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Phase diagram of the Kondo lattice model on the kagome lattice
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We consider the potential for novel forms of magnetism arising from the subtle interplay between electrons
and spins in the underscreened kagome Kondo lattice model. At weak coupling, we show that incommensurate
noncoplanar multiwave vector magnetic orders arise at nearly all fillings and that this results from Fermi surface
effects that introduce competing interactions between the spins. At strong coupling, we find that such a complex
order survives near half filling despite the presence of ferromagnetism at all other fillings. We show this arises due
to state selection among a massive degeneracy of states at infinite coupling. Finally, we show that at intermediate
filling only commensurate orders seem to survive, but these orders still include noncoplanar magnetism. So, the
mere presence of both local moments and itinerant electrons enables complex orders to form unlike any currently
observed in kagome materials.
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I. INTRODUCTION

Two paths are known whereby local Hamiltonians in lattice
models can stabilize complex spin order, meaning both that the
spin configurations are complex in space and that the phase dia-
gram contains a zoo of different phases. One well-known path
to such complexity is state frustration, meaning the ground
states are massively degenerate. Any small perturbation, such
as disorder [1], dipolar interactions [2], or simply the intrinsic
quantum or thermal fluctuations [3–5], then suffices to select
a particular state as the unique ground state.

A second path to complexity is through frustrated in-
teractions, i.e., there are multiple kinds of Heisenberg spin
couplings that cannot be satisfied simultaneously. Complexity
may be realized with as few as two isotropic neighbor distances
but only when the spin sites form a non-Bravais lattice, such
as kagome or pyrochlore lattices or when the interactions
are nonquadratic [6–8]: Rigorously, on Bravais lattices with
isotropic Heisenberg quadratic couplings, at most simple
coplanar spin spirals are realized [9].

Stable noncoplanar complex spin states are particularly
intriguing for their unusual rigid-body-like order parameters.
They are also motivated experimentally as they realize an
anomalous Hall effect due to Berry phases [10–13] and
theoretically since if such a phase loses long range order at
sufficiently small spin length, it is expected to become a chiral
spin liquid, induced without any spin-orbit effects [14].

Even more complex behavior is possible when the frustrated
spin-spin interactions decay slowly with distance. That is
easily realized by coupling local moments to a band of
fermions, which mediate oscillating couplings between the
local Heisenberg moments—the so-called Kondo lattice model
(KLM) [8,12,13,15–17].

In this paper, we show that at weak coupling, the kagome
KLM supports incommensurate, noncoplanar, multiwave vec-
tor spin ordering. These spin orders motivated us to seek the
stability of noncoplanar incommensurate phases at interme-
diate and strong coupling and understand the potential for
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such novel magnetism to be discovered in materials. We show,
by extending recipes to identify and classify states laid out
previously [18], that these novel complex orders arise from
competing interactions introduced by the fermions near their
Fermi surface. It therefore appears to be a weak coupling
phenomena. At strong coupling, however, we discover such
complex phases survive near half filling due to a separate
mechanism: state selection from a massive degeneracy of states
at infinite coupling. We then turn to intermediate coupling and
find that dominantly commensurate orders appear to survive.
But even here, some of the orders are noncoplanar so that
at any coupling, complex orders beyond any form currently
observed in kagome materials are possible.

II. COMPLEX ORDERS AT WEAK COUPLING

We adopt the KLM Hamiltonian given by

HKLM = −t
∑

〈ij〉,α,β,σ

c
†
i(α)σ cj (β)σ − JK

N∑
i=1,α

Si(α) · si(α). (1)

The first term is nearest-neighbor hopping with amplitude t

of a single band of noninteracting electrons, with creation
operator c

†
i(α)σ at unit cell i and sublattice α. The second term

is the Kondo coupling, with si(α) being the electron spin and
Si(α) being classical Heisenberg spins representing the local
moments. We seek the ground state configuration of the local
moments {Sopt

i(α)} for every fermion filling n and the ratio of the
Kondo coupling to the hopping amplitude JK/t on the premise
that we will find complex orders and a complex phase diagram.

Previous methods for finding {Sopt
i(α)} were either variational

Monte Carlo (MC), with costly fermionic diagonalization
at each MC step (this has been recently overcome by an
efficient algorithm [16,17]), or were limited to finding optimal
states within a subset of commensurate orders with small unit
cells [13]. We instead will study the limits JK/t � 1 and
JK/t � 1 perturbatively. This allows access to large system
sizes even with incommensurate orders. We begin here with
the JK/t � 1 limit but will see that extending it with the
variational approach will motivate a study of the opposite
limit. The effective Hamiltonian in the JK/t � 1 regime is

2469-9950/2016/93(2)/024401(14) 024401-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.024401


GHOSH, O’BRIEN, HENLEY, AND LAWLER PHYSICAL REVIEW B 93, 024401 (2016)

of the form:

Heff = 1

2

∑
i(α),j (β)

Ji(α)j (β)Si(α) · Sj (β) (2)

+ 1

4!

∑
i(α),...,l(δ)

Ki(α),j (β),k(γ ),l(δ))Si(α) · Sj (β)Sk(γ ) · Sl(δ)

+ . . . . (3)

In the limit JK → 0 we need only focus on the first term with
the RKKY couplings Ji(α)j (β). To compute these couplings at
T = 0, we take a grid in reciprocal space; the corresponding
real space lattice sizes were up to N = 3 × 362. We first locate
the Fermi surface corresponding to the chosen filling, then
numerically evaluate the usual analytic formula for Ji(α)j (β)

from second-order perturbation theory [8]. Details of the
calculation are outlined in Appendix A.

It is well known that RKKY interactions introduce frus-
trated interactions among the spins [19–21]. The Ji(α)j (β) here
are no different in principle, but the degree of this frustration,
shown in the low temperature spin order {Sopt

i(α)} obtained from
zero and finite temperature Monte Carlo (MC), is striking.
For example, at n = 0.325, near 1/3 filling, we find a twisted√

3 × √
3 state with an incommensurate wave vector and slight

noncoplanarity. This state smoothly evolves to the coplanar√
3 × √

3 order at n = 1/3. As n approaches n = 5/12,
we find the “Cuboc1” [14] state that is commensurate but
noncoplanar with 12 different spins in its unit cell all pointing
to the edges of a cube. But these are among the simplest states
we found. At n = 0.488, for example, we found a three wave
vector, incommensurate, and noncoplanar state.

To draw these conclusions, we have plotted the optimal MC
spin configurations {Sopt

i(α)}, with the tail of each spin vector
at a common origin [18] as shown in Fig. 1. The common
origin plot of the “Cuboc1” state is shown in Fig. 1(a) and

FIG. 1. Some ground state spin orders of the kagome Kondo
model at small JK/t . (a) The “Cuboc1” state [22], found at n = 5/12,
consisting of 12 different spins pointing to the edges of a cube. (b)
An incommensurate twisted

√
3 × √

3 state found at n = 0.325. (c)
Sublattice separated common origin plots of a complex state found
at n = 0.488 on an N = 3 × 362 cluster. (d) A simplified version of
the three common origin plots presented in (c) emphasizing the 90◦

rotational symmetry of the respective planes.

has a cuboctahedral structure. Similarly, the coplanar nature
of the twisted

√
3 × √

3 state is readily apparent as shown in
Fig. 1(b), where all spins are almost (ignoring the slight width
of the coplanar band) coplanar lying in a plane in spin space.
However, the complex state at n = 0.488 would appear nearly
incomprehensible in a common origin plot, having spins that
point in nearly all directions.

To simplify such a complicated pattern of spin order in
spin space we resort to a simple method. We construct three
independent common-origin plots of spins belonging to each
kagome sublattice. These plots, as shown in Fig. 1(c), reveal
a different dominant plane for spins belonging to each of the
three sublattices. To simplify the spin order even further we
look at the spin structure factor, which reveals the Fourier
space composition of the order.

