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Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip

Yingyi Huang, Shuai Yin,* Qijun Hu, and Fan Zhong†

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University,
Guangzhou 510275, People’s Republic of China

(Received 10 March 2015; published 8 January 2016)

The Kibble-Zurek mechanism demands an initial adiabatic stage before an impulse stage to have a frozen
correlation length that generates topological defects in a cooling phase transition. Here we study such a driven
critical dynamics but with an initial condition that is near the critical point and that is far away from equilibrium.
In this case, there is no initial adiabatic stage at all and thus adiabaticity is broken. However, we show that there
again exists a finite length scale arising from the driving that divides the evolution into three stages. A relaxation–
finite-time-scaling–adiabatic scenario is then proposed in place of the adiabatic-impulse-adiabatic scenario of
the original Kibble-Zurek mechanism. A unified scaling theory, which combines finite-time scaling with critical
initial slip, is developed to describe the universal behavior and is confirmed with numerical simulations of a
two-dimensional classical Ising model.
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The Kibble-Zurek mechanism (KZM) [1–5] describes
topological defect formation in driven critical dynamics
in a variety of systems, ranging from classical [6–28] to
quantum phase transitions [29–40]. Kibble first proposed it
in cosmology [1,2] by identifying a frozen correlation length
ξ̂ that renders spatially distant regions causally independent
during the cooling of the universe from the big bang. Then,
Zurek brought this proposal to condensed-matter physics and
offered a method to compute the density of defects formed
[3,4]. As a system cannot always follow adiabatically the
cooling of a finite rate R due to critical slowing down near the
critical point, its evolution from a temperature T0, sufficiently
higher than the critical temperature Tc, can be divided into
three sequential stages: an initial adiabatic stage, an impulse
stage, and a final adiabatic stage below Tc. In the initial
adiabatic regime, the correlation length ξ and the correlation
time ζs grow as |ε|−ν and ξz, respectively, as the distance
to the critical point, ε ≡ T − Tc, is reduced, where ν and z

are the correlation-length and the dynamic critical exponents,
respectively [41]. The boundaries between the stages are then
determined by the frozen instant t̂ at which the time interval
before the transition, tc − t = ε/R, equals ζs [3,4], where
tc = ε0/R is the time at ε = 0. This leads to tc − t̂ ∼ R−z/rT

[3,4], where rT = z + 1/ν is a rate exponent [42]. Upon
assuming evolutionless in the middle impulse stage, t̂ then
determines ξ̂ ∼ R−1/rT and thus the defect density n ∼ Rd/rT ,
the KZ scaling [3,4].

Crucial in the derivation is the existence of the initial
adiabatic stage that gives rise to ξ̂ . It results from the large
ε0 = T0 − Tc and thus small ζs . By contrast, whether the initial
state is equilibrium or not is irrelevant as the system can quickly
equilibrate once ζs is small. This has been confirmed by a lot of
experiments and numerical simulations [23–25,43–47]. On the
other hand, when ε0 = 0 and the initial state is the equilibrium
state there, it has been shown by an adiabatic perturbation
method that the scaling of topological defects is consistent
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with the KZ scaling [39,48,49]. Yet, it is difficult to obtain the
equilibrium state near the critical point due to critical slowing
down.

However, if ε0 is small and the initial state is not the equi-
librium state at ε0, the equilibration of the system has to take
a long time as the relaxation time ζs is now macroscopically
large. In this case, there is no initial adiabatic stage at all
and thus adiabaticity is broken. Questions then arise as to
whether there is still a ξ̂ that generates topological defects or
whether the KZM is still valid or not. Does universal behavior
exist in this driving critical system with a nonequilibrium
initial condition? If the answers are yes, then how is ξ̂

determined and how does one describe the universal behavior,
as the adiabatic-impulse-adiabatic scenario of the KZM cannot
apparently be applied to this case?

