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In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation
energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition
state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4

(FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower
activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incor-
porate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could
dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.
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I. INTRODUCTION

In the rapidly evolving field of clean energy materials, many
emerging and established materials exhibit polaronic behavior
[1–5]. In particular, polaronic hopping conduction is under-
stood to contribute to the low conductivity suffered by many
of the transition metal (TM) oxides and phosphates typically
utilized in batteries [6–11] and artificial photosynthesis [12].
Low conductivity often hampers the ability of these materials
to harvest, store, or deliver energy. This usually occurs
because d-shell electrons open a gap that localizes conduction
electrons into small polaronic states [13,14]. In fact, there are
many more materials with similar correlated mechanisms that
produce localized carrier behavior, including ionic systems
π -conjugated polymers [5,15], as well as electron transfer
processes in ion-aqueous solutions [16]. In order to engineer
and improve the electronic performance of this important class
of materials, it is necessary to investigate and understand
the fundamental mechanisms that determine their polaronic
hopping behavior.

The simplest model of polaron hopping consists of a
two-site model as sketched in Fig. 1 [17]. In this picture,
an electron moves from one polaronic site to the next
(e.g., two neighboring TM ions in an oxide/phosphate), by
overcoming an activation energy Ea [17]. At the transition
state, a hopping carrier is “shared between both sites” and
if the coupling J is strong a gap opens up, the strength of
which delineates adiabatic hopping from nonadiabatic hopping
[17]. Now, it is usually assumed that the primary factors
contributing to the hopping activation energy Ea arise form the
nuclear reorganization of bonds between neighboring atoms
during a polaronic transition [8–11]. For example, a TM
oxide/phosphate atom possessing a small electron polaron will
typically experience an expansion of bonds with neighboring
oxygen atoms (sketched as a larger “expanded” red circle in
Fig. 1) due to electron-electron repulsion, compared to those
TM atoms lacking an extra electron (sketched as a smaller
“contracted” blue circle Fig. 1). Likewise, the intermediate
transition state is represented by a midsize magenta circle in
Fig. 1, due to the midway extension of nuclear coordinates in
this state. In the case of a hole polaron localized at a TM site,
the process is described in an analogous fashion but with the
situation reversed (i.e., there will be a contraction of TM-O
bonds at the site of the hole polaron).

Such nuclear reorganization is, understandably, associated
with the stretching of bonds and the corresponding relaxation
of valence electron states. So logically one might assume
that core electrons (both deep core and semicore as sketched
in Fig. 1) play a negligible role in determining the polaron
hopping barrier Ea [8–11]. From this follows the treatment of
core electrons as “frozen,” i.e., not relaxing during a hopping
event. This would appear to be a fair approximation for well
shielded deep-core levels [8–11]. However, the delineation is
not so clear for semicore levels in transition metals (sketched
in green in Fig. 1), even those situated many tens of eV
below valence electrons [18]. Though core electrons do not
participate in bonding, they can “electronically relax” during a
hopping process and may contribute substantially to the overall
hopping barrier Ea .

The impact of core-level relaxation is a subtle and important
question, which goes back to the development of computa-
tional methods in quantum chemistry and condensed matter
physics [18,19]. The most famous of these is Koopmans’
theorem [and its density functional theory (DFT) variants]
[20,21], which allows us to estimate the ionization and affinity
energies of systems in terms of their single-particle eigenstates
(ε). This is accomplished by assuming the orbitals are “frozen”
during the ionization process. While this would appear to be
a fair approximation when a charge state change occurs very
rapidly relative to the time scale of electrons (e.g., optical
excitations) [18,22], when ionization occurs on adiabatic
(slow) time scales from the perspective of electrons, it is not
clear which orbitals may be assumed to be “frozen” [18].
Small polarons provide an interesting framework to study the
question of what orbitals can be viewed as “frozen,” because
hopping sites are often being ionized adiabatically/slowly
(from the perspective of the much faster electrons) as an
electron moves from one site to the next.

Due to computational limitations, in first-principles pseu-
dopotential (PP) calculations on polaronic systems we often
relax this “frozen orbital” assumption for valence electrons,
but not for core electrons [8–11,22–25]. To shed light on
this more general “slow ionization” problem in first-principles
electronic structure theory [18–20], we address the question:
what is the impact of semicore level relaxation upon the
activation barrier of small polarons? As our model system
we have chosen to study the delithiated form of LiFePO4
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FIG. 1. Two-site electron polaron picture. Nuclear and electronic
reorganization must occur to enable a polaron to reach the activation
energy Ea , which represents the total energy (E) change that must
be contributed by the system to move from a polaron localized
on one atom (larger red circles) to another atom (smaller blue
circles). At the intermediate transition state, the electron is shared
by both sites (equally sized purple circles). During this transition,
valence (vb), semicore (sc, in green), and deep-core (dc) levels (ε)
may electronically reorganize/relax and contribute to E. Electronic
coupling between polaronic sites is represented by J .