The sublattice dependent spin structure factor is given by:

ηα(q) = |Sopt
α (q)|2∑

q∈1stB.Z. |Sopt
α (q)|2 . (4)

Here Sopt
α (q) is the Fourier transform of {Sopt

i(α)}, {Sopt
i(α)} being

the optimal spin configuration recovered from numerical MC
simulations. The summation in the denominator of Eq. (4) is
over the set of reciprocal lattice wave vectors {q} belonging to
the kagome first Brillouin zone. For a generic incommensurate
order, ηα(q) will have most of its weight (typically more
than 90%) on a star of six- or twelvefold symmetry related
“dominant” wave vectors in the zone. Its remaining weight will
lie on other “subdominant” wave vectors which are required
for unit spin normalization of the set of spins in real space.
For example, the twisted

√
3 × √

3 state was found to have
a wave vector near the Brillouin zone corner (the K point)
that accounted for 96% of the weight of ηα(q) in the zone.
Also, all three sublattices had this same dominant wave vector
lying near the zone corner. Similarly, each sublattice of the
incommensurate state found at n = 0.488 had a different
dominant wave vector, which accounted for ∼91% of the
weight of ηα(q) in the zone. Additionally, all three wave vectors
were related by 2π/6 rotations. In contrast, for a commensurate
order like the

√
3 × √

3 state found at n = 1/3, the dominant
wave vector lying exactly at the zone corner carried the entire
weight of ηα(q) in the zone.

The dominant wave vectors, identified from the structure
factor ηα(q), can also be used to reconstruct a “purified” spin
configuration (see Appendix B). A purified configuration is
created by carrying out an inverse Fourier transform of the
Fourier amplitudes corresponding to only the set of dominant
wave vectors. The Fourier space amplitudes corresponding to
all the subdominant modes are set to zero. The resulting set
of vectors in real space is then normalized by brute force to
create a spin configuration that satisfies the constraint of unit
spin normalization at every site on the lattice. This prescription
of creating a purified spin configuration made out of only the
dominant star of wave vectors from the zone is particularly
useful in cases of noncoplanar incommensurate orders like the
spin state at n = 0.488 in Fig. 1(c), where identification of an
underlying symmetry in spin space is not clearly observable in
the arrangement of spins in real space or even in their common-
origin plots. For example, carrying out this prescription for the
three wave-vector spin order at n = 0.488 reveals the simple
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and beautiful symmetry between spins on the three sublattices.
Spins on each sublattice trace out coplanar spirals in mutually
orthogonal planes, as shown in the common-origin plot of the
purified configuration in Fig. 1(d). The main features of the
spin orders are thus revealed via the profile of the structure
factor in Eq. (4) and the common origin plots.

III. LUTTINGER-TISZA AND THE FERMI SURFACE

To understand how the competing interactions drive the
wave vector composition, sublattice dependence, incommen-
surate order, and noncoplanarity, we have carried out a
Luttinger-Tisza (L.T.) analysis [23]. The method begins by
diagonalizing Jαβ(q), the spatial Fourier transform of the real
space RKKY interactions Ji(α),j (β):

Jαβ(q)uν
β(q) = λν(q)uν

α(q), (5)

where the ν index labels the three bands in the sublattice
space and λν(q) is the eigenvalue corresponding to the
eigenstate uν(q). Then we determine the symmetry related
wave vectors {QL.T.} with the lowest eigenvalues of Jαβ(q)
and the corresponding eigenmodes uν(Q)L.T.. The set of
Luttinger-Tisza (L.T.) wave vectors {QL.T.}, along with the
corresponding L.T. modes uν(Q)L.T., predict the nature of spin
orders stabilized by the RKKY Hamiltonian in Eq. (3) as a
function of the electronic filling n.

Before we move on to the L.T. results, to get a sense of
the kind of spin orders we might find, we have plotted the
first five couplings as a function of filling in Fig. 2. Here,
negative (positive) couplings correspond to ferromagnetic
(antiferromagnetic) interactions. Clearly, at n = 0 we should
find ferromagnetism. For n � 0.2 we find a dominant ferro-
magnetic J1 coupling and small J2, J3, J3h, and J4 couplings.
This suggests the ferromagnetic state should become a spiral.
Near n = 1/3 we expect a

√
3 × √

3 coplanar state known to
exist [24] at positive J1, with small positive J3, J3h. A similar
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FIG. 2. The first five dominant RKKY couplings on the kagome
lattice. The nearest J1, next nearest J2, two third nearest J3,
J3h (linking diametrically opposite vertices), and fourth nearest
J4 neighbor couplings plotted as a function of filling n. Positive
(negative) couplings correspond to antiferromagnetic (ferromagnetic)
interactions. Two notable features of the plot are: oscillations in the
sign of the couplings with changing filling n, which leads to frustrated
interactions, and intervals of filling where J1 is not the most dominant
interaction. The scale on the y axis is in units of J 2

K/t . The flat kagome
band corresponding to fillings from 2/3 < n < 1 is not part of the
analysis.

FIG. 3. Luttinger Tisza analysis of the couplings Ji(α),j (β). (a)
The trajectory of the predicted ordering wave vector QL.T.(n) as n

is varied for lattice sizes N = 3 × 242 (triangles) and N = 3 × 362

(circles). Small blue and red arrows indicate the direction of the
trajectory of optimal L.T. wave vectors. The large blue arrow shows
a first order transition from the zone center to the zone midpoint. (b)
Comparison between QL.T. and the Fermi surface. Red contours show
0 < n < 1/4, dashed red line is the F.S. at n = 1/4, and blue contours
show 1/4 < n < 1/3. Several QL.T.(n) are labeled as arrows. Labels
(a)–(e) indicate pairs of representative points on the F.S. at different
fillings. The black arrow is near n = 0.488 = 2/3 − 0.179, the blue
arrow is at n = 5/12, where QL.T.(n) = QM , the green arrow is near
n = 0.325, and the arrow in pink is at n = 1/3, where QL.T.(1/3) =
QK .

argument leads to the q = 0 state near n = 0.5. However, at all
other fillings simple arguments such as these are not enough
to estimate what state will minimize the energy of the RKKY
Hamiltonian in Eq. (3).

Plotting the optimal L.T. wave vectors QL.T., as shown in
Fig. 3(a), reveals that indeed the predictions from the L.T.
method are more complex. The wave vectors do begin at
the Q� = 0 point at n = 0, but they then march towards the
Brillouin zone boundary at the M point by n = 0.105 and
then return to the � point as n approaches 1/4. This to and fro
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march, shown by the small blue arrows in Fig. 3(a), takes place
along a mirror symmetry axis of the zone connecting the zone
midpoints. However, exactly at n = 1/4, and probably for a
small interval on either side of it, QL.T.(n) jumps back to the M
point—a first order transition [shown by the large blue arrow in
Fig. 3(a)]. For 1/4 � n < 1/3, the QL.T.(n) resumes moving
smoothly from the � point but switches trajectory moving
along a different symmetry axis (connecting the zone corners)
towards the K point, reaching it uneventfully at n = 1/3. For
1/3 < n < 2/3 wave vectors are the same as those at 2/3 − n,
and their trajectory as a function of filling from n = 1/3 to
n = 1/4 is shown by the small red arrows. What causes such a
flow of the optimal L.T. wave vectors in the zone as a function
of the filling?

This complex dance of the wave vector must be related
to the evolution of the JK = 0 Fermi surface [25]. To see
more specifically how the two are related, we have plotted
in Fig. 3(b) several QL.T. on top of this Fermi surface
as connecting vectors. These vectors connect representative
points on the F.S. labeled (a)–(e). We see from this plot that it is
the points of maximum curvature of the surface that determine
QL.T.. This is true at both n = 0.325, where we found the
twisted

√
3 × √

3 state in MC [the optimal L.T. wave vector
is shown in green and connects a pair of points on the F.S.
labeled by (e)], and at n = 0.488 = 2/3 − 0.179, where we
found the multiwave vector state [Figs. 1(c) and 1(d)]. An
exception to this rule occurs near n = 5/12, where the wave
vector nests the flat regions of this Fermi surface and lies at the
zone midpoint (labeled M), as shown by the blue arrow labeled
QM in Fig. 3(b). Here we found the cuboc1 state of Fig. 1(a)
in MC. The van Hove singularity at n = 1/4 also explains
the sudden jump in the wave vector as n approaches this
filling. Appendix C contains the profile of the Luttinger-Tisza
eigenvalues as a function of the electronic filling for several
fillings in the range 1/3 < n < 5/12. So the wave vector
predictions from the L.T. analysis are entirely determined by
the geometry of the Fermi surface.

