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Magnetic ordering of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6
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We investigate the magnetic order of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6 and its related
antiferromagnet Ba3NiTa2O9 by neutron diffraction measurements. We observe magnetic Bragg peaks below the
transition temperatures, and identify propagation vectors for these oxides. A combination of representation
analysis and Rietveld refinement leads to a collinear magnetic order for Ba2NiTeO6 and a 120◦ structure for
Ba3NiTa2O9. We find that the spin model of the bilayer triangular lattice is equivalent to that of the two-
dimensional buckled honeycomb lattice having magnetic frustration. We discuss the magnetic interactions and
single-ion anisotropy of Ni2+ ions for Ba2NiTeO6 in order to clarify the origin of the collinear magnetic structures.
Our calculation suggests that the collinear magnetic order of Ba2NiTeO6 is induced by the magnetic frustration
and easy-axis anisotropy.
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I. INTRODUCTION

Triangular lattice antiferromagnets have been extensively
studied by many researchers since Anderson proposed the res-
onating valence-bond state [1]. A 120◦ structure is the ground
state for the two-dimensional (2D) Heisenberg triangular
lattice antiferromagnet, which has been reported in a number
of materials, including LiCrO2 [2], Rb4Mn(MoO4)3 [3], and
Ba3NiNb2O9 [4]. On the other hand, a neutron scattering study
has suggested a two-dimensional magnetic correlation and no
three-dimensional magnetic order down to 2 K for NaCrO2 and
KCrO2 [5]. Additional terms arising from further-neighbor
magnetic interactions and anisotropy induce various types
of magnetic order and phase diagrams [6]. In CsCoCl3, the
ferrimagnetic order and partially disordered state appear as
the ground state and thermally induced state, respectively,
owing to the Ising spins of Co2+ ions [7]. The four-sublattice
collinear antiferromagnetic order in CuFeO2 is stabilized
by a strong third-neighbor interaction [8]. The amplitude-
modulated antiferromagnetic order induced by the Ruderman-
Kittel-Kasuya-Yosida (RKKY)-type interlayer interaction is
reported in the metallic triangular antiferromagnet Ag2NiO2

[9]. In the case of S = 1/2 spins, a combination of quantum
fluctuation and higher-order perturbative terms suppresses the
conventional ordering of spins, and induces an exotic ground
state, such as the spin liquid state in (BEDT-TTF)2Cu2(CN)3

[10] and the condensed valence-bond state in LiZn2Mo3O8

[11]. The ground state of a triangular lattice antiferromagnet
is thus sensitive to additional terms, and therefore the search
for a novel framework based on a triangular lattice is a good
strategy for the discovery of a nontrivial state.

In Ba2NiTeO6, a pair of triangular lattices of Ni2+ ions
(S = 1) are coupled through face-shared TeO6 octahedra,
and form a bilayer triangular lattice, as shown in Fig. 1(a)
[12]. Copies of the bilayer triangular lattice are produced
by R-centering translation. In this paper, we define J (Te)

n as
the nth-neighbor interaction in Ba2NiTeO6. The pathways of
the interactions J (Te)

n are shown in Fig. 1(b). The distances
between a Ni2+ ion and the first-, second-, and third-neighbor
Ni2+ ions are comparable, which means that this compound

is not a conventional two-dimensional triangular lattice anti-
ferromagnet because of its unique interlayer coupling. So far
Ba3Mn2O8 is known to have similar bilayer triangular lattices
of Mn5+ ions (S = 1) [13]. The competition between magnetic
interactions is, however, weak for Ba3Mn2O8 because of the
strong coupling corresponding to J

(Te)
2 in Fig. 1(a), which

leads to the formation of singlet dimers at low tempera-
tures [14]. The inelastic neutron scattering measurements
for Ba3Mn2O8 suggest that the competition between the
interdimer interactions enhances the quasi-two-dimensional
behavior of the bilayer triangular lattice [15]. In the case
of Ba2NiTeO6, the dimerization of Ni2+ ions is disturbed
because Ni2+ ions are well separated by TeO6 octahedra,
and, instead, triangular lattices coupled by the interaction
J

(Te)
1 form a buckled honeycomb lattice, as shown in Figs. 1(c)

and 1(d), that would induce nontrivial magnetic order. Indeed,
the magnetic susceptibility and heat capacity measurements
for this compound identified a magnetic transition at 8.6 K,
and a large value of the frustration parameter θW/TN = 18.6,
where θW is the Weiss temperature and TN is the magnetic
transition temperature [16].