Relaxation of a nonequilibrium initial state near ε0 is not a
strange situation [50–52]. A well-known case is the critical
initial slip [53,54], which was found in classical [53,54]
and recently in quantum critical phenomena in imaginary
time [55]. When a system is quenched rapidly from a
high-temperature disordered state to near its critical point
and relaxes, it has been found that the order parameter M

grows as M ∼ M0t
θ right after a microscopic time scale,

where θ is an independent initial-slip exponent and M0 is
a small initial order parameter, which may be generated by
an external field [53,54,56]. As the initial state is derived
from the disordered phase, it possesses only short-ranged
correlations. However, finite-ranged correlations are irrelevant
in the renormalization-group (RG) sense [53,54]. So, the initial
state may be an equilibrium state of a Hamiltonian different
from the system’s.

A system that is driven by an external field including the
temperature with a constant time rate R through its critical
point is well described by the theory of finite-time scaling
(FTS) [57,58]. It is a temporal counterpart of the well-known
finite-size scaling [41] and is derived from the RG theory
[57,58]. FTS shows that there is a finite time scale ζd ∼ R−z/rT

induced by an external driving, and when ζd is shorter than ζs ,
it dominates the evolution in an FTS regime. This indicates that
the impulse regime of the KZM is just an FTS regime. Indeed,
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ζd is just t̂ because at this instant ζd = ζs and ξ̂ is just the length
scale corresponding to ζd . Moreover, the scaling behavior in
the evolutionless impulse regime and the KZ scaling are well
described by FTS [38,59–61]. In FTS, however, the initial state
is, similar to the KZM, far away from the critical point and has
thus no effects.

Here, in order to describe the scaling behavior of a driven
critical system with a nonequilibrium initial condition, we
combine FTS with the critical initial slip. We shall show
that there again exists in this case the finite time scale ζd

and thus ξ̂ . As a result, the KZM for topological defect
formation is still valid though adiabaticity is broken. However,
its adiabatic-impulse-adiabatic scenario is now changed to a
relaxation-FTS-adiabatic scenario, in which a nonequilibrium
nonadiabatic relaxation stage replaces the original initial
adiabatic stage. In this relaxation stage, the growing correlation
time ζi , which is different from ζs ∼ |ε|−νz, dominates the
evolution and ζd is subsidiary. Once ζi gets longer than ζd ,
the latter takes over and the system enters the FTS stage. This
is the impulse stage of the KZM. However, in the KZ sense,
both the relaxation and the FTS stages are impulse as both are
nonadiabatic albeit due to different reasons, viz., the former
arises from the initial conditions whereas the latter arises from
the driving. When the system is driven to so far away from Tc

that ζs becomes shorter than ζd , it crossovers into the adiabatic
stage.

As an appreciation of the results, we plot in Fig. 1 the
evolution of M for three different sets of the initial conditions.
One sees that the evolutions starting with a large |ε0| and at Tc

show qualitatively distinct behavior. Driving (R �= 0) makes
no appreciable difference at short times when the system starts
with an uncorrelated nonequilibrium initial state near to its Tc.
In this stage, since the correlation length grows as ξi ∼ t1/z and
ζi ∼ ξz

i , ζi ∼ t [53,54]. As ζi is shorter than ζd in short times,
it dominates the dynamics and the stage is thus relaxational
similar to the critical initial slip, while the external driving is
only a perturbation. Note that this relaxation stage has nothing
to do with the free relaxation regime [23,26,27] that follows
the final adiabatic stage and that has no driving at all.

In the following, we shall first present the scaling theory
and obtain different scaling behaviors in different stages and

FIG. 1. Evolution of the order parameter M for the two-
dimensional classical Ising model. The initial distance to the critical
point ε0 and the initial order parameter M0 are indicated except the
one with ε0 = −1, where any given M0 will always decay rapidly
to the equilibrium values. Heating instead of cooling is performed to
facilitate presentation. Different stages are marked.

their crossovers. These are then confirmed by simulations on
a two-dimensional (2D) classical Ising model. As this is a
generic model for critical phenomena, we expect the results
to be applicable to other models and even to quantum critical
behavior as well. We shall not study the topological defects
as their counting is not easy and detecting scaling behavior of
other observables has been advocated [46,62].