(FePO4, as shown in Fig. 2) [11], due to the known subtle
interaction between the Fe d-shell and semicore states and
the immense practical importance of this material in Li-ion
batteries [1,11,23]. In this system, we show that semicore level
relaxation can alter the estimated polaronic hopping rate by an
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FIG. 2. The atomic structure of FePO4. A polaron located on one
site (labeled Fe1), with an isosurface of the real space charge density
shown in grey. Its nearest neighbor is labeled Fe2, and its neighbor
in the out of plane direction is labeled Fe3. Consequently, we study
both the common in-plane nearest-neighbor pathway (NN) as well as
the closest interlayer pathway (IL). (Image generated with the VESTA

software package [29].)

order of magnitude or more. While the focus of this study is
on electron polarons in FePO4, we find a similar effect for
hole polarons in LiFePO4 [26]. In general, it is expected that
these results will have broad implications for first-principles
polaronic hopping estimates in many TM compounds. The
remainder of the paper is organized as follows: in Sec. II
we outline the relevant concepts in polaron theory (Secs. II A
and II B) followed by the computational details of this work
(Sec. II C); then, we present our first-principles results in
Sec. III (Secs. III A and III B); lastly, we discuss the general
implications of our results in Sec. III C followed by a summary
conclusion in Sec. IV.

II. METHOD

The physical properties of small polarons in solids closely
resemble those of localized electrons on molecular sites, and as
such polaronic theory borrows many concepts from molecular
electron transfer (ET) theory (and vice versa) [13,27,28]. The
reorganization energy (λ in Fig. 1) due to bond relaxation from
the change in oxidation state can also be seen as similar to the
molecular picture, where in this case it is the relaxation of
TM-oxygen bond lengths on the TM site where the additional
electron is localized. Small polaron hopping is therefore also
analogous to ET theory, where the Franck-Condon principle
requires that the electronic levels of the two sites are brought
close enough together in order for hopping to occur, which can
be accomplished by arranging the TM-oxygen shells to have
the same bonding coordination (see Figs. 1 and 2). Below,
we further outline these fundamental concepts and theoretical
considerations in polaronic hopping in Sec. II A, followed by
a detailed discussion of ab initio core relaxation and polaron
hopping approaches in Sec. II B and an explanation of the
computational method we have adopted in Sec. II C.

A. Two-site polaronic hopping model

The model Hamiltonian for a two-site polaronic system
may be written as [17]

H = M

2

(
v2

1 + v2
2

) + M

2
ω2(x2

1 + x2
2

)

+ A(x1−x2)(â†
1â1−â

†
2â2)+J (â†

1â2+â
†
2â1), (1)

where M is the polaron effective mass, A is an electron-phonon
coupling parameter, and J is the intersite coupling parameter.
The velocities of the two sites are given as v1,2 and the
annihilation/creation operators as â1,2/â

†
1,2. The harmonic

oscillation frequency in each polaronic well, sketched in Fig. 1,
is defined as ω (usually it is regarded as an optical frequency)
[17]. Looking only at positional differences x = x1 − x2 and
ignoring center of mass (x1 + x2)/2 terms, this expression
simplifies to

H = M

2
v2 + M

2
ω2x2

+ Ax(â†
1â1 − â

†
2â2) + J (â†

1â2 + â
†
2â1), (2)

with a single velocity v and reaction coordinate x for the
system. Solving for the energies of this model Hamiltonian
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then gives

E±(x) = ω2M

4
x2 ±

√
A2x2 + J 2, (3)

which is shown schematically in Fig. 1. There are two energy
levels separated by the coupling constant J , with E− being
the adiabatic ground-state energy and E+ the excited diabatic
energy level.

Importantly, within this two-site model the diabatic (or
nonadiabatic) and adiabatic activation energies can be ex-
pressed in terms of the reorganization energy λ:

Ea,dia ≈ λ

4
, Ea,ad ≈ λ

4
− J. (4)

Furthermore, from the derivations shown in more detail in
Ref. [17], there are three resulting characteristic polaron
parameters, which can be utilized to understand how hopping
should be treated in a given system:

η1 = J/Ea (polaron size), (5)

η2 = J 2

�ω
√

EakT
(adiabaticity), (6)

η3 = J 2/EakT (nearest neighbor), (7)

where η1, η2, and η3 describe, respectively, the polaron
size, adiabaticity, and the validity of the nearest-neighbor
approximation.

Most ab initio methods currently employed rely on the
adiabatic approximation, i.e., the electrons always remain in
the lowest possible energy levels during nuclear motion. In
charge transfer processes, including small polaronic hopping
in our case, this approximation might not always be valid. The
hopping rate � derived from this two-site model is divided into
adiabatic and diabatic regimes depending on the value of the
adiabaticity parameter η2 [17]

� = ω

2π
e−Ea/kT ×

{
1 (η2 > 1),
π3/2η2 (η2 � 1).

