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Critical Josephson current in the dynamical Coulomb blockade regime

Berthold Jäck,1,* Matthias Eltschka,1 Maximilian Assig,1 Markus Etzkorn,1 Christian R. Ast,1 and Klaus Kern1,2

1Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany
2Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

(Received 10 March 2015; revised manuscript received 20 December 2015; published 13 January 2016)

The current-voltage characteristics of a voltage-biased Josephson junction in the low conductance regime of
an ultra-low temperature scanning tunneling microscope (STM) is dominated by sequential charge tunneling.
Using P (E) theory we show that the Josephson coupling energy, experimentally determined in this regime, is in
good agreement with the critical current I0 calculated from the Ambegaokar-Baratoff formula. In this way, we
can determine the critical current values of a Josephson junction in an STM. Furthermore, we experimentally
determine a range of validity for P (E) theory, which is in accordance with theoretical predictions. In this way,
we establish an optimal parameter range, in which Josephson STM can be performed.
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The DC Josephson effect describes the dissipationless
tunneling of Cooper pairs between two superconducting
electrodes, which manifests itself as a finite tunneling current
at zero voltage [1]. The maximum amplitude of this current,
the critical Josephson current I0, directly depends on the
normal state conductance GN of the tunnel contact and the
superconducting order parameters �1 and �2 of the two
electrodes [2]. Thus, I0 provides direct access to the super-
conductor’s properties. Knowledge of the spatial variations
in the superconducting order parameter � gives insight on
the interaction of a superconductor with single magnetic
impurities [3,4]. In addition, I0 provides valuable information
about the pairing symmetry of � in unconventional supercon-
ductors [5,6]. Therefore, the Josephson effect holds promising
potential in combination with the nanoscale resolution of low
temperature scanning tunneling microscopy (STM), where it
is also referred to as Josephson STM (JSTM) [5]. In first JSTM
experiments the tunneling of Cooper pairs through the atomic
scale tunnel junction was demonstrated [7–10], and the spatial
mapping of this current was also successfully realized [11].
Determining quantitative values of I0 from JSTM experiments,
however, has not been achieved so far, although this capability
is of fundamental importance for the concept of JSTM [5].
One possibility to extract I0 from experimental data is given
by the Ivanchenko and Zil’berman model [12,13], if the capac-
itance can be neglected. However, in a typical STM geometry,
the junction capacitance cannot be neglected [14]. Under these
conditions, the so-called P (E) theory [15,16] has to be used
to describe the tunneling current. This has been demonstrated
before both in the context of single-particle tunneling [17,18]
as well as sequential Cooper pair tunneling [14].

In this Rapid Communication, we show that the local
value of the critical Josephson current extracted from the
fits of the P (E) theory to the experimental data measured
with an STM is in good agreement with the value from
the Ambegaokar-Baratoff (AB) formula [2]. Further, we
experimentally observe a regime in which the phase tunneling
starts to dominate the sequential Cooper pair tunneling. In
this way, we experimentally determine the range of pure
sequential Cooper pair tunneling and thus the range of validity

*Corresponding author: berthold.jack@alumni.epfl.ch

of P (E) theory. In the context of JSTM, this result also allows
us to establish an optimal parameter range, in which JSTM
experiments can be performed.

The current-voltage-characteristics of a Josephson junction
generally depend on a number of different parameters, which
requires a careful choice of the theoretical model [12,15,16].
To do this, we compare the different energy scales of all
involved physical phenomena. These are the Josephson cou-
pling energy EJ = �I0/(2e) [� is the reduced Planck constant
� = h/(2π ) and e is the elementary charge], the Coulomb
charging energy of the tunnel contact EC = 2e2/CJ, where
CJ is the junction capacitance, as well as the thermal energy
ET = kBT , where T is the temperature and kB is the Boltzmann
constant. The Josephson energy EJ in our case is on the order
of 10 μeV, in the tunneling regime where GN � G0 (GN is
the normal state conductance and G0 = 2e2/h denotes the
quantum of conductance). The Coulomb charging energy EC

is on the order of 100 μeV assuming a typical STM junction
capacitance CJ of a few femtofarad. At an effective temperature
of 40 mK, the thermal energy ET is 3.45 μeV [19].