For comparison, we focus on Ba3NiTa2O9 as a reference
for quasi-two-dimensional triangular lattice antiferromagnets.
Ba3NiTa2O9 includes a triangular lattice of Ni2+ ions sepa-
rated by two nonmagnetic layers of TaO6 octahedra, as shown
in Fig. 1(e) [17]. We define J (Ta)

n as the nth-neighbor interaction
in Ba3NiTa2O9, whose pathways are shown in Fig. 1(f). This
compound is a good candidate for a reference compound of
Ba2NiTeO6 because they have similar magnetic NiO6 layers. It
is the isostructural material of Ba3NiNb2O9 [4] which indicates
that the behavior of a quasi-two-dimensional triangular lattice
is expected for Ba3NiTa2O9. The magnetic transition at 3.2 K
was identified by magnetic susceptibility and heat capacity
measurements [18].

In this paper, we investigate the magnetic order of the
buckled honeycomb lattice antiferromagnet Ba2NiTeO6 and
its related compound Ba3NiTa2O9 by using powder neutron
diffraction measurements. Magnetic Bragg peaks were ob-
served below the transition temperatures for these oxides.
The magnetic structures were determined as being a collinear
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FIG. 1. (a) Crystal structure of Ba2NiTeO6. (b) Pathways of the
interactions J (Te)

n in Ba2NiTeO6. The red and blue solid lines represent
J

(Te)
1 and J

(Te)
2 , respectively. The black dotted lines represent J (Te)

3 . The
light and dark blue spheres represent the Ni2+ ions. (c) Arrangement
of NiO6 octahedra in two triangular lattices coupled by the interaction
J

(Te)
1 for Ba2NiTeO6. (d) Arrangement of Ni2+ ions in two triangular

lattices coupled by the interaction J
(Te)
1 for Ba2NiTeO6. (e) Crystal

structure of Ba3NiTa2O9. (f) Pathways of the interactions J (Ta)
n in

Ba3NiTa2O9. The red and blue solid lines represent J
(Ta)
1 and J

(Ta)
2 ,

respectively. The blue spheres represent the Ni2+ ions.

magnetic order for Ba2NiTeO6 and a 120◦ structure for
Ba3NiTa2O9 by using representation analyses and Rietveld
refinement. A comparison of the crystal structure between
these two compounds reveals that magnetic anisotropy and
interlayer interactions are the origins of the difference in the
magnetic structure. In order to clarify the origin of collinear
order for Ba2NiTeO6, we investigate the ground state of the
bilayer triangular lattice, which is in fact equivalent to a
buckled honeycomb lattice, having classical Heisenberg spins
with easy-axis anisotropy.

II. EXPERIMENTS

The polycrystalline samples Ba2NiTeO6 and Ba3NiTa2O9

were synthesized by the solid state reaction [18]. Powder
neutron scattering measurements were performed at the high
resolution powder diffractometer ECHIDNA at OPAL reactor,
ANSTO. The wavelength λ of 2.4395 Å was obtained by a Ge
331 monochromator. A 5′ collimator was placed in front of
the sample. Temperature control was achieved by the Orange
cryostat. The obtained patterns were analyzed by the Rietveld
method using the FULLPROF software [19]. Candidates for the
magnetic structure compatible with the lattice symmetry were

FIG. 2. Neutron diffraction patterns for (a) Ba2NiTeO6 at 15 K
and (b) Ba3NiTa2O9 at 10 K. The solid squares and solid line above
the vertical bars show the obtained and calculated data, respectively.
The vertical bars show the positions of the Bragg peaks. The solid
line below the bars shows the difference curve.

obtained by the SARAh software [20]. We used the VESTA

software [21] for drawing the crystal and magnetic structures.

