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Density-functional Monte-Carlo simulation of CuZn order-disorder transition
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We perform a Wang-Landau Monte-Carlo simulation of a Cu0.5Zn0.5 order-disorder transition using 250
atoms and pairwise atom swaps inside a 5 × 5 × 5 body-centered-cubic supercell. Each time step uses energies
calculated from density-functional theory via the all-electron Korringa-Kohn-Rostoker method and self-consistent
potentials. Here we find that CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as
observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known
experimental peak at 750 K. We also plot the entropy, temperature, specific heat, and short-range order as a
function of internal energy.
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CuZn is among the class of Hume-Rothery alloys [1]. Here
the atomic size and crystal structure of the base metals are
similar. As a result, electronic effects dominant phase stability
mechanisms [2]. A key parameter is the electron-per-atom
ratio (and/or chemical potential). The e/a ratio determines
the Fermi surface and concomitant nesting mechanisms and
energy pseudogaps that can drive phase stability [3]. For
low e/a on the Cu-rich side of the phase diagram, an
A1 [face-centered-cubic (fcc)] solid solution is stable. On
the Zn-rich side, there are a series of complex, partially
ordered phases. Of interest to us is Cu0.5Zn0.5, where the
body-centered-cubic (bcc) structure is stable as a result of the
Fermi surface crossing the Brillouin zone boundary [4]. Here
an order-disorder transition occurs at Tc = 750 K [5,6], taking
the system from a disordered A2 (bcc) phase to an ordered
B2 phase (CsCl structure). We have sought to characterize this
transition by using first-principles density-functional theory
(DFT) and direct ensemble averaging through Monte-Carlo
simulation.

To reduce computational cost, methods for evaluating
phase diagrams for binary alloys have either used model
Hamiltonians or mean-field techniques. In the model Hamil-
tonian approach, it is typical to expand the energy of an
alloy configuration using a sum of nearest-neighbor clusters
weighted by undetermined coefficients [7]. Formally this sets
the energy E = ∑

κ Eκ

∏
i∈κ σi , where κ denotes a cluster and

σi is a spinlike variable representing the occupancy on a site
i [8]. The cluster coefficients Eκ are chosen by comparing to
DFT energies at a specified set of intermetallics. The geometry
of the clusters can be identified a priori for a given structure
and the energy of a given configuration rapidly evaluated
once the coefficients are known. This enables Monte-Carlo
simulations to predict the phase diagram. This method has
been applied to the A1 solid solution, finding a number of
long-period superstructures at low temperatures (∼20 K) [9].

The other technique that has been employed is to per-
form a Landau-like perturbation theory from a mean-field
disordered state [10]. Here the perturbative order parameters
are infinitesimal and independent concentration waves. A
concentration wave imposes a variation on the uniform
disordered medium by imposing a partial ordering along some
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direction. This could be, for example, a marginal increase
(decrease) in the concentration of Cu for every even (odd) plane
along (100). Within the Korringa-Kohn-Rostoker coherent-
potential-approximation (KKR-CPA) framework, the sign of
the resulting free-energy change may be calculated [11]. If it
is negative at some critical temperature Tc, it predicts that the
disordered phase is unstable to this concentration variation.
The incipient, unstable concentration wave can be used to
anticipate a phase transition to a closely corresponding inter-
metallic. As an electronic theory, it is capable of incorporating
Fermi surface mechanisms. Using this method, Turchi et al. [2]
found A1 to be the stable high-T phase of Cu0.5Zn0.5. Upon
including phonon contributions, they found that the A2 phase
is more stable at high T and that it transitions to B2 below
Tc = 700 K. We repeated this calculation using codes made
available to us by J. Staunton at the University of Warwick. To
do so, we used the “band-only” [11] approximation. Here the
charge density is considered frozen as an infinitesimal variation
in chemical composition is applied. We found a transition to
an ordered B2 phase at 925 K. A correction can be applied
to this mean-field result due to Onsager that compensates for
chemical self-interaction effects [11]. This correction results
in the total spectral weight in k space of the short-range-order
parameter being conserved. This conservation rule is a known
physical result and follows from the definition of the short-
range order (in real space) as αij = 〈ξiξj 〉 − 〈ξi〉〈ξj 〉. Here
ξi ∈ {0,1} indicates the occupancy of a Cu atom at the ith site,
and 〈 〉 refers to an ensemble average. Including an Onsager
correction reduces the transition temperature to 615 K. We
did not include phonon contributions since we only consider
the transition from A2 to B2 phase. This does not impact our
conclusions since the Debye temperature of B2 CuZn (300 K)
is well below the transition temperature [12].