Finally, we look at both QL.T. and the eigenmodes uν(QL.T.)
to compare with the MC results. At n = 1/3 we find QL.T.

is at the zone corner K point [shown by the vector QK in
Fig. 3(b)], which is the wave vector of the

√
3 × √

3 state
(see Appendix B), and the associated L.T. mode uν(QL.T.) =√

1/3(1,1,1) has equal weights on all sublattices. Such an
equally weighted eigenmode indicates that the corresponding
wave vector is being used in a perfectly symmetric manner
by all three sublattices in creating the spin configuration. This
is in agreement with both the common origin plots and the
structure factors ηα(QL.T.) [Eq. (4)]: The profile of ηα(QL.T.)
in the zone, obtained from MC simulations, shows sharp peaks
at the zone corners [labeled K in Fig. 3(b)]. Similarly, at
n = 5/12, we find the star of L.T. wave vectors to lie at the zone
midpoints, labeled M in Fig. 3(b), and the modes are given by:
uν(QL.T.) = √

1/2(1,1,0) [for the other two QL.T., related by
2π/3 rotations, the vectors are

√
1/2(1,0,1) and

√
1/2(0,1,1)].

This is again exactly what is seen in the structure factor
Eq. (4) near n = 5/12, where prominent features indicating
high Fourier weights begin appearing at the zone midpoints.

At n = 0.488 we find uν(QL.T.) has weight on only one
sublattice for a given QL.T., so uν(QL.T.) ≈ (1,0,0). This
observation is again consistent with the profile of the three

structure factors ηα(QL.T.), one for each α = 1,2,3. Each
structure factor shows a peak at a single wave vector in the
zone (strictly speaking, the peak occurs at two locations in the
zone: at the wave vector and its partner obtained by a reflection
in the origin). The resulting spin order at n = 0.488 has spins
on each of the three sublattices forming (almost) coplanar
spirals in mutually orthogonal planes [see Fig. 1(d)], with the
pitch of each spiral determined by QL.T. (see Appendix B for
a complete parametrization of the spin configuration in terms
of the L.T. wave vectors). So the L.T. method predicts both
the wave vector and sublattice dependence of the spin order
{Sopt

i(α)} found in MC.

IV. PHASE DIAGRAM

With the knowledge discussed above, it seems like we can
now find the phase diagram in the limit JK/t � 1. But since
Fermi surface geometry dictates ordering wave vectors, every
filling n will have a different ground state spin configuration.
In group theory language, the spin order {Sopt

i(α)} will be built
out of different representations of SO(3) × Gkagome, where
SO(3) is the classical spin group and Gkagome is the kagome
space group. So every spin configuration likely belongs to a
different phase.

To navigate this issue, here we will adopt a pragmatic
approach to depict the phase diagram. We first label a phase
by a triplet of symbols that characterize the wave vector
dependence of the spin pattern on each of the three sublattices.
For example, we label the spin configuration presented in
Fig. 1(b), as the (a1,a1,a1) phase. The symbol (a1,a1,a1)
means that all three sublattices have the same dominant wave
vector Qa = 2π (7/24,0) ≈ K. The subscript 1 denotes that
the magnitude of ηα(Qa) is the same on all three sublattices.
Thus, spins on all three sublattices have exactly the same
dominant wave vector, and the wave-vector’s Fourier weight
is also the same on all three sublattices. The state at n = 0.488
we label as the (a1,b1,c1) phase, because each sublattice
has a different wave vector: Qa , Qb, Qc. But these are
related by 2π/3 rotations and have equal Fourier weights
[η1(Qa) = η2(Qb) = η3(Qc)]. These labels coarse grain the
phase diagram. Furthermore, two spin configurations belong
to the same phase family if they share the same broken
symmetries and their labels evolve smoothly with n (see
Appendix D). A drawback of this approach is that it does not
specify particular phase relationships between the amplitudes
of the same wave vector appearing in different sublattices
[the measure ηα(q) is norm-based], nor does it indicate
relative phases between different spin components on a given
sublattice. These metrics could distinguish two phases we
denote with the same label.

Using this approach, we construct the phase diagram in
Fig. 4(a) by computing in MC the spin configurations at
each filling in the range 0 � n � 2/3 (at n > 2/3 we start
filling a flat band and the approach fails). This leads to order
N ≈ 3 × 362 different spin configurations (about the number
of sites in the lattice), but our labeling approach groups them
into eight phases (see Appendices B and D for more details on
the classification of phases). We attempt to put spin orders from
almost all fillings for a given lattice size, limited only by the
degeneracy (usually twelvefold) in the JK = 0 single particle
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FIG. 4. Phase diagram of the KLM [Eq. (1)]. (a) Exact phase diagram in the limit JK/t � 1. Here black regions denote fillings where
multiple phases were competitive and our approach could not identify a single dominant phase. (b) Variational phase diagram showing different
competing phases at finite JK/t . The range along the horizontal filling axis is n = (0,1) at unit intervals and along the coupling axis is
JK = [0.1,10] on a grid of 0.05. Energies at every point (n,JK ) in the phase diagram are averaged over 100 values of the boundary phases.

energy levels, where the perturbation approach (Appendix A)
fails. The spin orders included in the computation of the
phase diagram of Fig. 4(a) include five of the well known
commensurate phases: ferromagnetic, cuboc1 [22], cuboc2
[26], the q = 0, and

√
3 × √

3. The rest are all incommensurate
phases recovered from MC simulations (these incommensurate
phases are also parametrized based on their symmetries in spin
space, see Appendix B).

The JK � t phase diagram in Fig. 4(a) is dominated by
noncoplanar incommensurate orders, the most prominent of
them being the highly symmetric (a1,b1,c1) phase, shown in
red. An example spin configuration from this phase is shown in
Figs. 1(c) and 1(d). Commensurate orders, like the

√
3 × √

3
order at n = 1/3, appear only in tiny slivers. The abundance
of incommensurate orders is not surprising since the ordering
wave vector(s) of the spin configurations are determined by the
geometry of the JK = 0 Fermi surface, which for most fillings
does not have a special symmetry (like the Dirac points at
n = 1/3 and the hexagons at n = 1/4 and n = 5/12) in the
zone.

Given the large database of energetically competitive spin
configurations obtained from our numerics, and that the energy
of each at finite JK/t is easily computed, we can also
construct a variational phase diagram away from JK/t � 1.
The result is presented in Fig. 4(b). We see several new
features in the phase diagram as JK/t approaches 1 and
larger values. Ferromagnetism begins to dominate much of
it above JK/t = 1. The complex ordered states stable at
small JK/t fan out at first but then mostly vanish, and
commensurate orders dominate the intermediate JK/t regime.
This provides further evidence that complex orders at small
JK/t resulted primarily from Fermi surface effects. However,
there are exceptions to this rule. Some incommensurate orders
re-emerge over sizable regions at larger JK/t especially near
n = 0.5. The most dominant of these incommensurate orders
are the spins belonging to the highly symmetrical (a1,b1,c1)
phase. So the phase diagram remains complex at finite JK/t ,
but ferromagnetism begins to dominate much of it.

V. STATE SELECTION AT JK / t

The dominance of ferromagnetism in the phase diagram of
Fig. 4 provokes the question of whether there is a threshold
value of JK/t above which it is stabilized at all fillings. To
see if this happens, here we consider the JK/t � 1 “double-
exchange model” regime.

As is well known [27,28], in the JK/t � 1 limit, we can
switch to coordinates with local quantization axes pointing
along the �Si(α) classical spin directions and find that the energy
bands separate into the spin “up” bands and spin “down”
bands with a gap proportional to JK . For n < 1/2, we can
then integrate out all the higher energy “down” bands and
obtain an effective model for the up bands

Hup =
∑

〈i(α),j (β)〉
t cos(θi(α),j (β)/2)eiai(α)j (β)u

†
i(α)uj (β) + H.c., (6)

where spinless fermion operator u
†
i(α) creates an “up” spin on

site i(α), θi(α),j (β) is the relative angle between classical spin
vectors on the two sites and ai(α)j (β) is a vector gauge potential
arising from the noncoplanarity of spins [10].