Figure 1(a) compares these energy scales for different
values of GN [20]. We find that in the tunnel regime (GN �
G0), the energy scales order in the following way: ET �
EJ � EC. In particular, this means that the condition ET � EJ

for JSTM to work best is fulfilled for most of the tunnel
conductance range [5,12]. In addition, in the limit EJ � EC ,
the tunneling current is created by the sequential tunneling
of Cooper pairs, also referred to as the dynamical Coulomb
blockade (DCB) regime. In this regime, the Cooper pairs tunnel
inelastically releasing energy quanta hν proportional to the
junction bias voltage VJ = hν/(2e) into the environment. The
emitted photon spectrum has recently been studied in more
detail [21], also in the context of nonlinear quantum dynamics
[22]. The sequential Cooper pair tunneling characteristics
can be modeled by the P (E) theory [15,16], which treats
the Josephson coupling energy EJ as a perturbation to the
Coulomb energy EC. This theory facilitates the determination
of an experimental Josephson coupling energy EJ, which
can be directly converted to the Josephson critical current
I0 = (2e/�)EJ—giving access to � [15,16]. However, it is
a priori not clear that the experimental values for I0 found
in the DCB regime correspond to the actual AB critical
current that has been evaluated for the phase-tunneling regime

2469-9950/2016/93(2)/020504(5) 020504-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.020504


RAPID COMMUNICATIONS
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FIG. 1. (a) Coulomb charging energy EC, Josephson coupling
energy EJ, and thermal energy ET at Teff = 40 mK versus normalized
tunnel conductance GN/G0. EC was calculated using the average ca-
pacitance value from the P (E) fits. (b) Vanadium-vacuum-vanadium
tunnel junction in the STM: The topography shows the (5 × 1)
reconstructed V(100) surface measured at a setpoint of V ′ = 2 mV
and I = 5 nA. Above the sample, an artistic view of the STM tip is
shown. (c) Simplified circuit diagram of the experimental setup: JJ
represents the Josephson junction, CJ the junction capacitance, δU

the voltage noise, and Z(ν) the frequency-dependent environmental
impedance.

[2,23]. Moreover, when the Josephson coupling energy EJ

becomes comparable to EC—in our case when GN ≈ G0 [see
Fig. 1(a)]—the Josephson junction enters a regime where
phase tunneling becomes more and more dominant. Therefore,
P (E) theory, describing sequential Cooper pair tunneling,
should fail to describe I (V ) characteristics measured in this
regime, which remains an unresolved question until now.

We performed experiments on voltage-biased vanadium-
vacuum-vanadium tunnel junctions using an STM at a tem-
perature of T = 15 mK [19]. For the STM tip, we cut a
polycrystalline V wire of 99.8% purity under tension (diameter
d = 250 μm). The tip was prepared in situ by field-emission
and voltage-pulses. The sample is a V (001) single crystal
[24,25], which has been prepared by cycles of sputtering and
annealing to T = 800 ◦C, as shown in Fig. 1(b). The normal
state tunnel conductance GN = IT/VT is determined by the
tunneling current IT at a bias voltage reference VT, where
eVT � �1 + �2. We correct the voltage axis for voltage
drops over an effective circuit resistance RDC, according to
V = V ′ − I (V ′)RDC [26]. The primed and unprimed voltages
denote the applied bias voltage and the junction bias voltage,
respectively.

