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Vortical versus skyrmionic states in mesoscopic p-wave superconductors
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We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a
multicomponent order parameter in the Ginzburg-Landau model for p -wave superconductivity. Conventional
vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy
parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that
for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity.
We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied
magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.
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I. INTRODUCTION

Strontium ruthenate, Sr,RuQy, is according to theoreti-
cal predictions the best candidate to date to host p-wave
superconductivity. Generally speaking, the order parameter
in superconductors describes the spatial profile of the gap
function, A;;(k). The order parameter in p -wave supercon-
ductivity is an odd function of the wave vector k, unlike the
s-wave superconductors where it is an even function of k [1].
Following the notation of Balian and Werthamer, the p -wave
order parameter reads [2,3]
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or in a short notation A(k) =i [3(k)~6]ay, where J(k)
transforms as a vector under rotations and o; are Pauli matrices.
Microscopic calculation of the superconducting gap is a highly
demanding task that requires a detailed knowledge of the
pairing mechanism which in many cases is not available.
What remains then is to exploit all the symmetries (continuous
and discrete) exhibited by the material under consideration
and build a model that will depend on a certain number of
parameters. The possible superconducting order parameters
that have been reported for p -wave superconductors required
a detailed description of the crystal structure of the considered
material [2,3]. In that respect, strontium ruthenate (SRO)
is a layered perovskite with a crystal structure similar to
the well-known high-T, superconductor (La, Sr),CuO,, where
oxygen ions at the corners of an octahedron surround the
body-centered Ru ion [1,4]. The planar layers of RuO, are
separated by Sr layers that stack along the highly symmetric
axis c¢. The Fermi surface of strontium ruthenate contains
three sheets arising from the binding of the Ru and O
ions within the same layer [5]. Bindings between the RuO,
layers are weak due to the long separation of the interplanar
RuOg¢ octahedra. The Fermi sheets o and f are both one
dimensional (1D), while the y sheet is two dimensional (2D).
A rigorous analysis found that among the five irreducible
representations for vector c?(k) in the lattice point group
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Dy, there are four 1D, d= kX +k,§ and d= k& + k.9,
and one 2D, d= (ky £ ik,)Z, representations [2,3]. These 1D
and 2D representations, namely helical and chiral, are the
electronic analogs of the B and A phases of the superfluid
3He [2], respectively. Knight-shift measurements were not
able to discern the chiral from the helical contributions, since
they detected constant spin susceptibility (x.) for external field
either within the RuO; plane or perpendicular to it [6,7]. On
the other hand, muon-spin relaxation («SR) and the optical
Kerr effect experiments have detected spontaneous magnetic
fields [8,9], only possible in the chiral phase that breaks the
time-reversal symmetry (TRS) [10].

To confirm or discard SRO as a chiral superconductor,
magnetic response experiments have been carried out on
single crystals, but have failed to convincingly detect the
spontaneous currents predicted to exist in chiral domain walls
and close to sample edges [11-13]. In these works, numerical
simulations of evenly distributed chiral domains estimated a
minimal domain-wall length of 2 um = 30, (where & is the
zero-temperature coherence length of SRO) to be detectable
in a scanning superconducting quantum interference device
(SQUID) setup. Such domains are energetically costly in a
bulk system, but are likely to stabilize in a mesoscopic sample
of comparable size.