This hopping process then contributes substantially to the
energy if the spins are parallel and θi(α),j (β) = 0 but contributes
nothing if the spins are antiparallel with θi(α),j (β) = π . Hence,
in the JK/t � 1 regime, ferromagnetism will likely dominate
and the complex orders discovered at small JK/t will vanish.
However, this argument fails at n = 1/2 since here we
completely fill the up bands and hopping costs energy of order
∼JK , and in the limit JK → ∞, all spin states are energetically
degenerate.

To resolve this degeneracy, we have carried out a per-
turbative calculation to second order in t/JK at n = 1/2. It
reveals nothing but the nearest neighbor antiferromagnetic
Heisenberg model J

∑
〈i(α),j (β)〉 Si(α) · Sj (β) with J = t2/JK .

So at n = 1/2, antiferromagnetic states dominate over the
ferromagnetic state even at JK/t → ∞. On a triangular lattice,
such a Hamiltonian would favor the coplanar 120 degree
state. However, on non-Bravais lattices like the kagome and
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FIG. 5. Variational phase diagram in the large-JK/t regime. This phase diagram includes 48 states taken from the set of MC ground states
at Jk/t � 1, and the set of commensurate orders consisting of the q = 0,

√
3 × √

3, cuboc1, cuboc2, and ferromagnetic state.

pyrochlore, the Hamiltonian has no unique ground state and is
extensively (scaling with the system size) degenerate.

Achieving a full understanding of the n ≈ 1/2, large JK/t

regime is therefore a state selection problem on the kagome
lattice. In the presence of temperature [5,29] or quantum
[24,30] fluctuations, it is known that the

√
3 × √

3 state is
selected. It seems natural to expect that this state will also
appear at n = 1/2. However, the fluctuations here favor the
cuboc1 state as shown by our variational calculations (Cuboc1
is also selected in a more trivial state selection problem, see
Appendix E). It is akin to the state selection through order by
disorder by either temperature or quantum fluctuations of the
nearest neighbor kagome Heisenberg model. The fluctuations
that produce the selection here, however, results from the
fermions as they try to hop around in the presence of the
spins.

Motivated by this switch from ferromagnetism to antiferro-
magnetism, we have produced a variational phase diagram
in Fig. 5, in the vicinity of n = 1/2 up to JK/t = 104.
We see in this plot that even at these extreme values, the
antiferromagnetic state at n = 1/2 does not make a direct
transition into the ferromagnetic state. Instead, a series of
commensurate and incommensurate orders intervene. So,
state selection among all possible magnetic states, both
ferromagnetic and antiferromagnetic, is responsible for the
survival of complex order near n = 1/2 and Jk/t � 1.

VI. CONCLUSION

Our results show that the underscreened Kondo regime
supports complex forms of magnetic order with noncoplanar,
incommensurate, and multiwave vector properties throughout
much of its phase diagram and therefore provides useful insight
that can guide the search for such magnetism in materials. To
reveal these complex spin orders and to produce the phase
diagram in Fig. 4, we approached the Kondo Hamiltonian from
several fronts. In Sec. II, we first took the limit JK/t � 1 of
the Kondo Hamiltonian and derived the RKKY Hamiltonian
in Eq. (3): a simple Heisenberg exchange Hamiltonian with
long ranged, oscillatory interactions. We solved the RKKY
Hamiltonian using several parallel and complementary meth-
ods. Brute force zero and finite temperature Monte Carlo
minimization of the RKKY Hamiltonian revealed a plethora
of noncoplanar spin configurations, some of which were
commensurate like in Fig. 1(a). However, at most generic

fillings, a common-origin plot visualization of the optimal
spin configurations showed the emergence of noncoplanar
incommensurate orders as in Figs. 1(c) and 1(d) (also see
Appendices B and D).

Given the abundance of these noncoplanar incommensurate
orders and the lack of attention given to such orders in previous
studies [12,13,31] of the Kondo lattice model, we set about
exploring their origin in further detail. Using Luttinger-Tisza
and Fermi surface geometry arguments in Sec. III, we showed
that the ordering wave vectors of the spin configurations were
the nesting wave vectors of the Fermi surface (Fig. 3). For
most fillings, the nesting wave vectors were incommensurate
and connected points on the Fermi surface with the maximal
curvature—a mechanism very different from the conventional
nesting which connects parallel parts of the Fermi surface at
Van-Hove fillings. This nontrivial, yet insightful connection
between the Fermi surface geometry and the ordering wave
vectors of the spin configurations explained the abundance of
incommensurate orders retrieved from MC. Furthermore, the
Luttinger-Tisza and Fermi surface nesting arguments show
that incommensurate noncoplanar orders will be generic even
in other non-Bravais lattices like the pyrochlore, for fillings at
which the Fermi surface is not at a special symmetry point in
the zone.

Spin configurations retrieved from the RKKY limit were
projected variationally to finite values of JK/t to construct
the phase diagram in Fig. 4(b). Not surprisingly, the Jk/t � 1
parts of the phase diagram showed a plethora of incommen-
surate phases, some of which were found to survive even at
much larger values of JK/t . The other striking feature of the
phase diagram was the dominance of the ferromagnetic order
for JK/t > 1.

To explain the dominance of the ferromagnetic order, we
approached the Kondo lattice model from the strong coupling
limit in Sec. V. In this limit, the effective double exchange
Hamiltonian explained the prevalence of the ferromagnetic
order at all fillings and large JK/t except at a half filling,
where we found a nontrivial exact degeneracy between all
spin configurations. This degeneracy is generic to all lattices
and is acute in the case of non-Bravais lattices like the
kagome and pyrochlore, where it is only partially resolved
(to second order in the hopping) in favor of antiferromagnetic
orders. Antiferromagnetic orders therefore appear only at the
special half-filling point in the strong coupling limit of the
Kondo lattice model and become more dominant, occupying
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increasingly larger parts of the phase diagram, as one moves
towards smaller JK/t values.

It is important to note that the phase diagram in Fig. 4(b)
emerged from a simple one band model Eq. (1), and its
complexity was uncovered by the variation of two very simple
parameters: the electronic filling and the strength of the Kondo
coupling relative to the hopping amplitude. Real materials,
however, will unlikely be described by the idealized kagome
Kondo model we study. Likely, their band structure will be
much more complicated, and three dimensionality may be
important. The Luttinger-Tisza method, MC calculations at
small JK/t , and hopping model at large JK/t are easily
extended to these cases. Further, additional physics, such
as impurities, additional spin-spin interactions, and various
magnetic anisotropies can also be handled by these methods.
So the methods we establish here will likely play a role in the
search and study of complex forms of magnetism arising from
under screened Kondo physics.

Finally, we would like to stress that noncoplanar orders
appear rarely in kagome systems. Our results suggest that,
in Kondo-coupled systems, such as potentially the layered
itinerant kagome ferromagnet Fe3Sn2 [32] and doped FeCrAs
[33] with small spin-orbit effects, noncoplanar commensurate
and incommensurate orders are abundant.

Note added. Spin orders discovered in this study and our
other results are consistent with a related work [31] on the
same model and lattice.
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APPENDIX A: DERIVATION OF THE RKKY
INTERACTIONS

We will derive the RKKY couplings via two different
methods in this section and compare results obtained from each
method. The first way to get Ji(α)j (β) is in Fourier space using
second order perturbation theory. We define the following
electron operators in momentum space:

cα
k = 1√

N/3

∑
i

ci(α)e
ik.Ri , (A1)

where N/3 is the number of unit cells and α is the sublattice
index. Using Eq. (A1) we first write down the free fermion
part of the KLM Hamiltonian in the basis |kα〉 as follows,⎛
⎝ 0 −2t cos(k · a12) −2t cos(k · a13)

−2t cos(k · a12) 0 −2t cos(k · a23)
−2t cos(k · a13) −2t cos(k · a23) 0

⎞
⎠,

(A2)
where aαβ = aα − aβ , a1 = (0,0), a2 = (1,0), and a3 =
(1/2,

√
3/2). Both a2(3) are one half of lattice vectors that

define the kagome unit cell. Diagonalizing (A2) yields three
bands ν with single particle energies εν

k, eigenvectors uν
k,α , and

a new set of operators c
ν†
k = ∑

α uν
k,αc

α†
k . We can now look at

the Kondo perturbation to the free fermion dispersion.