The perturbative approach of P (E) theory applies Fermi’s
golden rule to calculate the tunneling current [27]:

I (V ) = πe

�
E2

J [P (2eV ) − P (−2eV )], (1)

where P (E) is the spectral probability for a tunneling Cooper
pair to emit (E > 0) or absorb (E < 0) a photon to or from
the environment. The probability distribution P (E) is only
determined by the electromagnetic environment Z(ν) of the
junction and independent of the normal state conductance GN

[15,16]. The Josephson effect enters only through the scaling
factor E2

J , which is particularly advantageous for the following
data analysis: I (V ) curves measured at different values of GN

can be modeled by the same P (E) function scaled by E2
J . We

FIG. 2. (a) Typical I (V ) curve and the corresponding P (E) fit.
On the bottom the real part of ZT(ν) normalized to the quantum of
resistance RQ = h/2e2 is shown (cf. Refs. [14] and [30]). (b) I (V )
curves measured at selected tunnel conductances GN. The P (E) fits
are shown as dashed black lines. (c) Fitted capacitance values CJ

as well as impedance parameters νn and α as function of GN/G0.
(d) Experimentally determined [P (E) fit] and calculated values (AB
formula) of the critical current as well as their relative deviation
�I0/I0 as a function of GN/G0. The error bars are within the size of
the symbols.

will use this property later to mark the range of validity of P (E)
theory. EJ is independent of Z(ν), for which reason its value
can be unambiguously determined with high precision. The
probability P (E) in Eq. (1), whose energy integral normalizes
to one, is a convolution of two independent energy exchange
probabilities PZ(E) and PC(E) [27–29]. The probability
PZ(E) describes the energy exchange with the immediate
environment, which is characterized by a complex, frequency
dependent impedance ZT(ν). In the STM, this comprises the
junction capacitance CJ as well as the tip, which acts as a λ/4-
monopole antenna. It can be modeled effectively by a modified
open-ended transmission line impedance [14,30], whose real
part is displayed in Fig. 2(a). Moreover, phase diffusion effects
due to finite temperature in the resistive leads are incorporated
in PZ(E) through an ohmic contribution R = ZT(0) at zero
frequency. The second distribution PC(E) accounts for an
experimentally observed broadening of the Cooper pair current
spectrum. A likely source of this broadening is thermal charge
fluctuations in the junction electrodes resulting in thermal
voltage fluctuations δU across the junction capacitance. We
estimate the corresponding PC(E) function to be of Gaussian
shape with a standard deviation of σ = √

2ECkBT [29,31].
We will show in the following that the contribution from the
thermal voltage fluctuations is essential for modeling the I (V )
curves.
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A typical I (V ) curve measured at a conductance of GN =
0.27 G0 is shown in Fig. 2(a). The I (V ) curve features a
dominant supercurrent peak near zero voltage and well-defined
spectral resonances at higher voltages, which originate from
the interaction of the junction with the tip-assembly impedance
[14,15,32]. Moreover, in comparison with previous studies,
e.g., Refs. [13] and [32], all current features exhibit a rather
broad contour, which can be attributed to the intrinsically
low quality factor of antennas as well as the impact of the
voltage fluctuations δU . The challenge in fitting an I (V ) curve
using P (E) theory lies in the rather complex interplay of
the different fitting parameters. Therefore, the experimental
parameters require more detailed consideration. The resistive
junction leads are transmission lines, for which reason we can
set the dissipative impedance at zero frequency ZT(0) to the
input impedance of a transmission line, R = 377 	 [33]. We
use an effective electronic temperature of Teff = 40 mK, which
is slightly higher than the base temperature of our system, as
we can not perfectly shield it from stray photons—a result
from operating an STM [19].

Incorporating these assumptions, we can fit the experi-
mental I (V ) curve at GN = 0.27 G0 as shown in Fig. 2(a).
The fit nicely reproduces both the supercurrent peak as well
as the spectral resonances, and we can extract a Josephson
coupling energy of EJ = 52.69 ± 0.53 μeV. The environmen-
tal impedance ZT(ν) shows its base resonance frequency at
ν0 = 31.34 ± 0.04 GHz, and a corresponding damping factor
α = 0.52 ± 0.01 (cf. Ref. [14]). For the junction capacitance,
we find a typical value of CJ = 2.04 ± 0.07 fF. We conclude
that the I (V ) curves from our small capacitance tunnel
junction showing the characteristics of Cooper pair tunneling
can be nicely modeled by P (E) theory with reasonable
parameters that are independently reproducible. Moreover,
we are able to unambiguously determine an experimental
value of the Josephson coupling energy EJ in a particular
junction.

