
PHYSICAL REVIEW B 93, 024105 (2016)

Atomistic modeling of flexoelectricity in periclase
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Flexoelectricity is evolution of a macroscopic polarization due to a strain gradient. We present a molecular
dynamics study of flexoelectricity in the cubic ionic MgO periclase phase. Using an effective interaction force
field with polarizable oxygen atoms and applying it to an inhomogeneously strained periclase sample, we detect
a collective flexoelectric response of the oxygen dipole moments in visualizations. This induced polarization
depends linearly on the strength of the strain gradient as well as the primary polarization, which is caused by
the displacement of the ion charges. By three different inhomogeneous deformation modes all three flexoelectric
coefficients of periclase are determined.
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Metal oxides, e.g., alumina or silica, are ubiquitous in
industrial applications and thus in our daily life. Therefore,
metal oxides are much studied, in particular also by atomistic
numerical simulations. One challenge thereby are the long
range electrostatic forces due to ionic charges and the
deformable electron shell of the oxygen atoms.

In an attempt to develop realistic effective potentials for
metal oxides, Beck et al. [1] applied a method of Tangney
and Scandolo [2] (TS), where the oxygen ions not only are
endowed with a valence charge but also with a polarizability.
The method was used and applied by Hocker et al. [3] to
develop potentials for and to study crack propagation in α-
alumina (Al2O3). The simulation results were visualized by
Grottel et al. [4] with the software package MegaMol [5]. In
the visualization, the aluminum ions were presented by spheres
and the oxygen ions by arrows, indicating the direction of the
induced dipole moment. Surprisingly, regions in front of the
crack tip showed ferroelectric and antiferroelectric domains,
although α-alumina is not piezoelectric. We have inspected
the phenomenon closer and have come to the conclusion that
the simulations show a flexoelectric effect, i.e., induction of
an electric polarization not by strain, but by a strain gradient.
In the following we observed the effect in a more controlled
way in the simple cubic oxide periclase, crystalline magnesia
(MgO) with sodium chloride structure, where we applied three
well defined displacement modes. We could measure all three
flexoelectric coefficients. This is a striking example, where
visualization leads to the discovery of new phenomena.

I. PIEZOELECTRICITY

In 1880 Pierre and Jacques Curie discovered that a voltage
emerges from the deformation of a material [6,7]. In a
microscopic view, oriented electrostatic dipole moments build
up in dielectric materials due to external strain. In general, the
linear piezoelectric coupling between polarization P and strain
ε can be expressed by a three-stage tensor d, Pi = dijkεjk . The
corresponding free energy density (with the electric field E)
can be written as [8]

fpiezo = −E · P = −Eidijkεjk. (1)

As upon inverting spatial coordinates the electric field E
changes sign, but not the strain tensor ε, the free energy

[Eq. (1)] is not inversion invariant, and piezoelectricity is
forbidden in crystalline systems with inversion symmetry.

II. FLEXOELECTRICITY

However, even in inversion-symmetric systems and thus
in principle in all crystalline dielectrics a polarization can
develop due to response to a strain gradient εjk,l [9], or, as
used in many publications and also here, as response to the
second derivative of the displacement field uj,kl [10,11] (for
the relation between the two conventions see [12,13]). The
effect is denoted flexoelectricity. First predicted by Mashke-
vich and Tolpygo [14] and phenomenologically described
by Kogan [15], flexoelectricity establishes a new material
class for industrial products that are based on generating
voltage by deformation. In the bulk the flexoelectric effect is
small, but it becomes important in nanocrystals or epitaxial
thin films where the strain gradient can take large values
[16]. With suitable geometries the flexoelectric effect can
be used to produce piezoelectric metamaterials even with
centrosymmetric compounds [17]. Recently, in a nanoscale
volume of a ferroelectric film, polarization could be switched
mechanically due to the stress gradient generated by the tip
of an atomic force microscope [18]. Other phenomena, where
flexoelectricity influences properties, are the modification of
the dielectric constant in nanodevices [19,20] and generally
piezoelectriclike responses in devices made out of nonpiezo-
electric materials [21,22]. For a recent review see Zubko et al.
[23].