(8)

Importantly, this parameter allows one to determine the
applicability of ground-state adiabatic DFT to a problem that
is inherently diabatic. For η2 > 1, we are in the adiabatic
regime. If, however, η2 � 1, the adiabatic approximation will
no longer be valid. Either case of the resulting expression in
Eq. (8) gives an exponential relationship between the hopping
rate and the activation energy Ea . This energy Ea is the
difference in total energy between the transition state and the
ground states Ea = ETST − EGS (as sketched in Fig. 1). Such
total energies can be extracted from ab initio calculations,
where ETST is the total energy at the transition state and EGS

is the total energy at the ground state.

B. Ab initio approaches in modeling polaronic hopping

Within DFT, the total energy expression (from which we
extract polaron activation energies) may be further divided into
electronic and ionic terms:

E =
∑

εi − 1

2
EH − δExc + Eionic, (9)

where the electronic contribution is composed of a sum-
mation over the electronic eigenstates (εi), less one-half
the Hartree energy EH, and an exchange-correlation (XC)
correction (δExc) [19]. Moreover, within the local spin density
approximation (LSDA) and general gradient approximation
(GGA) XC frameworks, the techniques of pseudopotentials
[30] and more recently projector augmented wave (PAW)
[23] potentials are amongst the most popular and widely
used methods to approximate the all-electron (AE) scheme
accurately for a wide variety of atoms and systems. The central
idea of these methods is to separate the electrons into an
inner core and an outer valence shell, with the assumption that
outside a certain core radius the tightly bound core electrons
have no significant overlap with the valence electrons and can
therefore be frozen within the potential. For most applications,
this is an excellent approximation. However, there is no
fundamental reason why core levels must always remain frozen
and cannot provide significant corrections to the total energy
as formulated by Eq. (9). For atoms such as transition metals
where the valence d states are more strongly bound to the core,
this approximation might not be sufficient and could result in
significant discrepancies in energies (that is, core levels within∑

εi and thereby E) [23,24]. Moreover, the inclusion of spin
polarization leads to localized spin densities that may have
subtle interactions with the core electron density.

For PP and PAW methods, one can construct a potential
which treats semicore states as valence states [23,25]. This
allows for the adiabatic relaxation of semicore states during
hopping calculations at a slightly increased computational
cost. For iron, in our model system of FePO4, this means
that we should place at least the 3p states and likely also
3s states in the “valence shell.” Additionally, to fully capture
polaron localization, it is necessarily to incorporate onsite TM
electron-electron interactions (see Fig. 2). In this work, we
have utilized the Hubbard DFT + U formalism [31], which
leads to further localized d states and more spin interaction
[6,7,32], further motivating the need to verify the accuracy of
frozen core calculations by comparing them with the inclusion
of semicore valence states. From hereon, we label the Fe
3d64s2 results with Fefc and the Fe 3s23p63d64s2 results with
Fesc during the course of our study of FePO4.

To calculate the activation barriers (Ea as shown in Fig. 1)
between the polaronic sites from first-principles, one usually
assumes a nearest-neighbor (NN) pathway and interpolates
coordinates between the two endpoints as a good initial
estimate [6,7,32], and might apply the climbing image nudged
elastic band (CI-NEB) [7,33] method to further relax the
pathway—hereafter simply abbreviated as the nudged elastic
band (NEB) method. In most situations, this initial pathway
estimate is well justified and results in a realistic barrier height,
after relaxing this pathway using NEB. Additionally, it is
assumed that hopping is adiabatic. In this work, we investigate
in more detail where and why the adiabatic assumption is
justified for our FePO4 model system (as shown in Fig. 2). We
do this by not only looking at the typical in-plane, nearest-
neighbor (nn) pathway, but also by considering a hypothetical
pathway between layers (interlayer). In this manner, we are
able to study the validity of the adiabatic approximation
on both pathways using a simple two-site polaronic transfer
model [17,34] within the context of the general criteria given
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by Eqs. (6) and (8) [27], and the impact of semicore level
relaxation on the NEB computed polaron hopping barriers.

However, NEB calculations do not provide any informa-
tion regarding the attempt frequency ω/2π [as expressed
by Eq. (8)]. Molecular dynamics (MD) calculations, both
analytical and quantum mechanical (ab initio, AIMD), are
typically used to study dynamic processes such as surface
diffusion [35,36] and more specifically ionic diffusion through
battery materials [37,38]. In our model FePO4 system, we use
AIMD to study polaron dynamics, as polarons diffuse through
the collective motion of its nearby atoms. The advantage
of MD calculations is that it allows us to treat the system
in a dynamic fashion while including the effects of thermal
fluctuations, as well as extract both the activation energy and
the hopping attempt frequency (ω/2π ) simultaneously through
the Arrhenius relation,

� = ν0 exp(−Ea/kT ), (10)

where ν0 = ω/2π is the frequency prefactor (hopping attempt
frequency) and Ea is the activation energy. Similar work has
been done previously on TiO2 [2]. We can then relate these
results to the barriers obtained from static (NEB) calculations,
to both verify the static results and provide more detailed
information on the hopping physics.