Therefore, to provide further insights in chiral physics of
p -wave superconductors [14—16], in this work we employ the
chiral p-wave Ginzburg-Landau (GL) model [3,17-19], to
report distinct mesoscopic effects of chirality in the supercon-
ducting state and related experimental observables, which in
turn can serve to discriminate chiral from helical contributions
in superconductors like SRO. We report the stabilization of
various topological entities, full vortex (FV), half-quantum
vortex (HQV), and skyrmion states. Skyrmion states, carrying
topological charge defined by the Hopf invariant [20,21],
are one of the distinct hallmarks of chiral superconductivity,
and can be stable in bulk p-wave superconductors [21].
It is well known in conventional s-wave superconductivity
that confinement can stabilize superconducting configurations
which in bulk systems are energetically unfavorable or even
unattainable, e.g., non-Abrikosov vortex lattices, or vortices
with phase winding ¢ = 2mn, with n > 1 (giant vortices)
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[22]. In mesoscopic spin-triplet superconductors HQVs have
been predicted to exist, owing the reduction of their otherwise
divergent energy to the low dimensionality of the system [23].
They carry unscreened spin currents and half the vorticity
of a full vortex [23,24]. Despite the fact that in the chiral
phase vector d is locked to the Z axis [3,19], we found
analogous HQVs defined by (i) the 2m-phase winding of
one of the chiral superconducting components, and (ii) the
anisotropic screening that causes their attraction to the edges
of the mesoscopic sample. We present the found HQV states
in multiple forms, but also FV and skyrmionic states and
transitions between them as a function of the external magnetic
field applied perpendicularly to the sample. We employed the
time-dependent theoretical formalism, which allowed us to
observe temporal transitions as well, related to peculiar entry
and arrangement of HQVs and their temporal transformations
into other topologies. The HQVs that were found to reside at
the sample edges are the realization of the quasi-1D periodic
array of domains discussed in Ref. [12].

The paper is organized as follows. Section II presents the
theoretical formalism and our analytical analysis of the first
GL equation and the superconducting current. The boundary
conditions imposed on our equations are derived from the latter
expression. Section III then summons our findings for the
superconducting configurations composed of HQV, FV, and
skyrmion states, obtained at weak coupling and considering
a cylindrical Fermi surface. The transitions between states
of interest as a function of the magnetic field are discussed
in Sec. IV, while the temporal transformations are shown in
Sec. V. The effect of anisotropy on the topological, vortical,
and skyrmionic entities is analyzed in Sec. VI. Our findings
and conclusions are summarized in Sec. VIIL.

II. THEORETICAL FORMALISM

After the above brief general description of strontium
ruthenate, in what follows we show the Ginzburg-Landau
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a consequence of the two-dimensional representation (F;E) of
the tetragonal group Dy, [3]. The expansion of the GL free
energy density up to fourth order in v, , that fulfills the group
symmetries, reads

F = K(ID:Ye|* + |Dy ¥y |P) + ki (I Dy |* + | Dy |®)
+2Re{ka Do (Dy¥r,)* + ks Dy, (Dy )} — | W2
FBIEI + BW Yy — Y + BV Pl A ()

where o, k;, and B;, withi = 1,2,3, are parameters that depend
on the details of the Fermi surface of the material under
consideration. K =), k; and D, , denote the components
of the covariant derivative. The time-dependent Ginzburg-
Landau (TDGL) equations, used in our numerical approach
[25], are the set of coupled differential equations for the
superconducting order parameter W and the vector potential A

[26],
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where ¢ is the scalar electric potential, B is the magnetic
induction, m; is the effective mass, D is the phenomenological
diffusion coefficient, and o is the electrical conductivity.
For convenience we set 7 =1 and m; = 1/2. The second
GL equation [Eq. (4)] is discarded in this work since the
diamagnetic effects of superconductors are vanishingly small
for a thin (effectively 2D) mesoscopic geometry. We use the
symmetric gauge for the vector potential, A= (F x H )/2,
with the magnetic field (1-7 ) directed along Z. The scalar electric
potential is set to zero since neither charges nor external
currents are considered in this work. In dimensionless units,