Near the critical point, the scaling behaviors of macroscopic
quantities can be readily described by a scale transformation.
Our scaling theory is based on

M(t,R,M0,ε0,ε)

= b−β/νM(tb−z,RbrT ,U (M0,b),ε0b
1/ν,εb1/ν) (1)

for a rescaling of a factor b, where |ε0| � 1, β is the critical
exponent for M , and U (M0,b) is the universal characteristic
function describing the rescaled initial magnetization [63,64].
In Eq. (1), we have purposely written t , R, ε0, and ε out though
they are not independent as ε = ε0 + Rt . For a small M0,
U (M0,b) = M0b

x0 with x0 being the scaling dimension of M0

[53,54]. U (M0,b) has one fixed point U (0,b) = 0 for arbitrary
b � 1. For a hard-spin system, in which M is bounded, the
saturated M0 is another fixed point, since the rescaled M0

is invariant under coarse graining [63]. Note that the two
additional scaling variables, ε0 and M0, are present only for
small |ε0|; for large |ε0|, they are absent as they are then
irrelevant. Equation (1) with a small M0 can be justified by an
RG theory which combines the critical initial slip [53,54] and
the FTS theory [42,57,58].

The scaling forms of different stages can now be obtained
from Eq. (1) by comparing the relevant time scales. In the first
stage, in which t is small, ζi is small and growing. Accordingly,
relaxation dominates. By setting tb−z = 1, we arrive at the
scaling form

M(t,R,M0,ε0) = t−β/νzf1(RtrT /z,U (M0,t
1/z),ε0t

1/νz), (2)

where f1 is a scaling function. It is valid when all scaled
variables are small. In particular, RtrT /z � 1, or t � R−z/rT ,
i.e., ζi � ζd as ought to be. Detailed scaling behavior can be
obtained from Eq. (2) as follows.

For ε0 = 0 and a small M0, U (M0,t
1/z) = M0t

x0/z. One
can expand f1 in RtrT /z and M0t

x0/z to the second order and
obtains

M � M0t
θf

′
1(0,0,0) + t θ+rT /zRM0f

′′
1 (0,0,0), (3)

where θ = (x0 − β/ν)/z and a prime stands for a partial
derivative. In Eq. (3), the first term describes the usual critical
initial slip [53,54]. The second term of Eq. (3) displays the
driving-induced deviation from the critical initial slip. It is a
mixed term between M0 and R and arises from the fact that,
if M0 = 0, M remains zero as ε does not break the symmetry.
The external driving, which dominates near the critical point
in the ordinary KZM, here acts only as a perturbation.

For ε0 = 0 and the saturated M0, U (M0,t
1/z) = M0. In the

initial stage, M now decays according to

M � t−β/νzf1(0,M0,0) + Rt (νrT −β)/νzf
′
1(0,M0,0), (4)

where the first term is the nonequilibrium relaxation [65]
and the second term arises again from the perturbation of
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the driving. Note that, for R > 0, f
′
1(0,M0,0) < 0 because M

must decrease as the temperature increases.
Crossover to the FTS stage occurs at Rt̂

rT /z

i ∼ 1, or t̂i ∼
R−z/rT ∼ ζd . This is not t̂ of the KZM as it is the crossover from
the relaxation stage, which is also nonadiabatic. However, the
asymptotically identical forms show that ζd of the FTS regime
does not depend on the initial conditions. The scaling form of
the FTS stage can be obtained from Eq. (1) as

M = Rβ/νrT f2(ε0R
−1/νrT ,U (M0,R

−1/rT ),εR−1/νrT ) (5)

with another scaling function f2. For ε0 = 0 and the saturated
M0, Eq. (5) is quite similar to the usual FTS form [38,57,58].
However, the scaling functions are different, because they char-
acterize different evolutions from distinct initial conditions as
can be seen from Fig. 1.

