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Percolative metal-insulator transition in LaMnO3
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We show that the pressure-induced metal-insulator transition (MIT) in LaMnO3 is fundamentally different from
the Mott-Hubbard transition and is percolative in nature, with the measured resistivity obeying the percolation
scaling laws. Using the Gutzwiller method to treat correlation effects in a model Hamiltonian that includes
both Coulomb and Jahn-Teller interactions, we show, one, that the MIT is driven by a competition between
electronic correlation and the electron-lattice interaction, an issue that has been long debated, and two, that with
compressed volume, the system has a tendency towards phase separation into insulating and metallic regions,
consisting, respectively, of Jahn-Teller distorted and undistorted octahedra. This tendency manifests itself in a
mixed phase of intermixed insulating and metallic regions in the experiment. Conduction in the mixed phase
occurs by percolation and the MIT occurs when the metallic volume fraction, steadily increasing with pressure,
exceeds the percolation threshold vc ≈ 0.29. Measured high-pressure resistivity follows the percolation scaling
laws quite well, and the temperature dependence follows the Efros-Shklovskii variable-range hopping behavior
for granular materials.
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I. INTRODUCTION

The doped manganites such as La1−xCaxMnO3 are unique
systems for studying competing interactions between spin,
electronic, orbital, and lattice degrees of freedom [1–3].
The end member LaMnO3 (LMO) is of special interest,
since, while being governed by the same interactions, it is
at the same time free from clutter due to the Ca dopants. The
pressure-induced metal-insulator transition (MIT) in LMO has
been long debated over two main issues. First, while resistance
measurements indicate a sharp transition to the metallic state at
the critical pressure Pc ≈ 32 GPa [4], Raman measurements,
on the other hand, show a gradual change with both Jahn-Teller
(JT) distorted and undistorted regions persisting over a wide
range of pressure [4–6]. An understanding of the MIT must
explain this dual behavior, which we explain below in terms
of percolation.

The second issue is the relative role of the competing
interactions in mediating the MIT, namely bandwidth (W)
and Hubbard U. Loa et al. [4] first suggested that the MIT
is driven by bandwidth (W ) enhancement with pressure, based
on the fact that the JT distortion disappears much below Pc

and therefore has no role to play, so that the change in U/W

results in an MIT of the standard Mott-Hubbard type [7]. This
conclusion was refuted by Baldini and Ramos and coworkers
[5,6], who observed, to the contrary, that the distortions in
fact persist beyond the MIT and remain relatively unchanged
across the transition. Several theoretical studies [8–12] also
suggested that JT interaction as well as the Coulomb coupling
is important questioning the pure Mottness of the observed
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MIT. Trimarchi and Binggeli [8] studied the Mn-O distances
under pressure with the Coulomb-corrected LDA + U density-
functional method and found the Coulomb interaction to be
essential in establishing the insulating ground state. Based on
the dynamical-mean-field results (LDA + DMFT), Yamasaki
et al. [9] argued that both the JT and the Coulomb interactions
are important for the MIT. A similar conclusion was found
from the slave-boson solution of a model Hamiltonian [11].
Yin et al. [10] suggested that the JT distortion is facilitated by
the Coulomb U term via enhanced localization. Considering
another aspect of the problem, Koch et al. [12] showed that in
order to describe the orbital ordering seen in neutron scattering,
the JT interactions are important, and the Kugel-Khomskii su-
perexchange derived from the Coulomb U term is not sufficient
for it. Much of this theory work was aimed at understanding
the role of the competing interactions, rather than the phase co-
existence across the MIT, although a recent hybrid-functional
calculation [13] found different magnetic phases to be close
in energy at T = 0, suggesting the propensity towards phase
coexistence.