III. RESULTS AND ANALYSIS

Figures 2(a) and 2(b) show the neutron diffraction patterns
for Ba2NiTeO6 at 15 K and Ba3NiTa2O9 at 10 K, respectively.
These profiles can be fit with a hexagonal structure with the
space group R3̄m for Ba2NiTeO6 and P 3̄m for Ba3NiTa2O9.
The lattice parameters a = 5.7839(1) and c = 28.5401(2) Å
are evaluated for Ba2NiTeO6. The structural parameters
obtained by a structure analysis with the profile factors (Rwp =
9.82%, Re = 1.99%) are listed in Table I, which is consistent
with a previous report [12]. The evaluated bond lengths and
bond angles of the NiO6 octahedron for Ba2NiTeO6 are
listed in Table II, which means that the NiO6 octahedron of
Ba2NiTeO6 is strongly distorted. This distortion may be due

TABLE I. Structural parameters of Ba2NiTeO6 at 15 K.

Atom Site x y z

Ba1 6c 0 0 0.1257(2)
Ba2 6c 0 0 0.2840(2)
Ni 6c 0 0 0.4064(1)
Te1 3a 0 0 0
Te2 3b 0 0 0.5
O1 18h 0.1508(2) 0.8492(2) 0.4589(1)
O2 18h 0.1771(3) 0.8229(3) 0.6277(1)
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TABLE II. Evaluated bond lengths and bond angles of the NiO6

octahedron for Ba2NiTeO6.

Bond length (Å) Bond angle (deg)

Ni-O1 × 3 2.127(3) O1-Ni-O1 × 3 75.93(12)
Ni-O2 × 3 2.024(2) O2-Ni-O2 × 3 98.77(15)

O1-Ni-O2 × 6 91.58(15)
O1-Ni-O2 × 3 164.04(18)

to the difference in the effective ionic radius between the Ni2+

and Te6+ ions [22], which induces the mismatch between the
NiO6 octahedra and face-shared TeO6 octahedra. The lattice
parameters a = 5.7468(1) and c = 7.0604(1) Å are obtained
for Ba3NiTa2O9. The high profile factors (Rwp = 11.0%,
Re = 2.22%) are due to the unidentified impurity phase, as
observed in Fig. 4(b). The obtained structural parameters listed
in Table III are consistent with a previous report [17]. The bond
lengths and bond angles of the NiO6 octahedron evaluated from
the structural parameters in Table III are listed in Table IV,
which means that the NiO6 octahedron of Ba3NiTa2O9 is
almost free of distortion.

The neutron diffraction patterns for Ba2NiTeO6 at 3, 6,
8, 9, 10, 12, and 15 K are shown in Fig. 3(a). Below 9 K,
three magnetic peaks are observed. The peaks at 15◦, 24◦,
and 43◦ are indexed as (0 1/2 1), (0 1/2 4), and (0 3/2 0),
respectively. Then, the magnetic propagation vector kmag is
identified as (0,0.5,1). The representation analysis with the
space group kmag and positions of Ni2+ ions for Ba2NiTeO6

leads to four irreducible representations. The details of the
irreducible representations and the corresponding basis vectors
are listed in Table V. In this paper, we assume that the magnetic
structure is described by a single irreducible representation.
The magnetic structure of Ba2NiTeO6 should be then described
by one of four basis vectors: (i) ψ1, (ii) the linear combination
of ψ2 and ψ3, (iii) the linear combination of ψ4 and ψ5, and
(iv) ψ6. We refer to the magnetic structures described by the
basis vectors (i)–(iv) as models (i)–(iv), respectively. In order
to find the magnetic structure having the best agreement with
the experimental result, we carried out a Rietveld analysis
with the magnetic models (i)–(iv). The obtained profile at
3 K and fitting results based on the four magnetic models
are shown in Fig. 3(b). The obtained magnetic R factors
Rmag for the magnetic models are listed in the last columns
of Table V. We obtained the lowest Rmag for model (iii).
Thus, we determine that model (iii) is the most appropriate.
The determined magnetic structure is shown in Fig. 3(c).
Model (iii) allows the spin direction of the Ni2+ ion to be

TABLE III. Structural parameters of Ba3NiTa2O9 at 10 K.