What has not been done until now is to attempt a
direct ensemble average using first-principles DFT for each
configurational energy. This was deemed computationally
infeasible, especially for cell sizes that begin to approach
the thermodynamic limit. We show in this study that such
a simulation is within reach and produces sensible results.
We have performed a direct Wang-Landau Monte-Carlo
simulation of a 250-atom CuZn supercell using first-principles
DFT. No use of model Hamiltonians or fitting or expansions
about a mean-field medium are performed [2,9,10]. This also
enables us to calculate not only the transition temperature but
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also the density of states, short-range order, and specific-heat
curves from direct ensemble averaging. The total sample
space is very large, consisting of (250 choose 125) = 1074

configurations. Here we sampled over 600 000 configurational
energies, a calculation of unprecedented scale and close to
our computational limit. Nevertheless, we obtained a smooth
density of states. Our calculation showcases the accuracy and
limitations of first-principles DFT using ensemble averaging.
It also serves as a benchmark for simulations that use cluster
expansions and model Hamiltonians fit to DFT data. We
find that CuZn on a bcc lattice undergoes the predicted
second-order transition, but at Tc = 870 K. These calculations
also demonstrate the possibility of direct calculation for
other alloys, including multicomponent high-entropy alloys
of recent interest [13].

Our Monte-Carlo sampling is based on the Wang-Landau
technique [14], a so-called flat histogram method. Such a
method seeks to sample an energy window so that a Monte-
Carlo walker makes nearly equal visits to each energy bin.
If configurations are selected randomly, then this requires
that the probability to visit be weighted by 1/g(E) for the
density of states g(E). In practice, a Wang-Landau run begins
with an estimated density of states gapp(E) = 1. A random
walker then makes moves in configurational space. Moves
from an energy E1 to E2 are accepted with probability
p = min{1,gapp(E1)/gapp(E2)}. At the end of each move, the
estimated density of states at walker position E is improved
by increasing g(E) → fg(E) for some modification factor
f > 1. This continues to bias the walker to energies with
a lower density of states. As a result, the histogram H (E)
of walker visits flattens as the simulation proceeds. Once
a certain flatness criterion is achieved, the modification
factor is reduced and the histogram reset. The accuracy of
the final density of states depends on the flatness criterion
used and the final modification factor f . In our simulation,
we used the modification factor log f = 3.125 × 10−4. The
flatness criterion was [min g(E)]/[average g(E)] > 0.60. An
advantage of the Wang-Landau sampling technique is that
the simulation may be run once and the temperature set a
posteriori. This is true as long as the desired temperature is
within the sampled energy window.

Our simulation cell is a 5 × 5 × 5 lattice of conventional
bcc cells (or 250 atomic sites). The lattice spacing is taken from
the experimental high-T phase as a0 = 5.584 14 Bohr [15] and
is fixed for all temperatures. One of the benefits of studying
Cu0.5Zn0.5 is that the lattice spacing undergoes minimal
change through the transition. In the low-T phase, the spacing
increases to 5.5902 Bohr, or a change of 0.1% [16]. Half the
sites are set to Cu and the other half Zn. In high-entropy (A2)
configurations, the Cu and Zn atoms are randomly distributed.
In the ground state (B2), the Cu atoms are at conventional cube
corners and Zn is at the body center (or vice versa).