C. Computational approach

Calculations were done utilizing the GGA functional by
Perdew, Burke, and Ernzerhof (PBE) [39] using projector
augmented wave (PAW) [23] potentials as implemented in the
Vienna ab initio simulation package (VASP) [40]. The on-site
Hubbard term (U) was added to the functional (GGA + U )
to incorporate the strong electron correlation in the Fe 3d

orbitals and has been set to Ueff = 4.3 eV according to previous
calculations [6]. Static calculations were done using 1 × 2 × 2
supercells with an energy cutoff of 500 eV and a k-point
grid such that energies were converged to within 1 meV per
unit cell. The ionic positions and supercell dimensions are
fully relaxed, with interatomic forces lower than 0.01 eV/Å.
Ferromagnetic ordering was assumed throughout. For polaron
calculations, an extra electron was added to the FePO4

supercell with a compensating background charge to maintain
charge neutrality, and ionic positions were subsequently
relaxed to turn the electron into a localized polaron. To obtain
a polaronic ground state from the intrinsic configuration, we
must break the symmetry between the different sites. We
employ an approach that approximates the polaronic effect
by manually elongating each of the six Fe-O bonds by 5%.
This ensures an efficient localization of the electron and fast
subsequent structural relaxation to the ground state.

The Fe PAW potentials Fefc and Fesc used in this study
have 8 and 16 valence electrons, respectively. Additionally,
the potentials have different core radii (2.3 a.u. and 1.9 a.u.,
respectively). A smaller core radius leads to a potential that is
“harder,” i.e., it leads to more accurate results at the expense of
requiring a larger basis set [23]. However, the on-site Hubbard
term applies to a projected on-site density matrix that is defined
only inside the PAW sphere [41,42]. A smaller core radius will
therefore have a different on-site projection, and might lead to
different results. To investigate this in more detail, we first note

that the band gap in both FePO4 and LiFePO4 does not change
significantly depending on which Fe potential was used (see
Ref. [26]).

Additionally, we have performed all-electron (AE) calcu-
lations according to the APW + lo method as implemented
within the WIEN2K software package [43]. Very briefly, the
APW method separates the wave function into spherical
harmonics inside the muffin-tin (MT) spheres and plane waves
outside, with full relaxation of all core states. Within this
method, DFT + U is similarly defined only inside the MT
spheres. If we then take the MT sphere radii to be the same
as the respective PAW core radii, we can separate the contri-
bution of semicore states from possible artifacts arising from
DFT + U implementation specifics, especially in the case of
our Fefc results. That is, we can use an MT sphere radius of 2.3
a.u., and yet allow full relaxation of semicore states within the
APL + lo method in a straightforward fashion without having
to construct a specific PAW potential. We label AE results
as AE2.3 and AE1.9, respectively, with the subscript number
corresponding to the Fe MT sphere radius used (atomic units).
Details of our WIEN2k calculations are provided in Ref. [26].

MD calculations were performed with an energy cutoff of
500 eV and �-point sampling. The Nosé-Hoover thermostat
[44] was used to control the temperature in an NVT-ensemble.
Multiple calculations were run at various temperatures for
20 ps per run with a time step of 1 fs. Initial conditions were
set by adding a random velocity to each atom in an intrinsic
supercell, distributed according to the Maxwell-Boltzmann
statistics corresponding to the required temperature.

A small polaron exhibits two distinct characteristics: a
distortion from the equilibrium in the bond lengths of the FeO6

octahedron surrounding the Fe site denoted by 
r(t), and a
localization of the extra charge on the same Fe site denoted by

ρ(t). We call this polaron-induced effect the charge distortion
field. A hopping event is defined as the movement of this charge
distortion field from one Fe site to another. In other words,
both 
r(t) and 
ρ(t) must move from one Fe site to another
in order for it to be considered polaronic hopping. We take the
correlation of the lattice distortion and the amount of localized
charge, 
ρ(t)
r(t), to be our metric for polaronic motion. In
similar spirit, we take a linearized average of FeO6 octahedron
bond lengths as our approximation for a generalized polaron
coordinate 
r , and take the difference of these coordinates
between two Fe sites 
r1 and 
r2 to be our NEB coordinates.

For our MD analysis, we record individual hopping times

ti for all such events, after which the average temperature-
dependent hopping rate is calculated as the mean of the
individual rates. We then plot these averaged rates as function
of temperature, and extract the hopping barrier according
to the Arrhenius equation of Eq. (10). This way, we can
obtain both the activation energy and the prefactor (hopping
attempt rate) from the same set of MD calculations. It should
be noted that this method of hopping statistics is different
from classical methods [35,36], where it is more common
to calculate diffusivities from mean-square displacements of
the system at the end of the run, for many runs. The current
method takes each hopping event individually and thus exhibits
a larger statistical variance, however, this is unavoidable due
to the significant computational cost of running long ab initio
MD simulations.
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III. RESULTS