Atom Site x y z

Ba1 2d 1/3 2/3 0.6619(16)
Ba2 1a 0 0 0
Ni 1b 0 0 0.5
Ta 2d 1/3 2/3 0.1725(12)
O1 4c 0.5 0 0
O2 6i 0.1719(10) 0.3438(10) 0.3223(7)

TABLE IV. Evaluated bond lengths and bond angles of the NiO6

octahedron for Ba3NiTa2O9.

Bond length (Å) Bond angle (deg)

Ni-O2 × 6 2.122(5) O2-Ni-O2 × 6 88.6(4)
O2-Ni-O2 × 3 180.0

perpendicular to the b∗ axis. The refinement suggests that
there is no component perpendicular to the crystallographic c

axis within experimental error and thus the magnetic structure
is fully described by the ψ5 basis vector. The ordered moment
for the Ni2+ ion of Ba2NiTeO6 evaluated by the refinement is
shown in Fig. 3(d) as a function of temperature. The ordered
moment increases with decreasing temperature below 9 K and
amounts to 1.88(6)μB at 3 K.

The neutron diffraction patterns for Ba3NiTa2O9 at 1.5, 3,
4, 5, and 10 K are shown in Fig. 4(a). Below the transition
temperature of 3.2 K, two magnetic peaks are observed.
The peaks at 19◦ and 45◦ are indexed as (1/3 1/3 1/2) and
(4/3 1/3 1/2), respectively. Then, the magnetic propagation
vector kmag = (1/3,1/3,1/2) is identified. The representation
analysis with the space group kmag and positions of Ni2+

FIG. 3. (a) Neutron diffraction patterns for Ba2NiTeO6 at 3, 6, 8,
9, 10, 12, and 15 K. Data for different temperatures are scaled and
vertically offset. The arrows show the magnetic peaks. (b) Neutron
diffraction patterns for Ba2NiTeO6 at 3 K. The solid squares show the
obtained data. The solid lines show fitting results based on the four
magnetic models. (c) Determined magnetic structure of Ba2NiTeO6.
(d) Ordered moment for the Ni2+ ion of Ba2NiTeO6 as a function of
temperature.
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TABLE V. Irreducible representations, basis vectors for the space
group R3̄m with kmag = (0,0.5,1), corresponding magnetic model for
Rietveld refinement, and magnetic R factors Rmag. The coordinates
of the Ni(1) and Ni(2) atoms are (0,0,0.4064) and (0,0,0.5936),
respectively.

Ni(1) atom Ni(2) atom
IR BV [ma,mb,mc] [ma,mb,mc] Model Rmag

�1 ψ1 [2,0,0] [2,0,0] (i) 19.6
�2 ψ2 [1,2,0] [−1,−2,0] (ii) 26.9

ψ3 [0,0,2] [0,0,−2]
�3 ψ4 [1,2,0] [1,2,0] (iii) 14.6

ψ5 [0,0,2] [0,0,2]
�4 ψ6 [2,0,0] [−2,0,0] (iv) 49.2

ions for Ba3NiTa2O9 leads to two irreducible representations
listed in Table VI. We safely assume that the magnitude of
the magnetic moments on the Ni2+ ions are all the same
because these ions are equivalent in the crystal structure.
This assumption excludes the possibility of an irreducible
representation �1, from which the sinusoidal magnetic order
is expected. In the irreducible representation �2, there are
two basis vectors ψ2 and ψ3 corresponding to the 120◦
structure with different chiralities. Figure 4(b) shows the
neutron diffraction pattern at 1.5 K. The fitting curve is
obtained by assuming the magnetic structure led from ψ2,
which is shown in Figs. 4(c) and 4(d). The magnetic peaks