We have repeated the same analysis for several Cooper
pair tunneling characteristics over a large range of the nor-
mal state tunneling conductance 0.0052 G0 � GN � 1.35 G0.
The measured I (V ) curves were fitted with P (E) theory in the
same fashion as before, of which three examples are shown in
Fig. 2(b). For all values of GN, P (E) theory nicely describes
the tunneling current. As expected, the fitted values for the
junction capacity CJ and the environmental impedance Z(ν)
do not depend on GN, as shown in Fig. 2(c). These results
corroborate the consistency of our P (E) implementation and
fitting routine. From the fitted Josephson coupling energy
EJ, we can directly calculate an experimental critical current
I0 = 2e/�EJ . Its dependence on the normal state tunneling
conductance GN is displayed in Fig. 2(d). We find that I0

linearly depends on GN over almost two orders of magnitude
for GN � 0.27G0. We will show below that P (E) theory
breaks down for GN � 0.59G0. As underlined above, the P (E)
distribution is independent of GN [cf. Eq. (1)]. Hence, we can
assign this linear increase of I0 entirely to the increase of GN,
which is in agreement with the AB formula [2].

To quantitatively compare the experimentally found values
for the critical current with the critical current values calculated
from the AB formula, we write the AB formula for two
superconductors with unequal order parameters �1,2 and

FIG. 3. (a) dI/dV spectra of the tunneling current (colored lines)
and the corresponding fits (dashed lines) at zero magnetic field (i)
and at 1 T, where the sample is normal conducting (ii). The spectra
were recorded at GN = 0.003G0 using standard lock-in techniques
at a modulation frequency of fmod = 720 Hz and an amplitude of
Vmod = 20 μV. (b) Dependence of the tip gap �2, as extracted from
the Maki fits, as a function of the externally applied magnetic field B.
The extrapolation to zero magnetic field is indicated by the dashed
line. (c) I (V ) curves (colored lines) and upscaled fits (dashed black
lines) measured at large values of GN. The scaling factors with respect
to the fit at GN = 0.27 G0 are indicated. (d) Calculated probability
distribution PZ(E), only considering the dissipative environment, and
the total distribution P (E) that also considers the capacitive voltage
noise δU . Note the different scales in the two panels. (e) The products
EJPZ, max and EJPmax as a function of the normalized conductance
GN/G0 indicating the range of validity of P (E) theory.

�1 > �2 [2]:

I0 = �2GN K

(√
1 − �2

2

�2
1

)
. (2)

Here, K denotes Jacobi’s full elliptic integral of the first kind.
We can independently determine the sample gap �1 and the
tip gap �2 by measuring the quasiparticle excitation spectra as
a function of the magnetic field shown in Fig. 3. The sample
becomes normal conducting at Bc,2 = 0.5 T [24], but the tip
has a much larger critical field due to the confined geometry at
the apex [34]. We, therefore, extract the tip gap using a Maki
model fit for higher fields shown in Fig. 3(b) [35]. Extrapo-
lating to zero field, we find a tip gap of �2 = 563 ± 20 μeV
[36]. The sample gap �1 we can extract from a Dynes fit to the
zero field spectrum having the value �1 = |�1 + �2| − �2 =
748 ± 25 μeV, as shown in Fig. 2(a) [37–39]. The reduction of
the tip gap compared to the bulk value is common in vanadium
tips [35] and may be explained by the influence of vanadium
oxide at the tip surface, changes in the phonon dispersion, or
grain size effects [24,40–42]. Inserting these values along with
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GN into the AB formula, we can plot the corresponding critical
currents in Figure 2(d) as a function of GN. The critical currents
from the P (E) fit and the AB formula match within <7%
[cf. upper panel in Fig. 2(d)] over the entire range of
conductance. This is a remarkable observation, because the
experimental values were determined in the DCB regime,
whereas the AB formula was derived in the phase-tunneling
regime. Our findings confirm the established interpretation
of the critical current I0 as a coupling strength between the
overlapping pair wave functions, which is independent of the
actual tunneling process [2].

