approach potentially yields slightly
more precise quantitative results for positive 0 < Q � 1.

B. Matching core and tails by asymptotic expansions

We will focus on the periodic case (b): The starting point in
the method of matched asymptotic expansions is the first vari-
ation of the micromagnetic energy in its nondimensionalized
form (2)

�m ×
⎛
⎝−d2� �m − �hd + Q

⎛
⎝mx − H

0
mz

⎞
⎠

⎞
⎠ = 0 for |z| <

t

2
,

∂z �m = 0 for |z| = t

2
. (6)
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This torque balance has to be supplemented by (quasistatic
remnants of) Maxwell’s equations, expressed in terms of the
stray-field potential u (that is, hd = − grad u):

�u = div �m for |z| <
t

2
,

[−∂zu] = mz for z = ± t

2
, (7)

�u = 0 for |z| >
t

2
.

We will assume that the configuration has the symmetry of
the asymmetric Néel wall, i.e., that it is invariant under the
transformation (x,z) → −(x,z), my → −my , u → −u at each
wall core.

We first turn to the core or inner region in the parlance of
matched asymptotics. Because this region is small, it can afford
a z-dependent magnetization pattern that to leading order
avoids magnetic charges. Likewise, the effects of anisotropy
and external field are negligible. Hence in this region, Eqs. (6)
and (7) are well approximated by

�min × (−� �min + grad uin
d2

) = 0

div �min = 0

}
for |z| <

t

2
,

∂z(min,x,min,y) = 0 and min,z = 0 for |z| = t

2
.

(8)

In the first equation, the (reduced) stray-field potential uin
d2

plays the role of a Lagrange multiplier for the divergence-free
condition in the second equation, like the pressure in the
equations describing an incompressible fluid. We learn from
Eq. (8) that the only length scale for the core is the film
thickness t . For all physically relevant solutions of Eq. (8), the
asymptotic behavior (i.e., for large |x|) of the magnetization
�min is of the form

�min ≈ (cos θ,± sin θ,0) for ±x 
 t (9)

for some angle θ , which we interpret as the amount of
magnetization rotation in the asymmetric core. In fact, there are
two and only two continuous branches θ �→ �min,θ of solutions
of Eq. (8) with Eq. (9) that correspond to the core of an
asymmetric Néel (as opposed to Bloch) wall. Both are rel-
ated by a reflection z → −z, mz → −mz and hence have the
same energy. They intersect only for the angle θ = 0, where
�min,θ = (1,0,0). Under smooth changes of the external field
H , the relevant solutions will be on the same branch, which
effectively makes the relevant �min,θ uniquely defined. In line
with the discussion that leads to the approximation (8), the
energy of �min,θ is given by

Ecore(θ ) = d2
∫

| grad �min,θ |2dA. (10)

This now allows us to characterize the asymptotic behavior
also of the stray-field potential u:

4t(sin θ )uin ≈ ±dEcore

dθ
for ±x 
 t. (11)

We note that Eq. (11) follows from using Eq. (9) after
integrating in x the identity

d

dθ

1

2

∫ t
2

− t
2

| grad �min,θ |2dz

= d

dx

∫ t
2

− t
2

(
∂x �min,θ · ∂θ �min,θ − uin

d2
∂θmin,θ,x

)
dz,

which belongs to the realm of equipartition of energy state-
ments and easily follows from multiplying Eq. (8) with ∂θ �min,θ .

In the large tail region, the outer region, we neglect
variations of the magnetization in the z direction, neglect the
mz component, and project all the magnetic charges into the
{z = 0} plane, so that Eq. (7) turns into

∂zuout(z = 0+) − ∂zuout(z = 0−)
= t∂x(mout,x − H )︸ ︷︷ ︸

=t∂xmout,x

for z = 0,

�uout = 0 for z �= 0,

(12)

where we denote by z = 0+ and z = 0− the limits z → 0 with
z > 0 and z < 0, respectively, i.e., the limits from above and
below.