FIG. 4. (a) Neutron diffraction patterns for Ba3NiTa2O9 at 1.5, 3,
4, 5, and 10 K. Data for different temperatures are scaled and vertically
offset. The arrows show the magnetic peaks. (b) Neutron diffraction
pattern for Ba3NiTa2O9 at 1.5 K. The arrows show the magnetic peaks.
The solid squares and solid curve show the obtained and calculated
data, respectively. (c) Determined magnetic structure of Ba3NiTa2O9.
(d) Arrangement of spins for Ni2+ ions in the triangular lattice.

TABLE VI. Irreducible representations, and corresponding basis
vectors for the space group P 3̄m with kmag = (1/3,1/3,1/2). The
coordinate of the Ni atom is (0,0,0.5).

Ni atom
IR BV [ma,mb,mc]

�1 ψ1 [0,0,1]
�2 ψ2 [1.5 − i

√
3/2,−i

√
3,0]

ψ3 [i
√

3,1.5 + i
√

3/2,0]

are well reproduced. The ordered moment of the Ni2+ ion
is evaluated to be 1.86(6)μB, which is consistent with that
expected from the spin state of the Ni2+ ion (S = 1,g = 2).
The obtained profile factors (Rwp = 10.7%, Re = 2.26%) are
comparable with those at 15 K. The determined magnetic
structures and obtained ordered moments of the Ni2+ ion for
Ba3NiTa2O9 are the same as those for the isostructural oxide
Ba3NiNb2O9 [4]. The unidentified small peaks at 2θ = 30◦
and 39◦ in Fig. 4(b) are independent of the temperature, which
means that their origin is a small amount of impurity.

IV. DISCUSSION

Here, let us discuss the origin of the magnetic struc-
ture of Ba3NiTa2O9 and Ba2NiTeO6. The 120◦ structure of
Ba3NiTa2O9 is typical for a quasi-two-dimensional triangular
lattice antiferromagnet with Heisenberg spins. The superex-
change interaction via the Ni2+ - O2− - O2− - O2− - Ni2+ path
represented by J

(Ta)
2 in Fig. 1(f) is expected to be antifer-

romagnetic from the Goodenough-Kanamori rules [23]. It
supports collinear antiferromagnetic spin coupling between
the nearest-neighbor layers. On the other hand, the collinear
magnetic order of Ba2NiTeO6 cannot be explained by the
antiferromagnetic interaction J

(Te)
3 in the case of a Heisenberg

spin. In fact, the unique frustration in Ba2NiTeO6 leads to
collinear order, which will be explained as follows. The two
neighboring triangular lattices of Ba2NiTeO6 are magnetically
coupled by the magnetic interaction J

(Te)
1 , as shown in

Fig. 1(b), which forms a buckled honeycomb lattice, as shown
in Fig. 1(d). The magnetic interaction J

(Te)
3 can be regarded as

the next-nearest-neighbor interaction in the honeycomb lattice,
as shown in Fig. 1(d). Since the bond length of J

(Te)
1 is close

to that of J
(Te)
3 owing to the buckled shape of the honeycomb

lattice, the J
(Te)
1 and J

(Te)
3 , which have Ni2+ - O2− - O2− - Ni2+

paths, are comparative, and magnetic frustration is induced.
The frustrated honeycomb lattices are coupled by the interac-
tion J

(Te)
2 , as shown in Fig. 1(b). Ba2NiTeO6 is thus a rare

experimental realization of a frustrated honeycomb lattice.
We will consider the ground state of Ba2NiTeO6 based on
the classical Heisenberg model having easy-axis anisotropy.
We will see that magnetic frustration and easy-axis anisotropy
are the keys for the appearance of nontrivial collinear order.