Before delving into detailed activation barrier (Ea) and rate
(ω) calculations, let us start from the outset by addressing the
question: is there any noticeable relaxation amongst semicore
levels during the polaronic hopping process? To address this,
we have fully relaxed the transition state barrier for a polaron
hopping between two NN sites as sketched in Figs. 1 and
2, utilizing the NEB method with the inclusion of Fe 3s

and 3p semicore sates (Fesc). Comparative transition state
activation energies will be presented shortly, but let us first
turn our attention to Fig. 3(a), which shows the projected
density of states (PDOS) of the Fesc atomic orbitals in the
intrinsic FePO4 configuration (i.e., without a polaron present).
As expected due to symmetry, all the Fe 3s states have
the same energy. Similarly, there are three peaks for the
identical 3px , 3py , and 3pz states. They lie deep below
EF and therefore do not influence the bonding properties
of the system. This is further elucidated by their real-space
distribution [inset of Fig. 3(a)], showing that these semicore
states are spatially confined to their respective Fe centers. The
3d states are part of the valence and conduction bands, and the
band gap is 1.9 eV, which is in good agreement with earlier
calculations [45].

Adding an electron in Fig. 3(b) leads to the formation
and occupation of a polaronic state as shown by the sharp
3d peak at the Fermi energy. However, this also breaks the
symmetry and lifts the degeneracy of the Fe 3s and 3p

semicore states, separating them in energy. In other words,
there is significant polaron induced electronic relaxation of the
deeper lying states, an effect that would not be present if those
states were kept frozen. Moreover, the electronic relaxation
of the semicore states is pronounced when we move from the
polaronic ground-state configuration “POL” in Fig. 3(b) to the
polaronic transition state “TST” in Fig. 3(c) (e.g., coordinates
0 and 1 in Fig. 1, respectively), where the electronic levels
undergo a nontrivial shift and splitting between their relative
energies. While the bonding chemistry is accurately described
by the polaronic state at EF and surrounding 3d states (red in
Fig. 3), the electronic relaxation of semicore states between
the “POL” and “TST” configurations can lead to different total
energies (and thereby activation energies Ea) depending on
whether a semicore (Fesc) or frozen-core (Fefc) potential is
used in the calculation as expressed by Eq. (9). A similar
relaxation of semicore states was calculated in LiFePO4

(provided in Ref. [26]).
In the subsequent sections, we investigate the effects

of semicore relaxation by comparing results with an Fefc

potential, which keeps the 3s and 3p states frozen, and a
Fesc potential, which allows these semicore states to fully
relax. It follows that there is a significant difference in
polaron activation energies and dynamics depending on which
potential is used. Our results show similar trends in both cases
that dynamic barriers obtained from MD are comparable to
static (NEB) barriers, and that non-NN hopping is significant.
Using a basic two-site hopping model, we then show that only
the NN pathway is within the adiabatic regime, validating
both assumptions in the case of FePO4. We argue that it is
necessary to verify these conditions when modeling similar
polaronic materials.

A. NEB

Figure 4 shows our calculated hopping barrier (Ea) for
electron polarons in FePO4, whose NN value in Fig. 4(a)
for the Fefc case (blue triangles) is comparable to previously
calculated results (see also Fig. 2) [6,7]. Figure 4(b) shows
the calculated barrier for the non-NN interlayer (IL) pathway
(see also Fig. 2). The energies for the Fesc study are shown as
red squares.

Overall, in Fig. 4, we can clearly observe the energetic
differences between the two potentials: using the Fesc potential
leads to barriers that are roughly 100 meV lower than the
barriers obtained with the Fefc potential. We attribute this
discrepancy to the localized electron inducing additional
electronic relaxation and spin interactions with lower lying
semicore states on the Fe sites (as illustrated in Fig. 3).
Moreover, we can compare the results with those obtained
from AE calculations [26]. For the Fefc potential, the barrier is
142 meV compared to a barrier of 77 meV for the AE2.3 calcu-
lation. The barrier for the Fesc potential is 52 meV, compared
to the AE1.9 barrier of 46 meV. The significant difference
between the Fefc and the AE2.3 barrier, combined with the
smaller difference between Fesc and AE1.9, underscores that
semicore relaxation is the main cause of the lowering of the
barrier. It is known that having semicore valence electrons
leads to more accurate results for magnetic transition metals
such as iron [23]. In the case of polaronic hopping barriers
in FePO4, this leads to a significant lowering of the barrier,
and predicted room temperature mobilities that are one or
even two orders of magnitudes above that when using the
more common Fefc potential (as outlined in Table I and to be
discussed shortly). A similar trend was computed in LiFePO4,
with the Fefc barrier at 257 meV and the Fesc barrier at 79 meV
(see Ref. [26]). We argue that this might affect hopping barriers
in other transition metal polaronic materials such as hematite
and titanium dioxide in a similar fashion and recommend that
energy calculations be done using potentials that incorporate
semicore electrons in the valence states.