To calculate the energetics and perform Wang-Landau sam-
pling, we modified the all-electron KKR code LSMS3 at Oak
Ridge National Lab [17]. The LSMS3 code solves the Kohn-
Sham equations of density-functional theory using a real-space
implementation of the multiple scattering formalism [18–20].
The code achieves linear scaling of the computation effort
for the number of atomic sites by limiting the environment of
each atom that will contribute to the calculations of the Green’s

function at this atomic site [21]. The computational efficiency
of the LSMS approach for large supercells allows the direct use
of constrained density-functional energy calculations inside
classical Monte-Carlo simulations to calculate the thermody-
namic properties of materials from first principles on modern
supercomputers [22]. The Wang-Landau implementation of
the LSMS3 was originally designed for the thermodynamics of
Fe or Ni spins. Here we modified the code to convert spin
degrees of freedom to site occupancy variables {ξi}. ξi = 0 (1)
indicates the presence of a Cu (Zn) atom at site i.

Our move type is point-to-point atom swaps of unlike
atoms. Small steps improve the acceptance ratio. This is
especially helpful as the ground state is approached. A
steep density-of-states curve leads to significant slowdown
in the Monte-Carlo sampling due to the large rejection rate.
Atomic potentials are taken as spherical, and total energies
are calculated within the muffin-tin approximation [23]. The
energy includes the nuclear attraction, Coulomb repulsion, and
exchange-correlation effects using the local-density functional
parametrized by von Barth and Hedin [24]. Approximately 30
iterations are required at each Monte-Carlo step to achieve
electronic self-consistency. This reduces the total number
of possible Monte-Carlo steps by the same factor. Other
KKR details include a basis cutoff LMAX is the maximum
angular momentum in the site basis expansion of spherical
harmonics LMAX = 3 and an LSMS local interaction zone
of 8.5a0. These are typical parameters for metals within
KKR. Note that the only connection between first-principles
DFT and the Wang-Landau simulation is the total energy
provided at each time step. The code was validated prior to
simulation by ensuring that the energetics are invariant to
serial versus supercomputing runs and also invariant across
symmetric configurations. We further confirmed that the B2
configurational energy (−3445.826 295 Ry/at including the
core electron) was indeed lower than any other configura-
tion simulated. Each energy is calculated to a precision of
10−6 Ry.

An initial attempt to perform Wang-Landau sampling
throughout the entire range of configurations had convergence
issues. This was due to the steep density of states near the
ground state. To mitigate this difficulty, we performed three
separate Wang-Landau runs: one each in the energy windows
from [0.2, 0.3], [0.3, 0.6], and [0.5, 1.0] Ry. A restricted energy
window limits the range of the possible density of states and
therefore improves acceptance ratios and reduces run times.
All walkers were initialized to the ground-state configuration
for each run. This reduced the warm-up time, because moves
generating moves toward a higher density of states occur more
often than the reverse. Using first-principles DFT on a 250-
atom cell restricted our runs to just under 2000 Monte-Carlo
steps per walker. Nevertheless, the resulting density-of-states
curve is smooth because we used 125 walkers. Each walker
consisted of 32 nodes, and each node was compromised of 8
CPU cores and an Nvidia GPU. The complete configuration
of each walker at each step was saved for postprocessing
purposes.

In Fig. 1, the energy trace from each energy window is
presented. The walkers are less mobile in the lowest energy
window. This is a result of a slowing down that occurs in
this regime due to a steep density of states. However, in all
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FIG. 1. The energy trace of 125 Wang-Landau walkers for Monte-
Carlo runs in energy windows [0.5, 1.0], [0.3, 0.6], and [0.2, 0.3],
respectively. Each window was performed as a separate run. Gray
dots represent the energy of a walker at some time step. Colored lines
are the explicit trace of five walkers. After a warm-up period of up
to 300 steps, the walkers cover the whole energy range. All walkers
were initialized in the B2 ground state for each run.