On the other hand, in the in-plane projection of the
torque balance �m|| − d2� �m − �hd + Q((mx − H )�ex + mz�ez),
cf. Eq. (6), we neglect the exchange term and arrive at
(mx,my)||(∂xu + Q(mx − H ),∂yu = 0), which, as long as
my �= 0, i.e., away from the wall cores, implies [27]

∂xuout + Q(mout,x − H ) = 0 for z = 0, x �∈ wZ. (13)

We note that Eqs. (12) and (13) form a system of linear
equations for (uout,mout,x − H ), with a one-dimensional set of
physically relevant solutions. The two relevant length scales
are w and t/Q. It is also convenient to choose the multiplicative
degree of freedom Aout such that it normalizes the near-field
behavior

uout = ±Aout for z = 0 and x = 0±, (14)

periodically extended.
Equating the inner and outer approximation to the stray-

field potential, that is, uin from Eq. (11) and uout from Eq. (14),
in the intermediate region t � x � w yields the first matching
condition

Aout = 1

4t sin θ

dEcore

dθ
. (15)

The second matching condition comes from equating the
magnetizations: The Fourier transform of the solutions of
Eqs. (12) and (13) can be determined explicitly. For fixed
mout,x , equation (12) is solved by

F(uout)(k,z) = −t
F(∂x(mout,x − H ))(k,z)

2|k| e−|k||z|,

k ∈ 2π

w
Z.

Multiplying (13) by e−ikx , integrating the result in x on [0,w)
and using the above, one finds

F(mout,x − H )(k) = 2Aout

Q + t
2 |k| , k ∈ 2π

w
Z. (16)
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The value 2Aout = uout(x = 0+) − uout(x = w−) for z = 0
enters due to an integration by parts in x that removes the
derivative on uout.

From Eq. (16) one can now read off the profile of the wall
tails:

mout,x − H = 2Aout

w

∑
k∈ 2π

w
Z

cos(xk)

Q + t
2 |k|

= 2Aout

Qw

∑
n∈Z

cos
(
2π x

w
n
)

1 + πt
Qw

|n| .

Using Qw/t � 1, we compute

mout,x − H

= 2Aout

Qw

(
1 + 2Qw

πt

∞∑
n=1

cos
(
2π x

w
n
)

Qw

πt
+ n

)

= 2Aout

Qw

⎛
⎜⎜⎜⎜⎝1 + O

(
2Qw

πt

)
+ 2Qw

πt

∞∑
n=1

cos
(
2π x

w
n
)

n︸ ︷︷ ︸
=O(1)+ln(w/x)

⎞
⎟⎟⎟⎟⎠

≈ 2Aout

Qw

(
1 + 2Qw

πt
ln

w

t

)
, provided x ∼ t.

Equating the inner approximation of the magnetization min,x

in Eq. (9) with the outer approximation mout,x from above in
the overlapping range, we obtain

cos θ − H ≈ 2Aout

Qw

(
1 + 2

Qw

πt
ln

w

t

)
.

The two matching conditions (15) and the above combine to

dEcore

dθ
+ πt2 2Qw

t

π + 2Qw
t

ln w
t

(cos θ − H )(− sin θ ) = 0.

This equation is precisely the first variation of Eq. (4) in θ .
Additionally, one computes the domain average of mx

in the periodic case by evaluating the zeroth Fourier mode
F(mout,x − H )(k = 0) = 2Aout/Q using the second matching
condition:

1

w

∫ w

0
mout,x dx = H + 2Aout

Qw

= H + π

π + 2Qw
t

ln w
t

(cos θ − H ).

Another way of deriving this reduced model consists in
studying isolated walls, which decay quadratically for |x| 

t/Q, by similar methods. The superposition of wall tails
coming from walls at centers x ∈ wZ can be shown to yield
the same result as the above Fourier approach.

C. Evaluation of the theoretical results
for different material parameters

In the following, we aim to apply the reduced model for
interacting tails of asymmetric domain walls using realistic
thin film parameters and derive (i) hard axis magnetization

TABLE I. Sample properties of extended reference films.