Additionally, an issue frequently encountered in magnetic
systems is the existence of many local minima arising
from the many different spin configurations that are locally
favorable. Inclusion of the Hubbard U parameter lifts the
orbital degeneracy and further exacerbates this issue, leading
to configurations that are separated in energy on the order of
hundreds of meV. This leads to self-consistent solutions that
are highly sensitive to small variations in geometry, volume,
and even numerical algorithms and mixing parameters [46].
Furthermore, these solutions are not guaranteed to have the
lowest possible energy of that particular system [46]. In order
to systematically improve convergence to the true polaronic
ground state in transition state calculations such as those shown
in Fig. 4, we have found it necessary to apply the U -ramping
method proposed by Meredig et al. [46]. In brief, this involves
calculating the ground at U = 0 eV, then gradually increasing
the U parameter until we reach the desired value for U . At that
point, it is more likely that the self-consistent solution has been
nudged to the true ground state [46], increasing the confidence
that our results are consistent. We found that ramping up U by
1 eV per iteration enabled us to consistently obtain accurate
energies, especially for images near the transition state.
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FIG. 3. Projected density of states (PDOS) for the two Fe atoms taking part in the electron transfer process for three relevant configurations
represented by the schematic images of FeO6 coordinations as introduced in Fig. 1. The PDOS for majority and minority spin are plotted on
the positive and negative vertical axis, respectively. The semicore 3s (green peaks, left) and 3p (blue peaks, center) states lie deep below the
Fermi energy, while the 3d (red curves, right) valence states contribute to the chemistry of the system. (a) PDOS of the intrinsic ground-state
configuration (“GS”) without additional electrons introduced. [(a), inset)] Real-space distribution of the Fe 3s semicore states. (b) PDOS of
the polaronic ground state (“POL”), i.e., the electron is fully localized on one Fe site. (c) PDOS of the transition state (“TST”), where both Fe
sites have similar coordination and share the additional electron.

Furthermore, it is commonly understood [6,7] that
electronic transport in FePO4/LiFePO4 is primarily two-
dimensional, staying within the plane due to Fe sites being
separated by just O atoms in between (e.g., hopping between

Fe1 and Fe2 in Fig. 1). The interlayer pathway has phosphate
groups isolating the Fe sites, obstructing conductivity in the
third dimension (e.g., hopping between Fe1 and Fe3 in Fig. 1).
However, our calculations in Fig. 4(b) show that this IL
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FIG. 4. Activation energies (a) and (b) calculated with the CI-
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potentials, together with the level splitting at the transition state
arising from the site coupling in (c) and (d), respectively. (a) and
(c) nearest-neighbor (NN) barrier. (b) and (d) interlayer (IL) barrier.

pathway is energetically higher, but still within the range
where hopping events could theoretically still be observed,
in particular, for the low Ea estimate provided by the Fesc

potential. To verify how realistic this predicted pathway is, we
have conducted a more in-depth study of adiabaticity and the
validity of the adiabatic approximation for both pathways.

Figures 4(c) and 4(d) show the Fesc and Fefc PDOS close
to the Fermi energy EF at the charge transfer transition state
(polaron coordinate 0.5 in Figs. 1 and 4). In this state there
is an equal probability of finding the electron on either site,
and therefore a twofold degenerate polaronic state at EF .

TABLE I. Barrier and frequency prefactors obtained from AIMD
calculations. The advantage of using AIMD is that it enables us
to calculate both barriers and prefactors simultaneously. Using
these results, the diffusivities and mobilities were calculated at a
temperature of 300 K. There is a ∼20 meV discrepancy between MD
and NEB computed barriers for both Fesc and Fefc potentials.

Frozen core Semicore

Nearest neighbor

Ea,NEB (meV) 142 52
Ea,MD (meV) 151 28
ν0 (1013 Hz) 14.75 5.26
D (cm2/s) 6.41×10−4 2.66×10−2

μ (cm2/V s) 0.03 1.03

Interlayer

Ea,NEB (meV) 174 59
Ea,MD (meV) 143 26
ν0 (1013 Hz) 14.19 4.92

Electronic coupling (J ) then lifts this degeneracy and splits
the two states into “bonding” and “antibonding” states. We
take this separation between the bonding and antibonding
states to be our approximation to the site coupling term J

as 2J = EAB − Ebonding as sketched in Fig. 1 and discussed in
Sec. II A [47].

For the NN transition state 2J � 200 meV for Fesc and
2J � 280 meV for Fefc. This indicates that there is sufficient
electronic coupling through the Fe-O-Fe bonds such that the
NN transition may be regarded as adiabatic, as we shall
evaluate shortly. For the interlayer transition state, however,
there is a much weaker electronic coupling 2Jinter � 20 meV
between the two sites regardless of the potential utilized,
and both states remain at EF . This can be attributed to the
phosphate groups isolating the sites electronically (as shown in
Fig. 2). Since the adiabaticity parameter η2 as given by Eq. (6)
depends strongly on J , we predict the interlayer transition to be
highly diabatic and thus very unlikely to occur. It also implies
that our results for the non-NN transition are unrealistic,
as DFT is a ground-state theory and therefore inherently
adiabatic—although time-dependent (TD) DFT should be able
to capture such diabatic transitions.