The Kondo part of Eq. (1) in this paper can be expressed in
real space as

HKondo = −JK

2

∑
i

∑
α

(S−
i(α)c

†
i(α)↑ci(α)↓

+S+
i(α)c

†
i(α)↓ci(α)↑ + Sz

i(α)c
†
i(α)↑ci(α)↑

−Sz
i(α)c

†
i(α)↓ci(α)↓). (A3)

Second order perturbation theory will carry two copies of (A3),
each of them sandwiched between pairs of electronic states
inside |kν

in〉 and outside kν ′
out, the F.S. given by

E2(n) = J 2
K

∑
kin,kout,ν,ν ′

|〈kν
in|HKondo|kν ′

out〉|2
(εν

kin
− εν ′

kout
)

. (A4)

Insertion of (A3) into (A4) produces 16 terms, out of which
only four are nonzero due to spin rotational invariance. Each
of these four terms have the same contribution and E2(n),
expressed in Fourier space, then becomes

E2(n) =
∑

q∈1stB.Z.

Jαβ(q)Sα(q) · Sβ(−q), (A5)

where Jαβ(q) is a 3 × 3 matrix in the sublattice basis and is
given by

Jαβ(q) = −J 2
K

2

∑
kin,ν,ν ′

uν∗
kin,α

uν ′
kin+q,αuν ′∗

kin+q,βuν
kin,β(

εν ′
kin+q − εν

kin

) e−iq·aαβ ,

(A6)
where uν

q,α is an amplitude for destroying an electron with wave
vector q in band ν and the summation is restricted to states kin

below the F.S. Note that in going from (A4) to (A6) we have
switched dummy momentum indices from (kin,kout) to kin,q.
Use of zone symmetries (C6 and mirror reflections) requires
us to compute Jαβ(q) for only 1/12 of the zone. The real space
couplings are obtained by inverse Fourier transforming (A6)

Ji(α)j (β) =
∑

q

Jαβ (q)e−iq·Rij . (A7)

There are two limitations of computing the set of {Ji(α)j (β)}
via the method above. First, symmetries in the zone at any

FIG. 6. A comparison of RKKY interactions from two methods:
(1) calculation by direct integration in Fourier space, shown via
circles, and (2) fitting procedure, shown via lines.
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TABLE I. Ordering wave vectors and spin F.T. for reconstructing
orders found at n = 0.321 and n = 0.325. From left to right: filling
at which order was found, ordering wave vector q for the 1Q(a,a,a)
state, sublattice phases ϕ2,3 [see (B1)] and Norm{Srecons

i }.

Filling (n) q(2π ) ϕ2(2π ) ϕ3(2π ) Norm{Srecons
i }

0.321

(
0.27
0.04

)
0.27 2/3 (0.95,0.97)

0.325

(
0.14
0.29

)
0.65 0.27 (0.997,0.998)

filling lead to degeneracies in the single particle energies
(typically six leading to twelve missing electronic states)
requiring us to “hop” over fillings so as to avoid zero energy
denominators in Eq. (A6). The second limitation is a more
severe form of the first constraint, where, for a window of
fillings near Van Hove points, computation of Eq. (A6) is
restricted by large parallel parts of the F.S. with degenerate
energies. The first limitation is resolved by averaging (A6)
over two nonlocal boundary phases which break the sixfold
symmetry to two (associated with spins). To circumvent the
second restriction we propose an alternative methodology for
computations of {Ji(α)j (β)} as follows.

The second method for extracting the set of couplings is an
approach in real space, cruder in spirit, but works as well as the
explicit calculation in Fourier space. Using exact numerical
diagonalization, we evaluate the single particle energies of
fermions in Eq. (1) in this paper in the background of a set of
random spin configurations of size Ns for a given JK . These
single particle energies are summed up to the F.S. to find the
total energy EED(n) as a function of filling. Each element from
the set of {EED(n)} is fit to the following functional form at
different JK , for all fillings:

EED(n) = Efit
0 (n) + (JK/t)2Efit

2 (n)

+(JK/t)4Efit
4 (n) + . . . , (A8)

with fit parameters {Efit
0 ,Efit

2 ,Efit
4 }. Once we recover the set of

{Efit
2 (n)} for all spin configurations in the database, we fit it to

the following functional form

Efit
2 (n) = ε0(n) + J fit

1 (n)
∑
〈ij〉

Si · Sj + J fit
2 (n)

∑
〈〈ij〉〉

Si · Sj

(A9)

TABLE II. Ordering wave vectors and spin F.T. for reconstructing
order at n = 0.311 occurring in the phase diagram in Fig. 4 in this
paper. From left to right: order number corresponding to labeling
in Fig. 4 in this paper, ordering wave vector q for the 1Q(a,a,a)
state, spin F.T. at each wave vector. The spin order Fig. 7 has an
additional significant contribution (∼30%) on sublattice α = 1 from
an additional wave vector q2 = 2π (0.12,0.19) with Fourier weight
Sα=1(q2) = (0.25ei1.93,0.1ei1.96,0.3e−i1.19).

q(2π ) S1(q) S2(q) S3(q)

(
0.12

−0.19

) ⎛
⎝0.32e−i2.9

0.4ei1.55

0.26ei2.8

⎞
⎠

⎛
⎝ 0.37ei0.9

0.45e−i0.8

0.3ei0.4

⎞
⎠

⎛
⎝0.36e−i0.5

0.43e−i2.2

0.29e−i

⎞
⎠

FIG. 7. Common origin plot of incommensurate coplanar spiral
orders belonging to (a,a,a) and (a1,a1,a1) phases in Fig. 4 in this
paper. 1(A)–1(C): spins on each of the three sublattices for a spin
order recovered from MC at n = 0.311, 2(A)–2(C): at n = 0.321,
3(A)–3(C): at n = 0.325. The ordering wave vectors for the three
states in Table V and Table II along with Eq. (B1) can be used to
construct {Srecons

i(α) }.

by minimizing the norm of the following matrix equation

Min
J fit

1 (n),J fit
2 (n),...

|M(n) · x(n) − b(n)|, (A10)

with {J fit
1 (n),J fit

2 (n),...} as fit parameters. M is a Ns ×
(nJ + 1), where nJ is the number of couplings to be fit
along with an additional constant ε0(n) in Eq. (A9). The
matrix M contains the classical energies corresponding to
the couplings J1,2,...(n) for each random spin configuration,

FIG. 8. Common origin plot of spin orders from the (ab,bc,ca)
and (a1b2,c1a2,b1c2) phases in Fig. 4 in this paper. 1(A)–1(C):
spins on each of the three sublattices for a spin order recovered
from MC at n = 0.115, 2(A)–2(C): at n = 0.146, 3(A)–3(C): at
n = 0.181. The ordering wave vectors for the three states in
Table VIII and Sα(q) along with (B4) can be used to construct
{Srecons

i }.
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FIG. 9. Eigenvalues λν(q) of the Jαβ (q) in the lowest band ν = 1
[see Eq. (3) in this paper] in the kagome first B.Z. (a) 0.333, (b) 0.343,
(c) 0.352, (d) 0.354, (e) 0.364, (f) 0.372, (g) 0.375, (h) 0.381, (i) 0.41.
Data for N = 3 × 362 lattice and color scheme is red (high), blue
(low).

arranged along the rows. x is a vector of length nJ + 1 given
by xT = (ε0(n),J1(n),J2(n),...), and the vector b contains
the extracted Efit

2 (n) from Eq. (A8) for each of the Ns spin
configurations.