Sample No. Film thickness (nm) μ0Ha (mT) Q (×10−3)

1 102 2.02 1.36
2 153 1.37 0.93
3 212 1.72 1.16

curves depending on the domain wall spacing w, (ii) magne-
tization changes resulting from the Bloch-Néel wall transition
under applied magnetic fields, and (iii) the contribution of the
wall core to the overall magnetization rotation in the walls.
We employ the material parameters shown in Table I which
correspond to the samples that will be studied in Sec. III.

Figure 3 displays the hard-axis magnetization mx(w/2)
that is obtained by minimizing Eq. (4) in θ for the material
parameters of sample 1 (cf. Table I). The value mx(w/2) ≈
cos αopt is obtained from the optimal θ = θopt in Eq. (4) by
evaluating Eq. (3). As the energy of the asymmetric wall core,
we use the exchange energy of numerically determined exactly
stray-field free asymmetric Bloch and Néel walls, cf. Eq. (10).
As expected, the choice of material parameters and the tail
energy contribution is irrelevant along the Bloch wall branch
mx(w/2) ≈ H .

As expected, Fig. 3 shows that neighboring walls interact
more strongly, i.e., entail stronger hysteresis, the narrower the
domains are. Note that in the experimentally relevant range
of reduced fields H ∈ [0,0.35], mx(w/2) is almost linear in
H . Since the instability fields of Néel and Bloch wall seem
unavailable within the reduced model [28], we will therefore
use the value mx(w/2) for zero field H = 0 and Néel wall
cores to predict the jump �mx(w/2) between Néel and Bloch
magnetization branches at instability.

Figure 4 predicts a strong interaction of neighboring wall
tails as soon as the domain period w falls below ∼0.2t/Q. This

FIG. 3. Predicted hard-axis magnetization curves for the reduced
model (4) with asymmetric Néel cores. The prediction for asymmetric
Bloch walls (dotted lines) is essentially independent of domain
widths, sample dimensions, and material parameters. Material pa-
rameters are those of sample 1.
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threshold decreases with increasing reduced film thickness
t/d.

Finally, Fig. 5 shows the relative amount of rotation θopt/α

in wall core and tails for the parameters from samples 1 and
2 in percent as a function of the reduced external field. One
observes that for small reduced external field H ≈ 0.3, in both
samples and independent of the domain width, about 90–95%
of the rotation falls upon the core. At larger fields, the tails
gain importance until at fields HAS ≈ 0.75–0.9, depending on
the film thickness and domain width, the asymmetric wall core
vanishes. The critical field HAS increases with the normalized
film thickness t/d, domain width w/t , and inverse anisotropy
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quality factor 1/Q. It can be shown to have the value

HAS ≈ 1 − 4
π + 2Qw

t
ln w

t(
t
d

)2
Qw

t

,

provided this number is non-negative. Note that formally, for
w = t/Q, Q � 1, we obtain

HAS ≈ 1 − 8

(
d

t

)2

ln
1

Q

as critical field for the transition from asymmetric to symmetric
Néel wall in an infinitely extended soft ferromagnetic film
without interaction of neighboring wall tails.

III. EXPERIMENTS

In this section, we are going to address the transition
between the asymmetric wall types in a varying hard-axis
field from an experimental point of view. In particular, we will
compare the predicted hard-axis magnetization mx(w/2) in
the domain center (cf. Fig. 3) and the magnetization jump
�mx(w/2) (cf. Fig. 4) to the corresponding experimental
data (cf. Figs. 7 and 9). In fact, the experimental observation
of strongly hysteretic wall transitions in the presence of
nearby walls has originally motivated the theoretical study
of interacting walls.

Instead of permalloy, the most popular material used for
soft magnetic film studies, we have chosen amorphous CoFeB
films for the experimental part. Compared to permalloy with a
typical nanocrystalline microstructure, they have similar mag-
netic properties but are lacking significant ripple modulations
of magnetization within the domains. The absence of such
disturbing inhomogeneity is favorable for subtle domain wall
studies.