In this paper, from a Gutzwiller solution of a model
Hamiltonian and high-pressure transport measurements, we
show that the pressure-induced MIT in undoped LMO is
percolative in nature. In other words, conducting transport
does not occur as a result of the formation of a homogeneous
metallic phase, as happens in the Mott-Hubbard MIT, but
rather, it occurs when the volume fraction of the metallic
region, gradually increasing with pressure, exceeds the per-
colation threshold. The overarching goal of our work is to
demonstrate how percolation theory forms the foundation of
the underlying physics of the MIT in LMO. We focus on the
high-temperature paramagnetic phase, so that the transport
is uncluttered by the magnetic transitions that exist at low
temperatures.
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II. MODEL HAMILTONIAN AND GUTZWILLER
SOLUTION

We consider a two-band, spinless model Hamiltonian,
containing the key Coulomb and JT interactions:

H =
∑

〈ij〉,αβ

t
αβ

ij (ĉ†iαĉjβ + H.c.) − g
∑

i

(Qi3σ̂z + Qi2σ̂x)

+ 1

2
K

∑
i

(Q2
i3 + Q2

i2) + U
∑

i

n̂i1n̂i2, (1)

where ĉ
†
iα creates an eg electron in orbital α (= 1,2) at site

i on the simple cubic Mn lattice with zero-pressure lattice
constant a, �σ is the pseudospin describing the two eg orbitals,
|↑〉 = |x2 − y2〉 and |↓〉 = |z2〉, Q2 and Q3 are the two JT
distortion modes of the MnO6 octahedron, and K and U are
the elastic constant for the JT modes and the intraorbital on-site
Hubbard U Coulomb interaction, respectively. Only one spin
is included in the Hamiltonian due to the following reason.
Because of the large Hund’s coupling JH → ∞, the eg spins
are always parallel to the core t2g spins, with the result that the
antiparallel spin states are altogether omitted due to their high
energy. The two eg states in the Hamiltonian, Eq. (1), therefore
have their spins aligned with the local core spin, which can,
however, vary from site to site.

Although the t2g core spins are not explicitly included in
the Hamiltonian, their effect on the hopping of the eg electrons
is a crucial part of the physics of the manganites and must be
taken into account. The core spins modify the hopping integrals
between the eg electrons, since they are always aligned parallel
with the core spins on each lattice site, via the Anderson-
Hasegawa double exchange by the factor cos(θ/2), where θ

is the angle between two neighboring core spins, treated as
classical [14]. As we are interested in the paramagnetic phase at
room temperature, the random thermal fluctuations lead to the
random fluctuations of the orientation of the core spins at each
site, so that the thermal average of the Anderson-Hasegawa
factor yields the result, 〈cos(θ/2)〉 = 2/3, which modifies the
hopping integral between the eg electrons.

To describe the effect of pressure, we take the hopping
integral to be volume dependent with tαβ(r) ∝ r−7 following
Harrison scaling [15], and add a Madelung term EM and a
repulsive interaction term ER between the ions to keep the
crystal from collapsing. The total energy then becomes E =
Eel + EM + ER, and we have used the simplified forms EM =
−A/r , ER = B/r12, and as usual, tαβ may be expressed in
terms of the ddσ hopping integral, denoted here by −t . Guided
by the literature [3,16–18], we set the parameters A = 6 eV,

B = 0.5 eV, g = 2.5 eV/ Å, K = 10 eV/Å
2
, U = 3 eV, and

t = 0.6 eV.
We have solved the model using the Gutzwiller approxima-

tion for the Coulomb interaction term in Eq. (1), treating the
two eg orbitals as pseudospins. The Gutzwiller wave function
is given by

|�G〉 = ηD̂|�0〉, (2)

where |�0〉 is the uncorrelated many-body wave function, D̂

counts the site double occupancy, and the Gutzwiller varia-
tional parameter η is obtained by minimizing the expectation

value of energy 〈�G|H|�G〉. In the thermodynamic limit, the
average double occupancy d ≡ 〈D̂〉 is related to η by the
expression η2 = 4d2[(1 − 2d)2 − m2]−1 with m = 〈n̂2 − n̂1〉
being the orbital polarization. The electrons hop in a correlated
manner, leading to a reduced kinetic energy, described by the
Gutzwiller reduction factor [19,20],

γ (m,d) = 2d(
√

1 − m − 2d + √
1 + m − 2d)2

1 − m2
, (3)

valid for the half-filled case, viz., n1 + n2 = 1 corresponding
to one eg electron per site. A small d as compared to
the uncorrelated value duncorr. = n1n2 indicates a strongly
correlated state and according to the Brinkman-Rice criterion
[21], a Mott-Hubbard insulating ground state is indicated if
d → 0.