three windows by step 300 the walkers are sampling the entire
range. Our main result is the logarithm of the density of states
as presented in Fig. 2. Each point corresponds to an energy bin
in the Wang-Landau simulation. The Wang-Landau method
collects the density of states to within an arbitrary scale factor.
We fixed this factor by setting log g(0.2) = 0 at E = 0.2. We
also scale the density of states in the other two windows
to ensure continuity at E = 0.3 and 0.6. Our results may
be interpreted in either the microcanonical or the canonical
ensemble. The extent to which the two approaches agree or
disagree suggests how far we are from the thermodynamic
limit [25]. In the microcanonical ensemble, the internal energy
is fixed and Fig. 2 may be interpreted as the entropy up to an
additive constant. Observables are calculated by taking the
appropriate derivatives of the entropy curve. For this purpose,
we have fit the curve to a cubic spline. At E = 0, the slope
of the density of states will approach infinity (not visible),
while in the totally disordered state at high energies (1 Ry) the
slope approaches zero. In between, the slope is approximately
constant over a large range of energies. This slope corresponds
with the transition temperature Tc. At energies above 1 Ry
the slope becomes negative, and this only occurs at negative
temperatures. In the canonical ensemble the temperature is

FIG. 2. The sampled microcanonical entropy (red points) for a
250-atom CuZn supercell and the corresponding cubic spline fit to
the data (solid gray). Each point represents a histogram bin from
the Wang-Landau simulation. The microcanonical entropy is also the
logarithm of the density of states. The entropy is shifted to zero at
0.2 Ry, which is the lowest energy sampled.

fixed, and instead the internal energy is calculated as a
Boltzmann weighted average. The main disagreement we find
between the two ensembles involves the shape and precise
location of the peak in our specific-heat curve.

Figure 3 shows the relationship between the temperature
and the internal energy. In the microcanonical ensemble, T =
β−1 = (dS/dU )−1 for S = S(U ), with the entropy as given in
Fig. 2. In the canonical ensemble, the internal energy

U = 〈E〉 =
∫

dE g(E)e−βE/Z

for the partition function Z = ∫
dE g(E)e−βE . For the system

we consider, the density of states varies by many orders of
magnitude. To prevent numeric overflow, the largest term in the
sum is factored out. Numeric underflow remains, but we ignore
this since the dominant terms in the Boltzmann sum are usually

FIG. 3. Temperature computed in the microcanonical (gray) and
canonical ensembles (red). In the microcanonical ensemble, we calcu-
late T = dU/dS from the cubic spline fit. In the canonical ensemble,
we calculate the Boltzmann average 〈E〉 = ∑

i Eie
−Ei/kBT /Z for

partition function Z. The agreement between the two ensembles
suggests an approach to the thermodynamic limit. The Boltzmann
average is incorrect below 700 K because the dominant term in the
summation is below 0.2 Ry.
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FIG. 4. The specific heat calculated using CV = −β2dU/dβ

from a smooth spline fit of entropy (gray) and using CV =
(〈E2〉 − 〈E〉2)/(k2

BT 2) from Boltzmann weighted sums. Note that the
calculation using a derivative is numerically less stable but captures
the presence of a spike in specific heat near the phase transition.
Using Boltzmann sums is numerically stable, but the correct limit is
approached with appreciable smoothing.

included. However, the Boltzmann weighted sum becomes
invalid when the dominant term is outside the range [0.2, 1.0].
This is visible in the figure for T < 700 K. Note that the curves
that are calculated assuming two different ensembles otherwise
overlay relatively well. This suggests that the supercell shows
signs of being in the thermodynamic limit.