A. Sample preparation

Ferromagnetic films of amorphous Co40Fe40B20 of varying
thicknesses were prepared on glass wafers by means of
ultrahigh-vacuum magnetron sputtering at room temperature
[29]. An in-plane magnetic field of μ0Hdep = 25 mT was
applied during film deposition to induce a uniaxial magnetic
anisotropy. When studying the interaction between adjacent
magnetic domain walls, one should ideally consider different
magnetic domain configurations in extended films as the effects
of domain wall pinning at domain wall triple junctions, and
structural edges are reduced [1]. However, lateral patterning
was found to be required to allow for the creation of well
defined magnetic domains with antiparallel magnetization
and a narrow distribution of magnetic domain wall spacings.
Therefore, arrays of stripe-shaped structures with in-plane
dimensions of 60 μm × 9500 μm and the long axis perpendic-
ular to the induced anisotropy axis were patterned using pho-
tolithography. A stripe width of 60 μm was found to be a good
compromise between sufficiently small domain wall spacings
and large edge-to-edge separation. The lateral spacing between
individual stripes was chosen to be 90 μm to minimize effects
originating from interelement magnetostatic interaction. A
saturation magnetization of μ0Ms = 1.48 T was extracted
from out-of-plane magnetization curve measurements of an
unpatterned reference film (not shown). Table I summarizes
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FIG. 6. (a) Kerr images of a stripe section with a thickness of
153 nm after demagnetization with �Hdem under α = 0◦, 45◦, and 90◦;
arrows indicate the magnetization direction within the domains. (b)
The closure domain state studied with transversal Kerr sensitivity
shows that the surface magnetization of neighboring 180◦ domain
walls appears equally dark and bright. Dotted arrows indicate the
domain wall magnetization at the bottom surface of the film. In order
to extract local magnetization curves, only the area highlighted by
the red frame was considered.

the different samples, including the film thickness and uniaxial
anisotropy field Ha = | �Ha| as derived from in-plane magneto-
optical hysteresis measurements along the magnetic hard axis
of reference films (not shown). Slight variations of anisotropy
strength may be due to slightly different deposition conditions.

B. Magnetooptical Kerr magnetometry

Flux-closed domain patterns were initialized by demagne-
tizing the samples in an alternating external magnetic field
�Hdem of decreasing amplitude at a frequency of 50 Hz. By

varying the in-plane angle α of �Hdem with respect to the
anisotropy axis, the magnetic domain wall spacing w was
systematically altered from broad domain states (for small
α) to narrow domain states with small domain wall spacings
(for α → 90◦), see exemplarily Fig. 6(a). The domain states,
studied by longitudinal magneto-optical Kerr microscopy
[1], comprise basic domains with alternating magnetization
direction parallel to the induced magnetic easy axis and a
closure structure that consists of easy-axis spike domains
and closure domains with �M parallel to the stripe edges.
The vertical bright and dark lines in the domain image with

FIG. 7. Minor magnetization loops for three different basic
domain widths measured (thick solid lines) in fields perpendicular
to the easy axis of magnetization in a sample of 102 nm thickness.
In comparison the calculated hysteresis branches (thin solid lines)
for cases of asymmetric Néel walls and asymmetric Bloch walls are
shown. The inset schematically illustrates the quantification of the
magnetization changes that go along with a wall transformation at
transition fields HBN and HNB.

transverse Kerr sensitivity [Fig. 6(b)] represent the surface
magnetization of the 180◦-domain walls. From literature [1,30]
and due to the fact that the walls appear equally black and
white in the images, one can conclude for zero applied field
and for the chosen film parameters that these domain walls
are asymmetric Bloch walls. A slight mismatch between the
induced easy axis of magnetization and the short axis of
the elements was introduced during patterning. However, this
should not effect the magnetization behavior in hard axis fields
in a field range, where closure domains are still present.