The band structure energy is computed by taking into
account this reduction factor and diagonalizing the 2 × 2 Bloch
Hamiltonian in the orbital space,

Hk =
(

ε11(k) − gQ3 ε12(k) − gQ2

ε12(k) − gQ2 ε22(k) + gQ3

)
, (4)

where ε11(k) = V̄ (cos kxa + cos kya + 4 cos kza)/2, ε12(k) =
−√

3V̄ (cos kxa − cos kya)/2, ε22(k) = 3V̄ (cos kxa +
cos kya)/2, and V̄ = −(2/3)γ (m,d)t(r), with t(r) ∝ r−7 and
the factor 2/3 coming from the Anderson-Hasegawa renormal-
ization as already discussed. We minimized the total energy
per lattice site,

E =
occ∑
kν

εkν(d,Q2,Q3) + 1

2
KQ2 + Ud + EM + ER, (5)

as a function of d and Qi for each volume, which yields
the ground-state solution. Here Q ≡ (Q2

2 + Q2
3)1/2 and εkν

are the band structure energies obtained by diagonalizing the
Hamiltonian Hk , Eq. (4).

III. THEORY RESULTS

The total energy, calculated from Eq. (5), is plotted in
Fig. 1 for parameters corresponding to LMO as discussed
earlier. It shows a double minimum as a function of volume
corresponding to a JT distorted and an undistorted phase,
indicating a phase separation in a range of volume shaded
yellow in the figure. For volume constrained in the shaded
region, the double minimum would imply the coexistence
of two different phases: a high-volume insulating phase with
volume V2, and a low-volume metallic phase with volume V1,
with a sharp boundary between them. If pressure is fixed, then
a first-order transition from the insulating to a metallic phase
at a pressure corresponding to the common tangent would
be implied. In the experiments, such a sharp transition is,
however, not observed. For example, the equation of state
shows a continuous change of volume with pressure [4].

The reason for the mixed phase, ubiquitous in the mangan-
ites, rather than a phase separation is a topic of considerable
interest. A phase separated system could be energetically
unfavorable due to multiple reasons, not included in our model.
For example, the presence of a small amount of charged
impurities because of unintentional doping could cause a
deviation from charge neutrality of the two components and
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P (GPa)

FIG. 1. Total energy as a function of volume obtained from Eq. (5)
for parameters corresponding to LMO, indicating regions of JT
distorted and undistorted phases. As volume is compressed below
V2, a metallic component begins to form, and the system conducts
below Vc (black dashed line), when the metallic volume fraction v,
calculated from the Maxwell-construction result, Eq. (6), exceeds
the percolation threshold vc ≈ 0.29. The corresponding threshold
pressure for MIT is Pc ≈ 31 GPa as computed from the measured
equation of state [4]. Energy is in units of t and volume is in units
of V0, the zero-pressure volume. The black dashed line (schematic)
indicates the mixed phase region, if the phase separation is suppressed
either due to interaction between the phases or for kinetic reasons (see
text).

would impede the formation of the phase separation due to
the large cost in Coulomb energy. It would instead lead to
a nanoscale inhomogeneous phase (or mixed phase) with
intermixed metallic and insulating components (Coulomb
frustrated phase separation) [22]. It has also been suggested
that the mixed phase could even originate due to kinetic
reasons, i.e., self-organized inhomogeneities resulting from
a strong coupling between electronic and elastic degrees of
freedom [23].

In fact, a number of experiments point to the existence of the
mixed phase in LMO under pressure. These experiments in-
clude the Raman measurements [5,6], the continuous equation
of state [4], as well as the present transport measurements.
In particular, the Raman and the high-pressure resistivity
measurements show that the metallic component slowly grows
with pressure, while the equation of state indicates that
no abrupt volume change occurs with pressure, which is
consistent with the existence of the mixed phase. Even though
the metallic fraction slowly grows with pressure, the transition
to metallic conduction is, nevertheless, still sharp and occurs
when the metallic fraction exceeds the percolation threshold.