We consider the following classical Hamiltonian,

H =
∑
i,j

J(Te)
i,j Si · Sj − D

∑
i

S2
i,z, (1)
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where Si and Si,z represent the vectors for the spin of Ni2+

ion at the position of ri and its component along the c axis,
respectively. We take the sum in the first term of Eq. (1) for all
the pairing of spins corresponding to J

(Te)
1 , J

(Te)
2 , and J

(Te)
3

in unit cells having the number of N . Here, we consider
the ground-state phase diagram under the condition that the
ground state has a coplanar magnetic structure with a single
propagation vector q defined as

q = qaa∗ + qbb∗ + qcc∗. (2)

Let us define the vectors for the spins of Ni(k) (k = 1,2) in
Table VI as Si,k . Then it is written that

Si,k = S{z cos(q · ri + αk) + p sin(q · ri + αk)}. (3)

S, p, z, and αk represent the length of the vector S, two
orthogonal unit vectors, and arbitrary angle, respectively. Here,
we set the vector z to be parallel to the crystallographic c axis.
We introduce the constant α = α1 − α2. Then, the energy of
the state E obtained from the Hamiltonian in Eq. (1) is written
as

E

NS2
= 3J

(Te)
1

[
cos

{
2π

(
2

3
qa + 1

3
qb + 1

3
qc

)
− α

}

+ cos

{
2π

(
− 1

3
qa + 1

3
qb + 1

3
qc

)
− α

}

+ cos

{
2π

(
− 1

3
qa − 2

3
qb + 1

3
qc

)
− α

}]

+ 3J
(Te)
2 cos α

+ 6J
(Te)
3 [cos 2πqa + cos 2πqb + cos 2π (qa + qb)]

− D

N

∑
i,k

cos2(q · ri + αk). (4)

Let us evaluate q and α giving the lowest E. For qc and α

giving the minimum of E, the equations

∂

∂qc

(
E

NS2

)
= −2πJ

(Te)
1

[
sin

{
2π

(
2

3
qa+1

3
qb+1

3
qc

)
− α

}

+ sin

{
2π

(
− 1

3
qa + 1

3
qb + 1

3
qc

)
− α

}

+ sin

{
2π

(
− 1

3
qa − 2

3
qb + 1

3
qc

)
− α

}]

= 0 (5)

and

∂

∂α

(
E

NS2

)
= 3J

(Te)
1

[
sin

{
2π

(
2

3
qa + 1

3
qb + 1

3
qc

)
− α

}

+ sin

{
2π

(
− 1

3
qa + 1

3
qb + 1

3
qc

)
− α

}

+ sin

{
2π

(
− 1

3
qa − 2

3
qb + 1

3
qc

)
− α

}]

− 3J
(Te)
2 sin α = 0 (6)

FIG. 5. Magnetic phase diagram for the classical ground state
obtained from the Hamiltonian in Eq. (1). The q1, q2, and q4

phases are sketched above the phase diagram. The q3 phase is
incommensurate (not sketched). The q4 phase corresponds to the
experimental magnetic structure. The details of the q1, q2, q3, and q4

phases are shown in the main text.

are required. The first term of Eq. (6) is 0 because of Eq. (5).
Then, Eq. (6) is rewritten as

sin α = 0. (7)

We can thus conclude that the lowest energy is obtained when
α = 0 or π . Here, we consider the case of J

(Te)
2 < 0 and

α = 0 for reproducing the magnetic structure of Ba2NiTeO6.
The qmin giving the lowest E is independent of J

(Te)
2 because

the second term of Eq. (4) is not dependent on q. In order to
obtain the qmin at a given D and J

(Te)
3 , we calculated E for q in

the reciprocal lattice space for 0 � qa � 2, 0 � qb � 2, and
0 � qc � 3 at intervals of 1/18, 1/18, and 1/12, respectively.
In the calculation, we set J

(Te)
1 = 1 and J

(Te)
3 > 0. We should

note that the obtained ground states have threefold degeneracy
because the Hamiltonian (1) keeps the three-rotation symmetry
of the lattice.