Subsequently, a static magnetic field �H was applied perpen-
dicular to the 180◦ domain walls, i.e., parallel to the hard axis of
magnetization. The domain structure adapts to the increasing
hard axis field by rotational magnetization processes inside the
basic domains and by growth of the preferentially magnetized
( �M along �H ) closure domains. The evolution of the Kerr
intensity parallel to the applied field was recorded for the center
area of the basic domains [compare red frame in Fig. 6(b)]. The
local magnetization curves of several domains with similar
domain wall spacing were averaged and normalized with
respect to the Kerr intensity at saturation. As during this
hysteresis measurement the maximum applied field amplitude
was always smaller than the saturation field of the stripes, any
irreversible effects originating from domain nucleation have
been reduced. This procedure allows for the local recording
of minor domain magnetization curves depending only on the
domain wall spacing and the film thickness. Minor domain
magnetization loops are demonstrated in Fig. 7 for different
domain wall spacings w and a film thickness of 102 nm.

For sufficiently small domain wall spacings a jump in the
transverse domain magnetization is observed at fields HBN

and HNB for increasing and decreasing field, respectively, with
|HBN| > |HNB| (see inset in Fig. 7). With decreasing domain
wall spacing this hysteresis gets broader and the corresponding
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0 mT 0.4 mT 0.45 mT

0.5 mT 0.7 mT

µ H0 0
Hk

20 µm

NW
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FIG. 8. Kerr images of a Co40Fe40B20 stripe section (thickness:
102 nm). The left image in the first row corresponds to the
demagnetized state with �Hdem applied at an angle of α = 90◦ with
respect to �Hk. Subsequently a transversal field of increasing amplitude
is applied as indicated in the domain images. At μ0H0 = 0.4 mT a
superdomain structure emerges, which is highlighted by a dotted
line for better visibility. The superdomain expands towards the stripe
edges as the transversal field amplitude increases. The formation of
a superdomain structure is provoked by the transition of the center
wall segments from asymmetric Bloch wall (BW) to asymmetric Néel
wall (NW).

jump in the transverse magnetization component increases.
Studying the corresponding domain images (see Fig. 8), a
superdomain structure appears around HBN which expands
progressively from the stripe center towards its edges as the
transversal field amplitude is increased.

High resolution imaging of the domain walls (not shown
due to weak contrast) revealed that the surface intensity
of the former dark domain walls changed to be bright
within the area of the brighter superdomains. Consequently,
the magnetization jump observed in the local domain
magnetization curves under the influence of a transversal
magnetic field goes along with the expected transformation of
the domain walls from asymmetric Bloch walls to asymmetric
Néel walls. This conclusion is supported by the quantitative
agreement between the experimental magnetization change
and the theoretically predicted magnetization change from
the asymmetric Bloch to the asymmetric Néel wall branch
(compare thin solid lines in Fig. 7). Upon decreasing the
field amplitude the process is reversed (not shown): At a
critical field |HNB| < |HBN| darker superdomains appear close
to both stripe edges and expand towards the stripe center as
H is further decreased. Consequently, HBN corresponds to
the reconversion of asymmetric Néel to asymmetric Bloch
walls. The jump of the domain magnetization constitutes
an additional contribution to the transversal magnetization
component due to the interaction of neighboring Néel wall
tails. In order to quantify the strength of the interaction between
adjacent asymmetric Néel walls for different film thicknesses
and domain wall spacings w, the magnetization change �m

(�mx(w/2) in the notation of Sec. II) was deduced from the
corresponding domain magnetization curves as sketched in the
inset in Fig. 7. By linearly extrapolating the Néel wall branch of
the minor magnetization curves to H = 0, the magnetization

FIG. 9. Change of the transversal magnetization due to the
transition between asymmetric Bloch and asymmetric Néel walls
under the action of an applied transversal field. The theoretical values
are calculated using the reduced model (4) with experimentally
determined material parameters and an exchange constant of A =
1.3 × 10−11 J/m (d ≈ 3.86 nm for μ0Ms = 1.48 T) [31].

change due to the wall transition �m = M(H=0)
Ms

is quantified
independently of the transition fields HBN and HNB, similar to
the applied procedure resulting in Fig. 4. Thereby �m can be
compared to the values derived by the presented model where
the wall transition fields are not known. Figure 9 compares the
experimental and theoretical values of �m obtained for stripes
with a thickness of 102 nm, 153 nm, and 212 nm.