The metallic fraction may be obtained from the Maxwell
construction (red dashed line in Fig. 1). If f1(f2) is the fraction
of the substance in the metallic (insulating) phase in the mixed
phase region (V1 < V < V2), V being the total volume, then
we have the two equations: f1 + f2 = 1 and f1V1 + f2V2 =
V , solving which we find the volume fraction of the metallic
phase,

v ≡ f1V1

V
= V2/V − 1

V2/V1 − 1
. (6)

The MIT occurs for v > vc ≈ 0.29, the percolation threshold,
at which the metallic regions begin to touch and percola-
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FIG. 2. Phase diagram showing the metallic and insulating
regions, bridged by the inhomogeneous phase (shown in yellow).
The system LMO, starting with the red dot at ambient pressure,
moves along the dashed line as pressure is applied, first entering the
inhomogeneous phase while still maintaining its insulating character,
until the metallic fraction exceeds the percolation threshold vc (curved
dashed line). Finally, it crosses over to the fully metallic phase, where
the metallic domains fill the entire volume.

tive conduction begins. We readily find from Eq. (6), the
threshold volume for metallic conduction Vc = (vc/V1 +
(1 − vc)/V2)−1 and the corresponding Pc is found from the
measured equation of state [4], and both are shown in Fig. 1.

Figure 2 summarizes the phase diagram, illustrating the
competition between the Coulomb and the JT interactions.
The phase diagram was calculated by starting with a fixed
parameter set U , g, and t , e.g., the red dot in Fig. 2 corresponds
to LMO at ambient pressure, and then by changing volume
which scales these parameters. With decreasing volume
(increasing pressure), the hopping integral t increases much
more rapidly as compared to the other parameters (taken to be
volume independent in our model), so that the system moves
along the dashed line towards the origin as shown in the figure
[if t doubles, then both U/t and g2/(Kt) are halved]. As the
system traverses along the line, the volume changes and with
it, the total energy, as shown in Fig. 1, from which the boundary
of the inhomogeneous phase and the percolation threshold are
determined. Figure 2 was obtained by studying the system
traversing along a series of such lines in the parameter space.

The phase diagram, Fig. 2, shows distinct behaviors
in different regions of the parameter space, viz., metallic
behavior, insulating behavior driven by either correlation or
Jahn-Teller interaction, or a mixed phase in the crossover
region between the metal and insulator. For large Coulomb
interaction, one gets a Mott-Hubbard insulator, while for a
large JT coupling, one obtains a JT band insulator as a large
gap opens up between the two orbitals due to a strong JT
splitting.

The contrast between the Mott and the JT band insulator is
illustrated in Fig. 3, where we have shown the change of the
various quantities as the transition point is crossed. When g is
zero or close to zero, we get the standard Mott-Hubbard MIT,
in the sense that there is an abrupt change from the metallic
state to the insulating state as U/t is increased beyond a critical
value, and the system always remains in a single phase, either
metallic or insulating. The Gutzwiller double occupancy d is
zero at the MIT point, following the Brinkman-Rice criterion
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FIG. 3. Contrasting Mott insulator vs. JT band insulator. For weak
JT coupling, g2/Kt = 0.04 (top), the MIT is correlation-driven with
the Gutzwiller double occupancy taking the Brinkman-Rice value
d ≈ 0 at the transition point, while in the opposite, strong-coupling
limit, g2/Kt = 1.5 (bottom), the MIT is driven by a large JT distortion
Q, with d hardly changed from its uncorrelated value. In this figure,
the system is assumed to be always in the homogeneous phase, so
that the MIT corresponds to the kink in total energy like in Fig. 1 and
not to the percolative MIT. Here, distortion Q is in Å, gap Eg is in
units of t , m is the orbital polarization, and left of the blue line is a
metal, while the right of it is an insulator.

[21]. On the other hand, if g is strong as compared to U ,
then correlation effects become negligible, and the MIT occurs
because Q becomes large and the gap opens up because the
energy separation between the two eg orbitals, 2gQ, becomes
larger as compared to the bandwidth, leading to a JT band
insulator. In this case, d does not change very much from
its uncorrelated value as the MIT point is approached. At
ambient pressure, LMO is in an intermediate regime, where
the insulating state is formed by a combined effect of both
Coulomb as well as JT interactions, as indicated by the red dot
in Fig. 2.

IV. TRANSPORT MEASUREMENTS AND
PERCOLATION LAWS

We have studied the mixed phase region experimentally
from high-pressure transport measurements, which clearly
shows the transport characteristic of an inhomogeneous (or
mixed) phase with intermixed metallic and insulating regions.
We measured the electrical resistance across the metal-
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FIG. 4. Summary of the experimental high-temperature phase
diagram. The observed inhomogeneous phase region is shaded
yellow. The measured resistance corresponding to the red dots are
shown in Fig. 5.

insulator transition region as a function of temperature and
pressure up to 54 GPa.