In linear response flexoelectricity is described by a fourth-
rank tensor μ,

Pi = μijkluj,kl . (2)

In a crystal of cubic symmetry, the coupling tensor

μijkl = (μ11 − μ12 − 2μ44)δijkl + μ12δij δkl

+μ44(δikδjl + δilδjk) (3)

(δijkl is 1 for all indices equal and zero otherwise) has only three
independent components [11,12]. There is no piezoelectric
coupling.

The flexoelectric coefficients are difficult to measure. In
experiments [10,24–28], as a rule only one or two have been
determined. Numerical simulations are a useful supporting
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tool. Although the analytical description [29–32] and ab initio
[13,33–36] studies have advanced, no molecular dynamics
(MD) simulations have been performed yet. There exists
one single atomistic approach [37], where an ab initio based
polarizable force field for barium titanate was adopted to model
dipole orientation phenomena, with a focus on the dependence
of polarization on the sample size.

In ionic solids one has to discern two kinds of polarization:
the primary one, which results from the asymmetric displace-
ment of the ionic charges due to the strain gradient, and an
induced one due to the deformation of the electronic orbits.
Oxygens are particularly appealing, because the O atom is
strongly polarizable. We are interested in the relation between
the two contributions. In the literature different notations are
used. In the first-principle studies of flexoelectricity by Hong
and Vanderbilt (HV) [13] the lattice or relaxed-ion part, which
results from internal sublattice shifts, is to be identified with
our primary polarization. Their pure electronic or frozen ion
part, which depends on octupole moments of the charge density
[34], corresponds to our induced polarization as well as the
shell contribution of Askar et al. [38].

III. SIMULATIONS

Here we present MD simulations of the oxygen periclase,
performed with the MD code ITAP Molecular Dynamics
[39]. For the ions of magnesia, a highly accurate, effective
interaction force field has been developed recently [1]. The TS
model, upon which it is based, appreciably increases accuracy
for collective phenomena in metal oxide systems [40,41]. In
this TS approach, the dipole moments of the oxygen ions
depend on the local electric field of the surrounding valence
charges and dipoles. They are calculated by a self-consistent
iterative algorithm. A dipole moment pn

i at position r i in
iteration step n consists of a long range induced part due to
an electric field E(r i) and a short range induced part pSR

i

due to the short range interactions between charges qi and qj .
Following Rowley et al. [42], this contribution is given by

pSR
i = αi

∑
j �=i

qj r ij

r3
ij

fij (rij ) (4)

with

fij (rij ) = cij

4∑
k=0

(bij rij )k

k!
e−bij rij . (5)

αi is the polarizability of atom i; fij (rij ) was introduced ad
hoc to account for multipole effects of nearest neighbors and
is a function of very short range. αi,bij ,cij and the valence
charges qj are parameters of the force field [1]. Together with
the long ranged induced part, one obtains

pn
i = αi E

(
ri ;

{
pn−1

j

}
j=1,N

,{rj }j=1,N

) + pSR
i . (6)

E(r i) is the electric field at position r i , which is determined
by the valence charges and the dipole moments pn−1

j of the
previous iteration step. The long-range electrostatic forces
between charges and dipoles [43] were treated with the
Wolf summation [44]. The Wolf method is a meanwhile
well established O(N )-scaling approach for fast and accurate
simulations of ionic bulk systems.

IV. RESULTS

The three flexoelectric constants μ11, μ12, and μ44 of
periclase can be determined by applying three different
inhomogeneous deformation modes to the ionic system [10].
The corresponding displacements are

(a) uz = k
x2

2
; Pz = P3 = kμ12, (7)

(b) uz = k
z2

2
; Pz = P3 = kμ11, (8)

(c) ux = kxz; Pz = P3 = 2kμ44, (9)

with the polarization calculated by Eq. (2). The constant k

rules the strength of the displacement and its gradient. The
corresponding geometries are illustrated in Fig. 1. For the
MD simulations a periclase sample of about 120 000 atoms
is created (Fig. 1). It is deformed by shifting all atoms by the
above quadratic functions from their unperturbed positions.