As already obvious from Fig. 7 the interaction strength
between neighboring Néel wall segments qualitatively in-
creases as the domain wall spacing is reduced, which results
in an increase of �m. For a film thickness of 102 nm and
153 nm, the experimental values scatter around the theoretical
values calculated by using the reduced model (see Sec. II).
Hence, quantitative agreement between model and experiment
is observed for a film thickness of 102 nm and 153 nm. Whereas
the model predicts a slight decrease of the interaction strength
between neighboring Néel wall tails (reduction in �m) when
increasing the film thickness to 212 nm, the experimental
values do not follow this trend. On one hand, this may mean
that the reduced model is not suited for the description of
domain walls in CoFeB films that exceed a critical thickness.
The fact that the samples in Table I do not clearly satisfy the
regime Q(t/d)2 � 1 might indicate that the breakdown of the
reduced model occurs within the range

1.5 ≈ 0.93 × 10−3 · (153/3.86)2

� Q(t/d)2

� 1.16 × 10−3 · (212/3.86)2 ≈ 3.5.

On the other hand, this deviation could be due to slightly
varying material parameters for the different depositions, in
particular the exchange constant and saturation magnetization.
It has been observed that the theoretical predictions of �m are
very sensitive to slight changes of the material parameters.
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IV. CONCLUSION

Both for a single wall in an extended ferromagnetic film as
well as a system of interacting domain walls, we have reviewed
mathematically rigorous reduced models that describe and
quantify the splitting of asymmetric domain walls into a
stray-field free core and extended logarithmic tails. In addition,
the reduced model for interacting walls predicts the average
hard-axis magnetization within the domains.

In order to verify the prediction (3), hard-axis magnetization
loops for the hysteretic transition between asymmetric Bloch
and interacting asymmetric Néel walls have been measured in
Co40Fe40B20 films of thicknesses 102 nm, 153 nm, and 212 nm.
While the instability fields for the transition from asymmetric
Bloch to Néel wall and vice versa seem inaccessible within the
reduced model, it reliably predicts the magnetization curves
for asymmetric Bloch and Néel walls in the two thinner
samples. In the film of thickness 212 nm, the reduced model
underestimates the measured data by a factor of 2, which may
indicate that the validity limit of the reduced models can be
found within the range 1.5 � Q(t/d)2 � 3.5.

By evaluating Eq. (5) for various field strengths and
anisotropies Q ∈ {2.5 × 10−4,1.5 × 10−3} (corresponding to
CoFeB and permalloy) and determining the energetically
favored domain wall among symmetric (characterized by
θ = 0) and asymmetric (θ > 0) Néel and asymmetric Bloch
walls, we have obtained phase diagrams that qualitatively agree

with the previously available results (see Ref. [1], Fig. 3.80).
Since the latter are based on numerical simulations, some of
them not properly including the effect of extended tails of
asymmetric Néel walls, we propose using the reduced models
(4) and (5) as an easy-to-use and potentially more precise
means of determining the energy and internal structure of
domain walls in ferromagnetic films of medium thickness. In
particular, we propose using Eq. (5) as wall energy density in
domain theory. In this way, employing the well-known ansatz
for the cross-tie configuration, an estimate for the energy of this
domain wall microstructure can presumably also be obtained.
Furthermore, by presenting an alternative derivation of the
periodic reduced model (4), we demonstrate the equivalence
of the energy- [20,21] and torque-balance-based approaches to
studying the structure of asymmetric domain walls. Possible
and desirable extensions consist of a verification of the reduced
models and their estimated range of validity in a larger class
of samples and ferromagnetic materials, as well as deriving
predictions for the instability fields marking the transition
between the two asymmetric wall types.
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