We further tested the range of validity of P (E) theory
in the limit EJ → EC. Here the initial requirement of this
perturbative approach EJ � EC is no longer valid so that
P (E) theory should break down. However, Ingold et al.
found that the global condition EJ � EC is superimposed by
another condition EJP (E) � 1 [29]. This condition means
essentially that sequential tunneling holds as long as the
tunneling probability is low enough. In order to test this
hypothesis, we measured the I (V ) curves for values of the
normal state tunneling conductance GN � 0.59 G0 of which
three examples are shown in Fig. 3(b). Using P (E) theory as
before, we were unable to properly fit any of these I (V ) curves,
which is to be expected, since at the measured conductance
values, we find EJ ≈ EC [cf. Fig. 1(a)]. Nevertheless, we
can upscale a fitted current spectrum from experiments at a
lower conductance GN = 0.27 G0. The upscaled I (V ) curve
nicely fits the spectral resonances at higher voltages but largely
overestimates the supercurrent peak in all cases with increasing
mismatch for higher values of GN, as shown in Fig. 3(b),
indicating the breakdown of P (E) theory.

To better understand this observation, we investigated the
product EJPmax, where Pmax is the global maximum of P (E).
It is found at zero voltage for the probability distribution of the
impedance PZ(E) as well as the total, convoluted probability
distribution P (E) [see Fig. 3(c)] [29]. It can be seen that the
broadening of the total P (E) due to the capacitive noise greatly
reduces the maximum value of P (E) compared to PZ(E). The
dependence of EJPmax on the tunnel conductance GN is shown
in Fig. 3(d). For a conductance of GN � 0.59 G0, we find
EJPmax � 1 so that the required condition for P (E) theory
is “locally” violated near zero voltage. This result perfectly
explains our observation that P (E) theory fails to describe the

supercurrent peak close to zero bias voltage, where P (E) has
its maximum and EJP (E ≈ 0) ≈ 1. Therefore, we observe
phase tunneling at low voltages and charge tunneling at higher
voltages in the same spectrum and, thus, P (E) theory fails to
model the entire I (V ) curve. For quantitative agreement with
the experimental data in this regime, higher order perturbation
theory may have to be taken into account (see, e.g., Ref. [43]).

Moreover, fitting the P (E) function to our data reveals the
significance of the thermal voltage fluctuations as a spectral
broadening mechanism. While the probability distribution in
the convoluted P (E) function is broadened and has some spec-
tral weight at higher voltages, the PZ(E) distribution—only
containing the interaction with the dissipative environment—
sharply peaks at V = 0 [see Fig. 3(c)]. For this reason, the
required condition EJPZ, max � 1 is violated for almost the
entire conductance range as shown in Fig. 3(d). This is in
agreement with theory, since we operate the junction in a low
impedance environment [i.e., Z(0) � 1/(2 G0)]. Therefore,
thermal voltage fluctuations have to be included [29,31] to
correctly describe our data. This reduces the Pmax values and
results in an overall consistent picture between experiment and
theory as well as the range of validity.

In summary, we have investigated the I (V ) characteristics
of a voltage-biased Josephson junction in the DCB regime
with an STM. We found that the experimentally determined
values for the critical current I0 = 2e/�EJ in the DCB regime
are in good agreement with the theoretical values calculated
by the AB formula within a deviation of less than 7%. The
DCB regime, which is predominantly accessible in STM, can,
therefore, be used to determine the critical current I0 of the
Josephson junction. Thus, with precise tuning of the involved
energy scales (ET,EJ,EC), we can operate our STM in the
optimal JSTM regime. Furthermore, we could experimentally
define the range of validity for pure sequential Cooper pair
tunneling in which P (E) theory can be applied. Our results
represent the fundamental step towards the implementation
of JSTM as a versatile spectroscopic tool for studying
superconducting properties on the atomic scale [3–5] and
further allow us to shed more light on the transition between
sequential Cooper pair and coherent phase tunneling.

It is our pleasure to acknowledge fruitful discussions with
F. Portier, J. Ankerhold, C. Urbina, and G.-L. Ingold.
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