The primary polarization is calculated as the sum

Pp = 1

V

N∑
i=1

qi r i = 1

V

N∑
i=1

qi(r0i + ui) = 1

V

N∑
i=1

uiqi,

(10)

with qi denoting the ion charges and their positions r i after the
deformation and V cubic volumes of different sizes inside
the samples, avoiding surface charges. r0i are the atomic
positions of the undeformed sample. The displacements ui

are functions of the unperturbed atomic coordinates according
to Eqs. (7)–(9). The first sum vanishes, since if no shift is
executed the charges are arranged inversion symmetric. In
case of mode (a) ui contains the square of the undeformed x

positions, which is always positive. Since the charge values qi

alternate in sign, the last sum (running over the undeformed
lattice) is zero, too. For the modes (b) and (c) the same result
holds: With the deformation fields from Eq. (7) to (9) the
local inversion symmetry is not broken and thus no primary
polarization occurs. In contrast, an induced polarization is
allowed and is observed (Fig. 2).

Hence, for a primary polarization to exist, additional
internal sublattice shifts within the unit cell are required,
which follow after relaxation, while the initial uniform strain

(a) (b) (c)

µ12 µ11 µ44

z z z

x x x

FIG. 1. The undeformed samples (dashed lines) are blocks
of 210.5 × 42.1 × 126.3 Å containing 120 000 atoms. They are
deformed by the displacement modes given by Eqs. (7)–(9) (red
lines). The coordinate system points along the cubic fourfold axes
of the system. When applied to a periclase sample, they allow us to
determine the three superscribed flexoelectric constants. Samples (a)
and (c) are continued periodically along the y, sample (b) along x

and y directions. The open surfaces are neutral.
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FIG. 2. The induced dipoles of the oxygen atoms are oriented
in case of displacement (a) along the negative z direction, while for
displacement (b) they point along the positive z axis. This is in accord
with the direction of electric field, as illustrated in Fig. 5. The color
coding done by MegaMol visualizes the orientation of the arrows.

is preserved [11,13]. There is no unique approach in the
literature of how to maintain the applied strain gradient and
simultaneously to execute the relaxation for obtaining the
desired sublattice shifts. HV [13] introduced for the lattice
or relaxed-ion polarization, which corresponds to the primary
one, artificial forces acting on the atoms of the unit cell after the
induced displacements occurred. Such “force patterns” can be
chosen differently. A mass-weighted choice seems to be most
reasonable one. But the flexoelectric constants depend sensibly
on the chosen force pattern as discussed by HV.

We solved the puzzle by adjusting the simulations to
the experimental setup. Where possible, the inhomogeneous
displacements were only applied to the atoms of the first
surface layers. Then the bulk atoms were relaxed.

Thus for the modes (a) and (c) three steps were executed
to gain a nonvanishing primary polarization: (1) All atoms of
the sample are displaced by the quadratic functions of their
former lattice position given by Eqs. (7) and (9). (2) The
inhomogeneous strain is kept by locking the surface atoms.
For mode (b) such a surface stabilization is not possible. (3) A
relaxation with fixed surface layers is performed.
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FIG. 3. The primary polarization converges after 60 000 MD
steps by using the microconvergence integrator (mik) in IMD.
However, the induced polarization reaches its fixed value from
the beginning. The illustration is done here for mode (a) and for
k = 1.35 × 106/m.

For the relaxation a microconvergence integrator (mik)
is used. If an atom passes the minimum in the potential
landscape, its velocity is reset to zero [39]. Close to 0 K a finite
homogeneous polarization arises. After 60 000 MD steps the
primary polarization converges to a fixed value (see Fig. 3).
The same procedure was executed for different k values of
the displacement fields. As expected, a linear dependence of
polarization and strain from Eq. (2) follows, which is shown
in Fig. 4(a). From the slope of the lines the primary part of the
flexoelectric constants can be extracted.

The induced polarization, denoted as PTS, is calculated
by Eqs. (6) and (4). As the primary polarization, it points
along the three axis after applying the nonlinear deformation
modes (a), (b), and (c). Since the short range induced dipole
moments psr

i of Eq. (4) turn out to be one magnitude less than
the long-range ones, the sign of the total induced moments
essentially depends on the direction of the electric field at
the oxygen positions. This direction is made plausible by the
displacement of already nearest neighbor Mg2+ charges in
Fig. 5. In case (a) it is negative, in case (b) positive [45].

The three steps for determining the primary polarization
are not applicable to deformation mode (b), because the
lattice planes will relax to equidistant separations. The induced
polarization depicted in Fig. 2 resulted after a few MD steps
from an initial configuration (b) and before the ion positions
had changed appreciably.