In our experiments, samples of LMO were synthesized
by solid-state reaction starting from 99.999% pure La2O3

and Mn2O3 and the oxygen stoichiometry was confirmed by
thermo-gravimetric analysis. For the transport experiments,
a miniature nonmagnetic diamond anvil cell was employed
together with an Re gasket, previously insulated. The LMO
powder was loaded in a 70-μm hole and four platinum leads
(2-μm thick) were placed in electric contact with the sample
to measure resistance in quasi-four-probe configuration using
PPMS. At each pressure, resistance data were collected over
cooling and warming temperature cycles (10–300 K) [24].
Pressure was measured using the ruby fluorescence technique.
The resistance changed by five orders of magnitude as the
pressure was varied across the MIT transition occurring at
Pc ≈ 32–35 GPa.

Figure 4 summarizes the high-temperature phase diagram,
focusing on the paramagnetic region, which we have studied
in the present work. The figure was constructed on the basis
of the current experiment and earlier Raman [5] and Néel-
temperature measurements [25].

Percolative conduction. The measured resistance corre-
sponding to each transport data point, indicated by the red dots
in Fig. 4, is shown in Fig. 5. The resistance shows percolative
behavior characteristic of an inhomogeneous phase consisting
of interspersed metallic and insulating puddles. Starting from
an insulator at ambient pressure, the inhomogeneous phase sets
in beyond P ∼ 3 GPa, when the incipient metallic phase begins
to appear and increases with pressure. Conducting transport
occurs beyond Pc ∼ 32 GPa, when the volume fraction of
the metallic region exceeds the percolation threshold, roughly
vc ≈ 0.29 [26]. At a much larger pressure PM (theory predicts
PM ∼ 81 GPa as seen from Fig. 1), the system would
become a homogeneous single metallic phase; however, PM

is larger than our maximum pressure of 54 GPa and was not
experimentally reached. The Raman data [5] show the presence
of a mixture of distorted and undistorted regions across the
MIT, specifically, up to the highest measured pressure of 34
GPa, while a remarkable decrease of the intensity-noise ratio in
the Raman data at 32 GPa is a spectral signature of the onset of
the MIT.
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FIG. 5. Measured resistance in the paramagnetic phase (T =
300K) as a function of pressure showing percolative conduction in
the mixed phase region. Close to the MIT, the resistance follows
the percolation scaling laws, Eq. (7), with the critical exponents
t = 2.1 ± 0.2 and s = 0.9 ± 0.2 and the fitted resistance constants
R1 = 0.19 � and R2 = 5840 � (solid curve is a guide to the eye). The
inset is a schematic of the inhomogeneous phase near the percolation
threshold. The metallic volume fraction v was calculated by first
computing the volume V for a given pressure from the experimental
equation of state [4] and then using the Maxwell construction result,
Eq. (6). The critical metallic fraction vc, which corresponds to the
critical pressure Pc, was similarly calculated.

The measured resistance, presented in Fig. 5, is described
very well by the standard percolation scaling laws for the
metal-insulator composites, viz.,

R =
⎧⎨
⎩

R1(v − vc)−t v > vc (metallic regime)
R1−u

1 Ru
2 v = vc (percolation threshold)

R2(vc − v)s v < vc (insulating regime),
(7)

where v again is the metallic volume fraction, and t = 1.6–2.0,
s = 0.7–1.0, and u = t/(s + t) are universal critical exponents
for three-dimensional (3D) percolation [27–29]. Our transport
data (Fig. 5) were fitted to Eq. (7) by first computing the
volume V for a given pressure using the equation of state [4]
and then by finding the corresponding v from Eq. (6). The fitted
critical exponents t and s (values listed in the Fig. 5 caption)
are close to the theoretical exponents for 3D percolation, and
the sigmoid shape of the transport curve closely resembles the
same for the composite media [29].