The calculated phase diagram is shown in Fig. 5. When the
first-neighbor interaction J

(Te)
1 is dominant, the Néel order

where the energy fully gains the interaction J
(Te)
1 occurs

with a propagation vector of q1 = (0,1,0.5). We refer to
the phase as the q1 phase. When the interaction J

(Te)
3 is

dominant, the 120◦ structure with a propagation vector of
q2 = (2/3,5/3,l) is stabilized because the system can be
described as a conventional triangular lattice antiferromagnet.
We refer to the phase as the q2 phase. The value of l is arbitrary
because the energy of the q2 phase in fact is not dependent on
l. In the intermediate region, an incommensurate magnetic
order with a propagation vector of q3 is obtained. We refer
to the phase as the q3 phase. At J

(Te)
3 ≈ 0.5J

(Te)
1 , we obtain

a collinear antiferromagnetic order with a propagation vector
of q4 = (0,3/2,0). We refer to the phase as the q4 phase.
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The collinear order of the q4 phase where the energy partially
gains J

(Te)
1 and J

(Te)
3 is different from that of the q1 phase, as

shown in Fig. 5. The collinear order of the q1 and q4 phases
is more stabilized with increasing easy-axis anisotropy D.
We emphasize that the experimentally determined collinear
structure results from the magnetic frustration induced by
the next-nearest-neighbor antiferromagnetic interaction in the
honeycomb lattice. The phase diagram at D → 0 resembles
the classical phase diagram for the honeycomb lattice with
antiferromagnetic nearest- and next-nearest-neighbor interac-
tions [24]. In fact, the collinear order corresponding to that of
the q1 phase appears in the honeycomb lattice antiferromagnet
Li2MnO3 [25]. In the honeycomb lattice, the collinear order
corresponding to that of the q4 phase is only stable at the
boundary between two spiral order phases [24]. According
to the phase diagram in Fig. 5, the interaction J

(Te)
3 that is

comparative with interaction J
(Te)
1 is required in order to realize

the q4 phase. This requirement can be more easily achieved in
the buckled honeycomb lattice shown in Fig. 1(d) than in the
conventional honeycomb lattice as discussed above. In fact,
Fe2Ga2S5 exhibits a similar buckled honeycomb lattice [26],
but a study on its magnetic structure has not yet been reported.

Finally, we focus on the region at J
(Te)
3 ≈ J

(Te)
1 . The min-

imum value of D for stabilizing the collinear order increases
with increasing J

(Te)
3 above J

(Te)
3 > 0.5J

(Te)
1 , and it amounts to

0.3J
(Te)
1 at J

(Te)
3 = J

(Te)
1 . The requirement D � 0.3J

(Te)
1 may

be achieved in transition-metal oxides even if magnetic ions
have no orbital degrees of the freedom. For example, the ratio
of easy-axis anisotropy to the first-neighboring interaction
for Rb4Mn(MoO4)3 is estimated to be 0.22 [3]. Further
investigations by inelastic neutron scattering are needed for
quantitative analyses, which are in progress.

V. SUMMARY

We investigate the magnetic order of the buckled hon-
eycomb lattice antiferromagnet Ba2NiTeO6 and quasi-two-
dimensional triangular lattice antiferromagnet Ba3NiTa2O9

by using neutron diffraction measurements. We observed the
magnetic peaks for these oxides below transition temperatures.
The magnetic structures are identified as a collinear magnetic
order for Ba2NiTeO6 and a 120◦ structure for Ba3NiTa2O9. We
found that Ba2NiTeO6 is a rare experimental realization of the
frustrated buckled honeycomb antiferromagnet. We consider
the classical Heisenberg model with easy-axis anisotropy
in order to discuss the magnetic frustration and single-ion
anisotropy for Ba2NiTeO6. We reproduce the experimentally
determined magnetic structure both in the case of J

(Te)
3 ≈

0.5J
(Te)
1 even for very small D and in the relatively wide range

of J
(Te)
3 ≈ 0.3J

(Te)
1 − J

(Te)
1 for D = 0.3J

(Te)
1 . These results

suggest that the collinear magnetic order of Ba2NiTeO6 is
induced by magnetic frustration and easy-axis anisotropy.
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