When εR−1/νrT � 1, or ζs � ζd , the system enters the
adiabatic stage with a scaling form

M(R,M0,ε0,ε) = εβf3(ε0ε
−1,U (M0,ε

−ν),Rε−νrT ), (6)

where f3 is a scaling function. This crossover is similar to
the usual impulse-adiabatic crossover in KZM as can be seen
in Fig. 1. Indeed, the time when the curve of the usual KZM
tends to zero is close to the corresponding time of the curve
starting with an nonequilibrium state. This indicates again that
the time scale in the FTS stage is consistent with the time scale
in the impulse region.

The scaling theory is applicable to other situations in
which other variables than T are changed starting with
a nonequilibrium initial state near the critical point. For
example, consider changing the symmetry-breaking field h

as h = h0 + Rht with a small h0 and a constant Rh. We set
ε = 0 to reduced competing scales. In this case, there exist
also three stages in the driving process. In the relaxation stage,
the scaling form for small M0 is

M = t−β/νzf1h(Rht
rh/z,M0t

x0/z,h0t
βδ/νz), (7)

with rh = z + βδ/ν [57,58], while in the FTS stage in which
ζi � ζd ∼ R−z/rh the scaling form changes to

M = R
β/νrh

h f2h

(
M0R

−x0/rh

h ,h0R
−βδ/νrh

h ,hR
−βδ/νrh

h

)
, (8)

where f1h and f2h are scaling functions. Finally comes the
h dominated adiabatic stage. Again, f2h for h0 = 0 and a
saturated M0 is different from the usual one with adiabatic
initial conditions. We note that this case has been considered
in [42], where a method to determine the critical exponents
was proposed. However, the relaxation has not been discussed
there.

To confirm the scaling theory, we take the 2D classical Ising
model as an example. Its Hamiltonian is

H = −
∑

〈i,j〉
SiSj − h

∑

i

Si, (9)

where Si = ±1 and the first sum is over all nearest neighbors
and the second is over over all spins. Note that unless changing
the symmetry-breaking external field h we set h = 0 for
simplicity. The critical point of Eq. (9) is Tc = 2/ log(

√
2 + 1)

[41] and the critical exponents are β = 1/8, ν = 1, δ = 15
[41], z = 2.1667 [50], and θ = 0.191 [66–68]. They will be
taken as inputs to verify the scaling forms. The single-spin

FIG. 2. Three stages of the evolution of M under increasing
ε with fixed ε0R

−1/νrT = 0.2 and M0R
−x0/rT = 0.06 for three R

indicated. The curves before and after rescaled are shown in (a) and
(b), respectively. Semilogarithmic scales are used.

Metropolis algorithm [69] is used. The lattice size is 5000,
which has been checked to produce negligible size effects.
Periodic boundary conditions are applied throughout. We
calculated averages over between 2000 and 3000 samples,
which guarantee that the relative uncertainty is smaller than
1%. The initial configuration is a uniformly distributed random
assignment of Si = ±1 with an average equal to M0.

First, we classify the different stages of the evolution and
examine the scaling form (5) for small M0. Figure 2 shows
the dependence of M on ε for several M0 and ε0 > 0. When
ε is small, M increases with ε and thus t at short times. This
is similar to the critical initial slip in the pure relaxation and
is thus the relaxation stage. When ε gets larger, M decreases
as ε increases. Yet, M increases with R and hysteresis occurs.
This is the generic behavior of the FTS stage [57,58]. Then
follows the adiabatic stage, in which M is zero, independent
of R and the initial condition. Because M0 and ε0 have been
chosen in such a way that M0R