A comparison of the Fourier and real space methods is
shown for the first four RKKY couplings in Fig. 6 as a function
of filling n. Both methods have maximum susceptibility to
finite size effects at small fillings n � 0.1 and to ferromagnetic
background orders where electrons have longer mean free
paths comparable to system sizes. We next investigate, in more
detail, the various spin orders making up the phase diagram in
Fig. 4 in this paper.

APPENDIX B: PARAMETRIZATION OF CLASSICAL
SPIN ORDERS

A parametrization of the different spin orders {Sopt
i } making

up the phases in Fig. 4 in this paper is provided in this section.
There are two steps for parametrizing a spin state. In the first
step, we construct a purified version {Srecons

i(α) } of the optimal
spin order obtained from MC by filtering out the dominant
Fourier modes on each sublattice. In the second step, we try
fitting simple functional forms to {Srecons

i(α) }. Since most of the

FIG. 10. Common origin plot of spins and the Fourier weights
for a spin configuration found at n = 0.375 on a N = 3 × 363

lattice. (a)–(c) common origin plots showing (a1,b1,c1) phase.
(d)–(f) Fourier profile ηα(q) [see Eq. (4) in this paper] for
α = 1,2,3.

states are combinations of simple coplanar incommensurate
spirals, we begin by parametrizing coplanar spirals.

A coplanar spiral is parametrized by its ordering wave
vector q and two phases dependent on the locking between the
sublattices. For two orthonormal unit vectors e1,2, a coplanar
spiral can be parametrized as

Si(α) = Re[ei(q·Ri+ϕα )(e1 − ie2)]. (B1)

Depending on the location of q in the zone, the spiral can
further be classified as commensurate (if q lies at a special
symmetry point in the zone) or incommensurate (if q lies at
an arbitrary wave vector). Examples of special commensurate
coplanar spirals are the two well known q = 0 and the

√
3 ×√

3 order with ordering wave vectors q = � and q = K lying at
the zone center and zone corner, respectively. For both orders,
ϕα = 2π (α − 1)/3, which makes an angle of 2π/3 between
spins, locally, on every triangle. Eq. (B1) can also be used to
parameterize incommensurate coplanar spirals, like the states
at n = 0.321 and n=0.325, using the parameters in Table I.

An incommensurate order, on the other hand, has a special
direction in real space defined by q and a set of points {Ri(α)},
such that q · Ri(α) = 2πm(

√
N/3)−1 for an integer m. As we

move along {Ri(α)}, we trace out (
√

N/3)−1 equally spaced
coplanar directions in spin space as shown in Figs. 3(a1)–
3(a3) in this paper. An incommensurate coplanar spiral might
locally have angles close to 2π/3 as in the twisted

√
3 ×

TABLE III. Broken symmetry phases in RKKY limit. Columns from left to right: Filling range n where the phase was found, phase notation
(see text), planar or noncoplanar orders, commensurate (CO) or incommensurate (ICO) order, and example spin order.

Filling range Phase label Noncoplanar? CO/ICO Ex.

(0,0.03) (a,a,a) no CO FM
(0.115,0.146) (ab,bc,ca) yes ICO Fig. 8
(0.226,0.25)
(0.492,0.551)

(a,b,c) yes ICO Fig. 11

(0.325,0.333) (a1,a1,a1) yes ICO Fig. 3(a) in this paper
(0.362,0.485)
(0.579,0.624)

(a1,b1,c1) yes ICO Fig. 3(b) in this paper

024401-9



GHOSH, O’BRIEN, HENLEY, AND LAWLER PHYSICAL REVIEW B 93, 024401 (2016)

TABLE IV. Dominant wave vectors and their Fourier weights on the sublattices. Left to right: Filling at which the spin order originates in
the RKKY limit, dominant wave vectors in the first B.Z., weights of the dominant wave vectors on each of the three sublattices. Fillings 0.115
and 0.146 correspond to (ab,bc,ca) phase, while the more symmetric spin order at 0.181 is a spin set from the (a1b2,c1a2,b1c2) phase. Spin
configurations are shown in Fig. 8.

Filling (n) q1(2π ) q2(2π ) q3(2π ) η1(q1) η1(q2) η2(q2) η2(q3) η3(q1) η3(q3)

0.115

(
0.19

−0.13

) (
0.02

−0.22

) (
0.20
0.09

)
0.22 0.22 0.28 0.19 0.29 0.19

0.146

(
0.15
−0.1

) (
0.02

−0.18

) (
0.15
−0.1

)
0.21 0.21 0.27 0.19 0.28 0.19

0.181

(
0.02

−0.13

) (
0.1

0.08

) (−0.13
0.05

)
0.22 0.22 0.22 0.22 0.22 0.22

√
3 order—Fig. 3 in this paper and Table V. As discussed

in the previous section, the two kinds of spiral orders can
belong to an (a,a,a) phase or a more symmetric (a1,a1,a1)
phase. States from these phases are shown in Fig. 7 below.
Parametrization for state 1(A)-1(C) in Fig. 7 is provided in
Table II.

We now consider the more complicated 3Q (ab,bc,ca)
orders in the phase diagram in Fig. 4 in this paper. The simplest
of these orders are the two commensurate cuboc1 [22] and
cuboc2 [26] orders shown in Fig. 1 in this paper and found at
fillings n = 5/12 and n = 2/3. Each of these orders are made
from the three ordering vectors Q1,2,3 ∈ M belonging to the

FIG. 11. Common origin plots of the spin configurations from the (a,b,c) and the (a1,b1,c1) phases shown in Fig. 4 in this paper. (A)–(C)
label common origin plots for spins on each of the three sublattices, and (D) shows the spins in the “purified” configuration. Also shown and
underlined is the filling at which each spin configuration is recovered from MC simulations for a unique set of RKKY interactions, specific to
that filling.
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FIG. 12. Variational phase diagram in the presence of a nearest
neighbor antiferromagnetic exchange interaction Jex = 10t . (a): q =
0, (b):

√
3 × √

3, (c): common origin plot of spins for orders in (a),(b).

zone midpoints and leading to a twelve site magnetic unit cell.
Each sublattice α uses only two of the three vectors leading to
the label 3Q (ab,bc,ca). Cuboc1 is parametrized as

Si(1) = 1√
2

[cos(Q2 · Ri)e2 + cos(Q3 · Ri)e3]

Si(2) = 1√
2

[cos(Q1 · Ri)e1 − cos(Q3 · Ri)e3] (B2)

Si(3) = − 1√
2

[cos(Q1 · Ri)e1 + cos(Q2 · Ri)e2],

where Q2 = 2π (1/4, − 1/(4
√

3)), Q3 = Rπ/3Q2, and Q1 =
R2π/3Q2. Rθ is the 2 × 2 rotation matrix. The state does not
elicit an anomalous Hall response due to the coplanarity of
spins on every triangle.

Nearest neighbor spins in the Cuboc2 state make an angle
of π/3, while the next nearest neighbor spins have an angle

TABLE V. Dominant wave vectors and their Fourier weights on
the sublattices. Left to right: Filling at which the spin order originates
in the RKKY limit, dominant wave vector in the first B.Z., weight of
the dominant wave vectors on each of the three sublattices. Spin order
at filling 0.321 corresponds to (a,a,a) phase. The more symmetric
spin orders found at 0.325 (coplanar spiral Fig. 3 in this paper) and
1/3 (

√
3 × √

3 order Fig. 1 in this paper) form part of the (a1,a1,a1)
phase.

Filling (n) q(2π ) η1 η2 η3

0.321

(
0.27
0.04

)
0.47 0.47 0.45

0.325

(
0.14
0.29

)
0.497 0.497 0.497

1/3 K 1 1 1

of 2π/3 between them. The state is thus favored in the
presence of a ferromagnetic J1 and an AFM J2 interaction [26].
The noncoplanarity of spins within each triangle in cuboc2
leads to a nonvanishing value of the scalar spin chirality
χ = Si · (Sj × Sk). χ is +(−)1/

√
2 on all the up (down)

triangles. The equal and opposite fluxes lead to zero overall
flux and no anomalous Hall response. The state has a Z2

symmetric partner, and at zero temperature, one of the two
states is spontaneously selected, breaking Z2 symmetry. The
spin order is parametrized as follows:

Si(1) = 1√
2

[cos(Q2 · Ri)e2 + cos(Q3 · Ri)e3]

Si(2) = 1√
2

[− cos(Q1 · Ri)e1 + cos(Q3 · Ri)e3] (B3)

Si(3) = 1√
2

[− cos(Q1 · Ri)e1 + cos(Q2 · Ri)e2].