To compute η2 using Eq. (6) and fully evaluate adiabaticity,
a frequency factor ω is required. As discussed in Sec. II A,
this is usually taken as the optical phonon frequency of the
system. Our approximation is to use the frequency prefactor of
Eq. (10) obtained from MD calculations to estimate ω = 2πv0

as described in the next section [see also the discussion
around Eqs. (8) and (10)]. Before detailing our MD results,
let us briefly state the impact of the obtained frequencies
on the adiabaticity parameter (η2). For the nearest-neighbor
pathway, we obtained η2 � 0.35 for Fefc and η2 � 2.6 for
Fesc, concluding that the NN electron transfer process can
be seen as reasonably adiabatic (η2 > 1). However, for the
interlayer pathway, η2 � 0.002 for Fefc and η2 � 0.01 for Fesc,
respectively, indicating that this is a highly diabatic process.
Therefore we argue that the nearest-neighbor pathway can be
well approximated with common DFT methods, but that the re-
sults obtained for the interlayer pathway cannot be relied upon.

B. Molecular dynamics

To compute the frequency prefactor v0 = ω/2π and further
verify the NEB computed activation barriers Ea , the hopping of
electron polarons in FePO4 was calculated in the temperature
range of 300–500 K for Fefc and 143—300 K for Fesc calcu-
lations, with more hopping occurring at higher temperatures.
Figure 5 shows a few characteristics of this hopping process
(using the correlation methodology discussed in Sec. II C).
While most of the iron sites and their oxygen bond lengths
are in the Fe3+ ionic state (
ρ(t)
r(t) ∼ 0), there is one site
with high correlation, indicating that the polaron is currently
located at that specific site. We can thus say that hopping
occurs whenever another site takes over as the site with the
highest polaron correlation.

As shown in Fig. 5, polaron transitions between sites are
well distinguishable as transitions between curves with the
highest charge-lattice correlation [
ρ(t)
r(t)]. The oscilla-
tions over time show the effects of adding thermal fluctuations,
and hopping will take place whenever the random fluctuations
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FIG. 5. Correlation analysis on a sample MD run. We calculate
the average Fe-O6 bond lengths of all 16 Fe sites scaled to unity,
and multiply these values with their respective projected 3d electron
occupations (also scaled to unity). The resulting charge-lattice
correlation statistic should give a reasonable indication of the current
polaron location.

align to push the polaron over the energetic barrier, allowing
both the distortion configuration and the extra charge to
migrate to another location. We record the times of each such
transition, and take the time between each transition 
ti as
their respective hopping time.

Theory [17] suggests that small polaron hopping exhibits a
Markovian behavior, i.e., hopping events occur independently
from each other at a constant average rate determined by the
system temperature. We therefore expect our hopping events
to be exponentially distributed (see inset of Fig. 6), and take
the calculated average time between hopping events τ (T )
to be our typical rate ν(T ) = 1/τ (T ). Calculating rates at
different temperatures then allows us to view the relationship
between temperature and average hopping rates, as shown in
the Arrhenius plots of Fig. 6.

The numerical results are summarized in Table I. Dif-
fusivities and mobilities were obtained from the typical
relations [48]

D = l2

2d
�, μ = e

kT
D, (11)

where d = 2 is the dimensionality of the system, e is the
elementary charge, and l � 3.86 Å is the nearest-neighbor
distance between polaron sites (i.e., Fe atoms). Here we can see
very clearly the impact of including semicore states. Not only
does it change the barriers drastically, it also raises the hopping
frequency accordingly due to these lower barriers. Whereas
we can simulate T = 500 K within reasonable accuracy for
Fefc, the average frequencies for Fesc are already nearing the
numerical resolution of the 1 fs time step at T = 300 K. Our
MD results are consistent with the predictions from our NEB
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FIG. 6. Polaron AIMD hopping statistics. (a) Nearest-neighbor
hopping. (b) Nearest interlayer hopping. Red line: linear fit of
semicore calculations at T = 143, 166, 200, 250, and 300 K. Blue
line: linear fit of frozen core calculations at T = 300, 350, 400, 450,
and 500 K. Inset: exponential Poisson distribution of hopping times
shown for one temperature point. The mean of this distribution was
taken to be the mean hopping rate at that particular temperature.
Similar statistics were done for each temperature point on these
Arrhenius plots.

calculations for the Fefc case, although the values for the Fesc

MD results are consistently off by roughly 20 meV. This result
casts into doubt the validity of the Markovian assumption, as
hopping rates are so high [Fig. 5(b)] that the system might not
have enough time to relax into its new polaron ground state
before attempting another hop [17]. This might result in hops
that are slightly correlated with each other inducing a slight
memory effect, resulting in the lower calculated activation
barrier. However, overall transition state theory (NEB) and the
MD results agree fairly well.