−x0/rT and ε0R
−1/νrT are fixed,

FIG. 3. Difference of M between R �= 0 and R = 0 with (a) a
small M0 and (b) the saturated M0 for ε0 = 0. Double-logarithm
scales are used. The insets plot the original curves, from which one
sees that the initial slip emerges after ten Monte Carlo steps per spin
or so.
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FIG. 4. The evolution of M under changing ε with ε0 = 0 and
M0 = 0.2. It matches the rescaled curves with the estimated value of
M

′
0 and R

′ = RbrT for b = 4. Semilogarithmic scales are used.

the curves collapse onto each other after rescaling according
to Eq. (5), confirming that M0 and ε0 are indispensable scaling
variables.

Second, we study the effects of the external driving accord-
ing to Eqs. (3) and (4). In Fig. 3(a), the difference between
the driving relaxation and pure relaxation satisfies a power-
law relation, |M − M0t

θf
′
1(0,0,0)| ∝ t θ+rT /z, according to

Eq. (3). The fitted slope is θ + rT /z = 1.696(2), which agrees
with the theoretical value of θ + rT /z = 1.652. For the case
of the saturated M0, which is M0 = 1 for the Ising model,
as shown in Fig. 3(b), |M − t−β/νzf1(0,1,0)| changes with t

with an exponent 1.499(4), which is close to (νrT − β)/νz =
1.403, consistent with Eq. (4). The deviations arise from the
contributions of higher-order terms in the expansions.

Third, we further verify the scaling theory by examining the
scale transformation (1) for large M0. In this case, the rescaled
initial order parameter M

′
0 = U (M0,b) is not a simple power

law [63,64]. So, for a given b and ε0 = 0 for instance, we
first estimate M

′
0 from the pure relaxation by selecting an M

′
0

starting with which the evolution of M matches, after its M

and t are rescaled by bβ/ν and b−z, respectively, that starting
with M0 [63,64]. With this M

′
0, the evolution of M when ε is

changing again matches well that starting with M0 upon proper
rescaling, including R

′ = RbrT , as is illustrated in Fig. 4. Also
manifest in the figure are the three stages similar to the case
of small M0. These show that the effects of driving and of the
initial conditions are independent and thus confirm Eq. (1).

FIG. 5. (a) Three stages of the evolution of M under changing
h with fixed |h0|R−βδ/νrh

h = 0.01 and M0R
−x0/rh
h = 0.04 for three Rh

indicated. (b) The rescaled curves. Semilogarithmic scales are used.

Fourth, we consider the situation of changing the symmetry-
breaking field h. Figure 5 shows the results of changing
h as h = h0 − Rht with some small and negative h0. The
three stages are also manifestly similar to those in Fig. 2.
The rescaled curves with different Rh and M0 collapse well
onto each other for fixed M0R

−x0/rh

h and |h0|R−βδ/νrh

h . This
confirms both that the scaling form must include h0 and
Rh as scaling variables as Eq. (8) indicates and that the
relaxation-FTS-adiabatic scenario is generally applicable in
the driving dynamics with nonequilibrium initial states near
the critical point.

In summary, we have systematically studied the driving
dynamics starting with a nonequilibrium initial state near the
critical point. This initial condition breaks the adiabaticity
and thus changes the adiabatic-impulse-adiabatic scenario
of the KZM into the relaxation-FTS-adiabatic scenario by
suppressing the initial adiabatic stage. A scaling theory that
combines FTS with critical initial slip has been developed
and accounts well for the universal scaling behavior in this
nonequilibrium nonadiabatic case. Numerical simulations on
the 2D Ising model have confirmed that the theory applies well
both to varying temperature and to varying the symmetry-
breaking external field. Our theory might provide a way
of nonadiabatic quantum computations as opposed to the
adiabatic ones [70], as one may now quench nonadiabatically
from the ground state of an initial Hamiltonian to the targeted
one even at the critical point of the latter.

This project was supported by National Natural Science
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