The electronic specific heat at constant volume is presented
in Fig. 4. Again, this is computed for both ensembles. Because
the transition is second-order, we do not expect a latent heat
of transformation. In the microcanonical ensemble, we use

CV = −β2 dU

dβ
= −β2

(
d2S

dU 2

)−1

as calculated from the spline fit to the entropy. Here a sharp
peak is evident at 895 K and results from dβ/dU approaching
zero, as seen in Fig. 2. In the canonical ensemble, we use

CV = 〈E2〉 − 〈E〉2

k2
BT 2

and calculate 〈E〉 and 〈E2〉 using Boltzmann weighted sums.
The resulting curve peaks at 870 K and shows a smoother
profile. This profile results from finite-size effects, and there
would be a sharper peak for a large box. At finite size there
are fluctuations in energy in the canonical ensemble that are
not included in the microcanonical ensemble. In addition,
performing numeric summations is more stable than taking
numeric derivatives. Both computations are within reasonable
agreement on Tc, however. The phonon contribution to the
specific heat has not been included in the specific heat of
Fig. 4. The Debye temperature of B2 CuZn is 300 K while the
temperatures displayed in Fig. 4 are 750 K and above [12].
In this limit, the rule of Dulong and Petit is applicable
and therefore the phonon contribution to the specific heat
is constant. This consideration is in agreement with Turchi
et al. [2], whose work shows that the inclusion of phonon
contributions primarily effects the relative stability of A1 (fcc)
and A2 (bcc) phases. Here we have restricted our simulation
to A2 and B2 phases, both bcc.

FIG. 5. The short-range-order parameters c(1 − c)αij = 〈ξiξj 〉 −
〈ξi〉〈ξj 〉 for the first four nearest-neighbor shells containing 8, 6, 12,
and 24 atoms, respectively, vs (a) energy and (b) temperature. As the
ground state (E = 0) is approached, long-range order is established
and all parameters go to either +1 or −1. Significant short-range
order persists above the phase transition at E = 0.60.

There are two sources of error in the traditional Wang-
Landau method: (i) There is an error from statistical sampling.
It is clear from Fig. 2 that our resulting density of states is
quite smooth, and much of this error has been eliminated.
(ii) There is an inherent bias because the method requires a
minimum curvature in the resulting density of states. This
has been examined by Brown et al. [26], who calculated this
minimum second derivative as

d2

dE2
log g(E) = γ

�E2
,

where γ = log f is the modification factor and �E is the bin
width. In our case, γ = 0.004 and �E = 0.01 Ry. We find that
the spline fit of our density of states has a second derivative
below this minimum only within the narrow range of energies
[0.57, 0.606]. This is close to the critical temperature, which
is to be expected as this is precisely where the curvature of the
log density of states should be the least.

In Fig. 5, the Warren-Cowley short-range-order parameters
are presented. In the ground state they approach −1 or 1.
We see that short-range order is present and appreciable for
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temperatures above the phase transition. At 75 ◦C above the
calculated phase transition, the short-range-order magnitude is
0.19, 0.14, 0.13, and 0.09 for the first four shells, respectively.
In a neutron diffraction experiment on the A2 phase, the
short-range order at 75 ◦C above the experimental transition
using Zernike’s theory is 0.18, 0.10, 0.07, and 0.05, respec-
tively [27,28]. Note that an approximately linear relationship
exists between the short-range order and configurational
energy for E < 0.7 Ry. Focusing on the first shell, this suggests
E = ∑

i A〈ξiξi+1〉 for some A. These first-principles DFT
calculations lend support to the validity of model Hamiltonians
based on nearest-neighbor pair potentials. In Fig. 5(b), a
sudden increase in the short-range order is evident at the phase
transition. In the thermodynamic limit, this jump would be
sharp and well-defined.

In this paper, we calculated the density of states for the
CuZn binary alloy using a 250-atom unit cell and first-
principles DFT to calculate the energetics at each time step. We

obtained a smooth density-of-states plot using over 600 000
samples. The lowest energy computed was a B2 ordering, and
the highest energies sampled showed total disorder. In Fig. 4, a
visible peak in the specific heat and a sudden increase in atomic
short-range order is evident. Figure 5(b) marks this transition.
Using the canonical ensemble, we find a critical temperature of
870 K. These results demonstrate the feasibility of performing
direct first-principles Monte-Carlo simulation without the need
to use model Hamiltonians or mean-field expansions.
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