TABLE VI. Set of parameters for constructing the purified spin configurations from the (a,b,c) and (a1,b1,c1) phases according to the
ansatz outlined in (B5) for spin configurations shown in Fig. 11.

# q1(2π ) q2(2π ) q3(2π ) ϕ1(2π ) ϕ2(2π ) ϕ3(2(π )

(6)

(
0.125
0.12

) (−0.17
0.05

) (
0.05

−0.17

)
−0.91 −1.36 −0.86

(12)

(
0.1

−0.15

) (
0.08
0.17

) (
0.19
0.01

)
−2.04 −0.58 0.99

(13)

(
0.06

−0.08

) (−0.04
−0.09

) (
0.1

0.01

)
0.39 1.9 1

(14)

(
0.1

0.08

) (−0.12
−0.05

) (
0.02

−0.13

)
0.91 2.26 1.1

(16)

(
0.22
0.15

) (
0.22

−0.15

) (
0.02
0.27

)
−0.12 −1.53 −3.02

(17)

(
0.21
0.1

) (−0.2
−0.1

) (
0.02

−0.23

)
−0.48 1.79 −0.97

(18)

(
0.25
0.12

) (
0.23

−0.16

) (−0.02
−0.28

)
1.8 0.64 −0.37

(19)

(
0.22
0.15

) (−0.25
0.12

) (
0.02
0.27

)
0.97 −0.35 0.96
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TABLE VII. Dominant wave vectors and their Fourier weights on the sublattices for representative spin orders from the phases (a,b,c) and
(a1,b1,c1). Corresponding spin configurations are shown in Fig. 11.

n q1(2π ) q2(2π ) q3(2π ) S1(q1) S2(q2) S3(q3) η1(q1) η2(q2) η3(q3)

0.226

(
0.25
0.12

) (−0.25
0.12

) (
0.02

−0.27

) ⎛
⎝ 0.29ei1.38

0.38ei1.48

0.48e−i0.18

⎞
⎠

⎛
⎝0.26e−i1.82

0.38e−i1.61

0.46ei2.95

⎞
⎠

⎛
⎝ 0.45ei1.48

0.39e−i0.48

0.30ei0.29

⎞
⎠ 0.92 0.86 0.90

0.341

(
0.12

−0.24

) (
0.12
0.24

) (−0.27
0.01

) ⎛
⎝ 0.2e−i2.1

0.41e−i1.36

0.2ei1.87

⎞
⎠

⎛
⎝0.49ei1.54

0.18e−i2.5

0.14ei0.97

⎞
⎠

⎛
⎝0.06e−i1.7

0.24ei1.44

0.47ei1.44

⎞
⎠ 0.5 0.58 0.57

0.355

(
0.1

−0.2

) (
0.1
0.2

) (−0.23
0.01

) ⎛
⎝ 0.18ei2.04

0.46ei1.76

0.22e−i2.28

⎞
⎠

⎛
⎝0.42e−i0.21

0.19e−i2.6

0.42e−i1.7

⎞
⎠

⎛
⎝0.43e−i0.48

0.21e−i2.88

0.44e−i1.94

⎞
⎠ 0.6 0.8 0.84

0.492

(
0.1
0.13

) (
0.1

−0.13

) (
0.06
0.16

) ⎛
⎝ 0.27ei0.94

0.43ei1.48

0.47e−i0.26

⎞
⎠

⎛
⎝0.45e−i3.02

0.28ei

0.43ei1.84

⎞
⎠

⎛
⎝0.27e−i2.05

0.41e−i2.55

0.46e−i0.81

⎞
⎠ 0.96 0.92 0.92

0.527

(
0.23
0.16

) (
0.23

−0.15

) (
0.02
0.27

) ⎛
⎝0.47ei1.98

0.48ei0.3

0.2ei1.23

⎞
⎠

⎛
⎝0.47e−i1.87

0.17e−i2.55

0.49e−i0.34

⎞
⎠

⎛
⎝0.46e−i1.98

0.47e−i0.3

0.21e−i1.19

⎞
⎠ 0.98 0.98 0.96

0.551

(
0.21
0.1

) (−0.2
0.1

) (
0.02

−0.22

) ⎛
⎝0.01e−i2.17

0.49ei1.15

0.47ei2.7

⎞
⎠

⎛
⎝0.45e−i2.86

0.49e−i1.35

0.19ei3.10

⎞
⎠

⎛
⎝ 0.48ei0.39

0.03e−i2.91

0.47ei1.98

⎞
⎠ 0.92 0.94 0.9

0.28

(
0.125
0.12

) (−0.17
0.04

) (
0.04

−0.17

) ⎛
⎝0.25e−i1.69

0.49ei3.02

0.43e−i1.69

⎞
⎠

⎛
⎝ 0.41ei0.43

0.44e−i1.47

0.35ei2.68

⎞
⎠

⎛
⎝0.48ei1.2

0.28ei2.5

0.41ei2.9

⎞
⎠ 0.96 0.96 0.96

0.362

(
0.1

−0.15

) (
0.08
0.16

) (
0.18
0.01

) ⎛
⎝ 0.43ei0.16

0.4e−i1.51

0.22e−i1.06

⎞
⎠

⎛
⎝0.36e−i2.31

0.29e−i1.76

0.42ei2.6

⎞
⎠

⎛
⎝0.27e−i2.48

0.4ei1.55

0.4e−i0.27

⎞
⎠ 0.8 0.8 0.8

0.394

(
0.06

−0.08

) (
0.04
0.09

) (
0.1

0.01

) ⎛
⎝0.47ei2.78

0.1ei2.34

0.47ei1.2

⎞
⎠

⎛
⎝0.38ei0.74

0.47ei2.44

0.29ei1.1

⎞
⎠

⎛
⎝0.36e−i1.01

0.44ei0.85

0.34ei2.75

⎞
⎠ 0.9 0.9 0.9

0.485

(
0.1
0.08

) (−0.12
0.04

) (
0.02

−0.13

) ⎛
⎝0.44ei1.71

0.46ei0.24

0.22ei2.38

⎞
⎠

⎛
⎝0.33ei1.45

0.44ei2.54

0.4e−i2.5

⎞
⎠

⎛
⎝ 0.45e−i1.5

0.17ei1.6

0.48e−i3.06

⎞
⎠ 0.92 0.92 0.92

0.579

(
0.25
0.1

) (
0.22

−0.15

) (
0.02
0.27

) ⎛
⎝0.44e−i2.12

0.28ei1.76

0.47e−i0.36

⎞
⎠

⎛
⎝0.38e−i1.88

0.41e−i0.91

0.42ei0.21

⎞
⎠

⎛
⎝0.39e−i0.62

0.49ei0.94

0.31e−i0.65

⎞
⎠ 0.98 0.98 0.98

0.596

(
0.23
0.15

) (
0.25

−0.12

) (
0.02
0.27

) ⎛
⎝0.48e−i2.78

0.19ei2.6

0.47ei1.85

⎞
⎠

⎛
⎝0.48e−i2.53

0.47ei2.08

0.21ei−0.44

⎞
⎠

⎛
⎝ 0.48ei2.77

0.2e−i2.55

0.47e−i1.85

⎞
⎠ 0.98 0.98 0.98

0.624

(
0.17
0.12

) (−0.18
0.08

) (
0.02
−0.2

) ⎛
⎝0.48e−i1.46

0.32e−i0.1

0.38e−i2.87

⎞
⎠

⎛
⎝0.35e−i0.31

0.37ei2.2

0.47e−i2.21

⎞
⎠

⎛
⎝ 0.17ei2.2

0.49e−i2.8

0.46ei1.86

⎞
⎠ 0.96 0.96 0.9

Parametrization of other constituent states of the (ab,bc,ca)
type phase, such as the spin configurations shown in Fig. 8, is
done using the Fourier transform of the spin orders {Sα(qμ)}
from MC minimization. The “purified” order is obtained by
simply inverse F.T. the vectors {Sα(qμ)}, given in Table VIII,
using Eq. (B4):

Srecons
i(α) = Ni

∑
q∈{qμ}

Sαeiq·Ri . (B4)

The ordering wave vectors and spins in Fourier space for the
three orders in Fig. 8 are given in Table VIII.