To obtain the missing constant μ11 we apply the bending
mode (a) and its boundary conditions to a sample rotated
by π/4. The measured flexoelectric constant is a linear
combination of μ12, μ11, and μ44.

As a first step the sample is regarded in the rotated
coordinate system. The corresponding rotation matrix takes
the form

R =
⎛
⎝

1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

⎞
⎠. (11)
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FIG. 4. In (a) the primary polarization P
p

3 is plotted against
the strength k of the applied strain gradient, while in (b) the
induced polarization P TS

3 obtained by the TS model is illustrated.
Each point follows after a relaxation of 60 000 MD steps using
the microconvergence integrator (mik) in IMD. As expected, in all
deformation modes (a), (c), and (a′) the polarization is a linear
function of the strength of the strain gradient. For μ11 the π/4-rotated
sample was also deformed by mode (a). From the slope of the lines
the flexoelectric constants μ12, μ44, and μ′

3′3′1′1′ are derived.

The crystal surface still remains neutral as in the former,
unrotated case. In a second step the deformation mode (a′)
is executed:

u′
z′ = k

x ′2

2
, (12)

where the prime indicates the new coordinate system. In
analogy to Eq. (7) the resulting polarization points along the
z′ direction:

P ′
3′ = μ′

3′3′1′1′k, (13)

with μ′
3′3′1′1′ being the flexoelectric constant in the rotated

system. By use of Eq. (11) μ′
3′3′1′1′ is expressed as a function

E

E

(a () b)

FIG. 5. The direction of the dipoles in the TS model is essentially
given by the electric field E as the long-range induced polarization
[see Eqs. (4) and (6)] dominates the short-range one. Why the dipoles
in Fig. 2 are oriented oppositely can be understood by considering
the electric field of two Mg2+ atoms (red) at the position of the
polarizable O2− atom (blue) in between. On the left side the bending
case (a) of Fig. 1 is shown in one plane. The E field points downwards.
However, for the stretching displacement (b) from Eq. (7) (right) it
points upwards.

of the nonprimed components:

μ′
3′3′1′1′ = μijklRi3′Rj3′Rk1′Rl1′ = 1

2
{μ11 + μ12 − 2μ44}.

(14)

In summary, as Fig. 4 shows, the magnitude P = |P | of the
polarization (boundary atoms omitted) scales linearly with the
strain gradient. Such a linear dependence has been observed
in experiments by Cross [25] for different ionic bulk materials
and Baskaran and He for polyvinylidene fluoride films [28].
All flexoelectric constants of periclase can now be determined
from the slopes:

μ12 = −(2.2 + 9.0)
pC

m
= −11.2

pC

m
, (15)

μ11 = −(2.4 − 11.0)
pC

m
= 8.6

pC

m
, (16)

μ44 = −(10.1 + 6.6)
pC

m
= −16.7

pC

m
, (17)

where the first entry in the bracket results from the primary
and the second from the induced polarization. μ11 was derived
from μ′

3′3′1′1′ via μ12 and μ44 by Eq. (14).
The sign of μ11 differs from the other flexoelectric constants

because of the dominant positive induced part μTS
11 . Why this

part is positive is explained by Fig. 5.
The long-range and the short-range part of the induced

dipole moments in the TS model [Eqs. (4) and (6)] have
correspondences in the shell model as employed, e.g., by Askar
et al. [38]. Both methods mimic a polarization caused by a
macroscopic electric field and one by approaching ion cores. In
the shell model calculations the polarization due to sublattice
shifts and hence the primary polarization is not considered
[11].

For the chlorides NaCl and KCl, isostructural to MgO,
flexoelectric constants have been calculated also with the shell
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model [11]. They are of the same sign and order of magnitude
as the ones here for induced polarization. The constants
for the piezoelectric cubic semiconductors GaAs, GaP, and
ZnS are larger by about a factor 5 [11]. All these systems
are weak flexoelectrics compared with the high dielectric
perovskites BaTiO3 and SrTiO3 in their cubic phase, where ab
initio calculations [11] and experiments [24,26] report values
between 150 and 107 pC/m.

V. CONCLUSION

We have demonstrated flexoelectric response of an inhomo-
geneously strained periclase sample by molecular dynamics.

Both the direction of the collective dipole orientation and
the linearity of the material’s response are in agreement
with theory. With our model we were able to determine the
flexoelectric coupling coefficients μ12, μ11, and μ44.
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