Nevertheless, one could argue that there might be room to
further improve the variance in the computed MD results, as
exhibited within the inset of Fig. 6. However, we maintain
that our results are statistically significant by noting that the
barrier is exponentially related to these statistics. For example,
a 20 meV increase in the MD computed barrier (in line with
the NEB results in Fig. 4) would lead to a doubling of the
mean and width of the distribution (in the inset of Fig. 6).
Such a drastic change would not be achievable by sampling
more points to reduce the variance.

C. Discussion

Overall, the results of our combined NEB and MD study
(summarized in Table I) indicate a sizable ∼100 meV
energy difference between Fesc and Fefc calculations of the
polaronic hopping barrier Ea . We attribute this to the electronic
relaxation of semicore states, including spin interactions, that
are hard to capture within the frozen core approximation [as
summarized by Eq. (9) and displayed in Fig. 3]. The acti-
vation barriers obtained with all-electron calculations further
emphasize the effect of semicore relaxation in this material.
A 100-meV discrepancy may be tolerable in some instances,
however, in FePO4 it leads to drastically different barriers
and therefore a qualitative difference in diffusion analysis (as
shown in Table I). With our lower barriers, the calculated
diffusion constant and mobility are two orders of magnitude
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higher than what was previously predicted. More practically,
this opens up an interesting avenue of theoretical investigation
in polaronic hopping during the charging and discharging of
LiFePO4 [1,11]. In particular, it indicates that the exceptionally
low conductivity observed during LiFePO4 intercalation might
be due to correlated motion between polarons and Li ions. It
also supports the notion that the rate-limiting factor in LiFePO4

intercalation is the diffusion of Li+ ions.
More generally, we argue that within the scope of polaronic

materials and transition metal redox-type cathodes with strong
spin-polarized d orbital correlation effects, the p (and perhaps
also s) semicore states should always be included in the
“valence” shell to capture and explore electronic relaxation and
spin interactions. These interactions might even be significant
for mid-to-late transition metals, which have larger d shells.

Furthermore, to evaluate adiabatic assumptions common in
transition state theory based polaron hopping calculations, we
have done an extensive molecular dynamics study on the free
polaron hopping in FePO4 to sample the available diffusion
pathways in a dynamic fashion, incorporating both the typical
nearest-neighbor pathway as well as the most likely nearest
interlayer transition adiabatically. Our results show reasonable
agreement within 10 meV compared with the NEB results for
both the frozen core and semicore calculations. This remains
within the precision of both NEB and MD methods. Though
our adiabatic DFT calculations show a similarity in activation
energies between the nearest-neighbor and nearest interlayer
pathways, however, by looking at the interaction parameter J

we have demonstrated that only the nearest-neighbor transition
can be treated realistically within the adiabatic approximation
typically inherent in Born-Oppenheimer based DFT. For
the nearest interlayer transition, there is a phosphate group
between the sites which lowers this J coupling to almost 0,
indicating that such transitions are highly nonadiabatic and as
such are far less likely to occur in reality. With this part of
our study, we conclude that the nearest-neighbor assumption
is well justified for FePO4, but we argue that this condition
should be verified for electronic transitions in all polaronic
materials.

IV. SUMMARY AND CONCLUSION

In this work, we have looked at a few important concepts
and ab initio specifics of polaronic behavior in TMOs using
FePO4 as our model system. Our ab initio computations
were performed within the Hubbard DFT + U formalism,
utilizing U ramping [46], applied to the conventional GGA

DFT functional. In this model system, it was determined
that interactions between spin-polarized d electrons and the
semicore p and s electrons might significantly lower small
polaronic hopping barrier estimates by up to ∼100 meV. While
semicore levels do not participate in bonding, they can affect
small polaron activation energies through electronic relaxation
and spin interactions. As such, TMOs are interesting systems
to study these effects due to the significant interaction between
polaronic states and on-site core electrons. We argue that
semicore relaxation might generally influence the properties of
similar polaronic materials, and the impact of deep core-level
interactions should thus be examined for these materials as
well.

Furthermore, we have evaluated the adiabaticity of po-
laronic barriers in FePO4. We have considered additional
diffusion pathways, as well as sampled the stochastic nature of
this system in a thermally fluctuating environment by means of
AIMD. Our results have shown that, while there are indications
of multiple pathways utilized by the system, only the nearest-
neighbor pathway lies well within the adiabatic regime.
Therefore our adiabatic transition state theory is insufficient
in treating the other, nonadiabatic pathways accurately. Since
polaronic hopping can be described as a series of electron
transfer events, we argue that the assumption of adiabaticity
should always be verified in similar polaronic materials.
Moreover, we have shown that AIMD could be a useful tool
in sampling pathways without prior assumptions, as well as
obtaining the frequency prefactor without needing to resort to
phonon calculations.

Lastly, on a more practical note, based on these lower
polaron activation barrier results, we expect the rate-limiting
factor in LiFePO4 intercalation to be the hopping of Li+ ions,
having activation energies of more than four times that of free
polarons [6–11]. Exploring correlated polaronic and Li+ ion
diffusion, in the context of semicore level relaxation, would
be an interesting topic of future investigation.
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