The GEM equation for composites. Although a wide range
of experimental results for conductor-insulator percolating
systems and computer simulations can be fitted with the classic
percolation equations expressed in Eq. (7), these equations
are valid only in the limits where the conductivity of the
metallic fillers tends to infinity, while the interspersed insulting
matrix is a perfect insulator with the conductivity tending to
zero. This is satisfied quite well in our case, as justified a
posteriori from the fitted resistance ratio R2/R1 ≈ 3 × 104

(see Fig. 5 caption). In many composites, this condition
is not satisfied quite so well. For these cases, McLach-
lan et al. [30] have proposed a phenomenological equation that
has been successfully used to fit the conductivity data of such
composites.

This so-called general effective medium (GEM) equation
is in the form of an implicit equation for the resistance R(v)

T (K)

Lo
g 1

0 
(R

/Ω
)

T -1/ 2 (10 K -1/ 2 )

FIG. 6. The measured temperature dependence of resistance on
the insulating side of the MIT at three different pressures.

as a function of the metallic volume fraction, which reads

(1 − v)
(
R1/s − R

1/s

2

)
R1/s + AR

1/s

2

+ v
(
R1/t − R

1/t

1

)
R1/t + AR

1/t

1

= 0, (8)

where A = (1 − vc)/vc and R1 and R2 are, again, the resis-
tances of the conductor and the insulator, respectively. This
equation remains valid if the resistances are replaced by
the corresponding resistivities. It can be easily verified that
this single two-exponent percolation equation continuously
interpolates between the three percolation equations in Eq. (7)
and it reduces to a normalized form of each of them in the
limits, R1 → 0 and R2 → ∞. In the crossover regime v ≈ vc

(more specifically, |v − vc| < (R1/R2)1/(t+s)), it reduces to the
middle line of Eq. (7). We were able to fit our resistance data
with this equation as well, which provided a single continuous
curve, with the four fitting parameters R1, R2, t , and s. This
fitting yielded very similar values to the parameters reported
in Fig. 5, which were obtained by fitting the resistivity data to
Eq. (7) in the limiting regions away from the critical region.

Temperature dependence. The temperature dependence of
the resistance in the insulating regime is shown in Fig. 6,
which follows the Efros-Shklovskii variable range hopping
(VRH) behavior [31,32],

R = R0 exp[(T0/T )1/2], (9)

observed in a variety of granular materials [33], where
nonpercolative metallic puddles (metallic fraction below the
percolation threshold) are surrounded by insulating material.

V. CONCLUSION

In conclusion, we studied the metal-insulator transition
in LMO under pressure using the Gutzwiller solution of a
model Hamiltonian containing correlation and Jahn-Teller
effects and high-pressure transport measurements. Our main
result is that the MIT is driven by a combination of the
correlation and Jahn-Teller effects, and it is percolative in
nature, which is fundamentally different from the standard
Mott-Hubbard transition. In the present case, the MIT occurs
due to percolative conduction in a mixed phase consisting
of interspersed metallic and insulation regions, while in the
Mott-Hubbard transition, conduction occurs due to the sudden
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change of the ground state of the system with some parameter,
with the system maintaining a homogeneous, single phase
across the MIT. The theory work showed that the system has a
propensity for phase separation when volume is compressed,
where the system separates into a metallic part and an
insulating part divided by a single phase boundary. However,
rather than the two parts forming two separate regions, they
are interspersed among each other on the nanoscale in the
experiment, thereby forming a mixed or an inhomogeneous
phase (nanoscale phase separation). The exact reasons for this
is unknown, but effects such as Coulomb interaction between
the two parts or kinetic reasons have been proposed in the
literature as discussed in the text.

The measured high-pressure resistance followed the per-
colation scaling laws both as a function of temperature and
pressure, establishing the percolative nature of the metal-
insulator transition. As pressure is applied on LMO, an
insulator at P = 0, the metallic region begins to form around
P ∼ 3 GPa, with the metallic fraction gradually growing with
pressure and eventually forming a conducting network beyond
the percolation threshold, which occurs at Pc ≈ 32 GPa.

Thus, while the MIT is sharp, caused by the onset of the
percolative conduction, there is no such sharp change in the
metallic volume fraction, for it grows continuously across the
MIT. In turn, since the metallic region contains undistorted
JT octahedra, the average lattice distortion also changes
continuously across the MIT as seen in the Raman data. The
percolative MIT may be more common place in the oxide
materials than is currently thought and needs further study,
both from the viewpoints of fundamental science as well as of
potential applications in oxide electronics.
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