We next turn to spin orders from the (a,b,c) phase. For all
orders in this phase, spins on the three sublattices are defined by
mutually exclusive wave vectors tracing out coplanar spirals.
For most spin orders, the three sublattice dependent planes are
mutually orthogonal. Spins are parametrized as

Srecons
i(α=1) = Re[e(q1.Ri+ϕ1)(e1 − ie2)]

Srecons
i(α=2) = Re[e(q2.Ri+ϕ2)(e2 − ie3)] (B5)

Srecons
i(α=3) = Re[eq3.Ri+ϕ3)(e1 − ie3)],

where e1,2,3 form a triad of orthonormal vectors (see Table VI).
For a few spin orders at n = 0.226,0.228 and at n = 0.527
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from within this phase, spins on two of the three sublattices lie
in the same plane perpendicular to the plane in which spins on
the third sublattice lie.

APPENDIX C: EVOLUTION OF LUTTINGER-TISZA
EIGENVALUES WITH FILLING

The evolution of the Luttinger-Tisza matrix in the first B.Z.
and the Fourier weights of a spin configuration from the highly
symmetrical (a1,b1,c1) phase is shown in Fig. 9, respectively.
As the filling changes from n = 1/3 to n = 0.41, the ordering
wave vector evolves smoothly from the zone corner to the zone
center. At every filling, there are symmetry equivalent L.T.
wave vectors which form the sixfold star of Luttinger-Tisza
wave vectors.

Correspondence between the star of symmetry related L.T.
wave vectors and the ordering vectors of the corresponding
spin configuration can be obtained by looking at the Fourier
weights of the MC minimized spin pattern at every filling.
In our MC minimization, independent runs beginning from
random spin configurations at “high temperatures” relax to
ground states which select different sets of wave vectors from
the star of L.T. wave vectors. Figure 10 shows the Fourier
weights in the first Brillouin zone for a spin pattern taken
from a filling at n = 0.375. The sharp peaks in the zone
indicate that the order has a well defined wave vector content
which can be detected experimentally in neutron scattering
experiments.

APPENDIX D: CLASSIFICATION OF SYMMETRY
BROKEN PHASES

Spin orders with the same broken symmetries in Fourier
space are classified as a single phase. The phase diagram in
Fig. 4 in this paper shows eight such phases, each shown in
a different color. The most prominent of these phases is also
listed in Table III. In this section, we take representative spin
configurations from the most dominant phases in Fig. 4 in
this paper and by looking at their Fourier space composition,
illustrate why they form part of a smoothly connected second
order phase. This section will also help to establish the
nomenclature for the different phases.

We begin with the kind of phases where the dominant modes
on each sublattice are made out of two of the sixfold Luttinger-
Tisza stars of wave vectors. The first kind of order has different
weights of the modes on the three sublattices—indicated as a
(ab,bc,ca) phase. The second phase is more symmetric as can
be seen in Table IV and is labeled (a1b2,c1a2,b1c2) indicating
two distinct ηα(q) magnitudes across all α. A wave vector a

uses one of the two ηα values denoted by subscript (1) on
sublattice one and the second Fourier weight (2) on sublattice
two. The same goes for the other wave vectors b,c highlighting
the symmetry of the state.

The next kind of phase is where each sublattice is made
out of its own independent single dominant Luttinger-Tisza
wave vector. There are again two types of such phases shown
in Fig. 11. One in which the Fourier weights of each of the
three wave vectors a,b,c is different on each sublattice. This
phase is labeled as (a,b,c). The second type of phase is a
highly symmetric version of the former type. Each sublattice
has the same weight of the dominant Fourier mode and is
labeled (a1,b1,c1). The Fourier components and weights of
the spin orders from these two types of phases are enlisted in
Table VII.

The next category of phases are the 1Q type orders, where
all sublattices are made out of the same dominant wave
vector. These again fall into a symmetric –(a1,a1,a1) and an
asymmetric version (a,a,a). Fourier weights of the dominant
mode of spin orders from these two types of phases are shown
in Table V.

APPENDIX E: STATE SELECTION IN THE PRESENCE OF
A SUPEREXCHANGE INTERACTION

Here we show that the Cuboc1 state is also selected
from the family of degenerate states of the nearest neighbor
HAF on kagome by turning on the KLM Hamiltonian. To
this end, we add a strong nearest neighbor antiferromagnetic
interaction of strength Jex to the KLM Hamiltonian and using
exact diagonalization explore the stability of states within the
variational approach outlined before.

Figure 12 shows the phase diagram in the presence of a
strong Jex = 10t which suppresses all the incommensurate
orders and selects within the manifold of the three 120 degree

TABLE VIII. Ordering wave vectors and spin F.T. for reconstructing orders (1) at n = 0.115, (2) at n = 0.146, and (3) at n = 0.181
occurring in the phase diagram in Fig. 4 of this paper. From left to right: order number corresponding to labeling in Fig. 4 of this paper,
ordering wave vectors q1,2,3 for the 3Q(ab,bc,ca) state, and spin F.T. at each wave vector. An approximate and un-normalized spin order can
be constructed using the information provided above using the recipe provided in the text [see Eq. (B4)].

# q1(2π ) q2(2π ) q3(2π ) S1(q1) S1(q2) S2(q2) S2(q3) S3(q1) S3(q3)

(1)

(
0.19

−0.13

) (
0.02

−0.22

) (
0.21
0.09

) ⎛
⎝0.33ei1.4

0.3e−i0.3

0.16ei3.1

⎞
⎠

⎛
⎝0.32e−i0.8

0.33e−i2.4

0.11ei1.6

⎞
⎠

⎛
⎝0.36e−i0.6

0.37e−i2.3

0.13ei1.7

⎞
⎠

⎛
⎝0.09e−i2.8

0.15e−i3.1

0.4e−i3

⎞
⎠

⎛
⎝ 0.37ei1.2

0.34e−i0.4

0.18ei3

⎞
⎠

⎛
⎝0.09ei2.7

0.15ei3

0.4e−i3.1

⎞
⎠

(2)

(
0.15
−0.1

) (
0.02

−0.18

) (
0.17
0.07

) ⎛
⎝ 0.29ei1.1

0.15e−i2.3

0.33e−i0.5

⎞
⎠

⎛
⎝ 0.29ei1.9

0.15e−i1.5

0.32ei0.3

⎞
⎠

⎛
⎝ 0.33ei2

0.17e−i1.4

0.37ei0.4

⎞
⎠

⎛
⎝0.19ei2

0.39e2i

0.04ei2

⎞
⎠

⎛
⎝ 0.33ei

0.16e−i2.4

0.37e−i0.6

⎞
⎠

⎛
⎝0.19ei1.9

0.39ei1.9

0.04ei1.9

⎞
⎠

(3)

(
0.02

−0.13

) (−0.12
0.05

) (
0.1

0.08

) ⎛
⎝0.06e−i0.6

0.03e−i0.6

0.47ei2.5

⎞
⎠

⎛
⎝ 0.29ei2.6

0.36e−i0.5

0.01ei2.6

⎞
⎠

⎛
⎝0.36e−i3

0.29e−i3

0.06e−i3

⎞
⎠

⎛
⎝0.06e−i0.5

0.03e−i0.5

0.46ei2.6

⎞
⎠

⎛
⎝ 0.3ei2.5

0.37e−i0.6

0.01ei2.5

⎞
⎠

⎛
⎝0.36e−i2.9

0.29e−i2.9

0.06e−i2.9

⎞
⎠
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states the q = 0,
√

3 × √
3, and the cuboc1 order. As can be

seen, large parts of the phase diagram are dominated by the
cuboc1 state. (For examples of ‘3Q’ states, other than cuboc1,
see Tables VI–VIII.)
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