where distance is scaled to the coherence length, & = \/g

. £2
time to fyH = ==

> magnetic field to the upper bulk critical

(GL) equations that the order parameter, ¥ = (1, 1/’,»')Tv nust field H,, = e and the superconducting order parameter
satisfy. The order parameter has two components (is chiral) as to Ay = 2%, the first TDGL equation becomes
|
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where Iy = \/%(Dx +£iD,)), ¥y =Y £ivy, B3 =0 [27],
and v = B,/B;. A straightforward calculation reveals the
following important result: [Dy,D,] = iH, which leads the
operators [Ty to satisfy the commutator: [I1,,[1_]= H.
The external magnetic field, being constant, can be factored
out from the above commutators, leading to [I1,,[1_] =1,
which defines the algebra behind the Landau levels, Ty =
./+/H. This algebra is defined through the following
commutators: [N,ﬁ+] = —l:I+, [N,I:I_] = I1_; where N =
[, T1_ is the particle number operator. Within the weak-
coupling limit and considering a cylindrical Fermi surface
(v sheet), all the k; parameters are equal to (vjv;)/(vy) =

(

1/3, where brackets () denote averaging over the Fermi
surface [27], and t = 1/2. For this case the first GL equation
reads

2.2 2 A 2 4 1
oV = §[D + 056, + 26 V¥

- W12 U6, U
+0(1- + <),
4 4

(©)

where 64+ = (6, £i6,)/2 are pseudospin or chiral operators
acting on the space span by .. Ignoring the nonlinear
terms (linearized case), it is straightforward to show that
the superconducting order parameter must be of the form
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U= (¢n.¢Pn_2)T, where ¢y is the state corresponding to the
Landau level N [17-19,27-29]. Within the superconducting
formalism the number N turns out to be the vorticity of the
order parameter. Then, one concludes that for chiral p -wave
superconductors there is a vorticity difference of 2 between the
components of the superconducting order parameter. The full
GL equations, i.e., the linearized equation plus the nonlinear
terms, are a complicated set of partial differential equations
with restricted analytical solutions [27,29]. Therefore, in
this work we solve this problem numerically. Due to the

J

K + ki
4

f:lm{

+i U6, — TT_6_1V ) +

where 7, j form the canonical base in Cartesian coordinates.
The set of operators (61 and &,) act on ¥y, while S‘y acts
on {7,j}. The superconducting current contains mainly three
contributions defined by the following factors: (K + k;)/4,
(ky + k3)/2\/§, and (ky — k3)/4. The first one arises from the
conventional term D? in Eq. (5), the second one (we name
chiral) is due to the internal degree of freedom (chirality)
that appears in Eq. (5) in the form of two nondiagonal terms.
Finally, the third contribution arises from the diagonal terms
(£[Dy,D,])in Eq. (5), and accounts for the chiral polarization
introduced by the orbital Zeeman interaction. Within the
weak-coupling limit k, and k3 are equal [17,28,29], but if
the the density of states [N (0)] weakly depends on the energy
derivative [ N'(0)] at the Fermi surface, k, and k3 slightly differ
[18]. The boundary conditions imposed on Eq. (5) for our
square mesoscopic sample are given as

Vi — 9o =0
DyWy+ Dy =0

Vi+y-=0
Dy — Dyy— =0

It is straightforward to show that the boundary conditions of
Eq. (8) set the perpendicular current at the edges to zero,
i.e., they impose specular reflection in the chiral p-wave
superconductor [3,18,28]. It is important to remark also that
they are parameter independent, so they provide the proper
boundary conditions for Eq. (6) but also for the most general
case of Eq. (5). With Eq. (8) we have completed the set
of equations needed for the GL description of a chiral p -
wave mesoscopic superconductor. Equation (5) is numerically
solved using finite differences and the link variables technique
of Ref. [26] on a square lattice with mesh grid h, = h, = 0.1.
On the other hand, the temporal derivative is discretized using
the Runge-Kutta method of first order. Before concluding this
section, we give the reduced expression for the dimensionless
free energy, since it allows us to find not only the lowest energy
(ground) states but also the stable states with slightly higher
energies (metastable states) The free energy reads

F J—
Fy

} at north and south sides,
(®)

} at east and west sides.

% / AV + OV + (B 602, )

(WiDY, + v Dy_) +
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mesoscopic dimension of the sample under consideration,
proper boundary conditions must be incorporated in the GL
equations in order to pose the problem well. In what follows,
the superconducting current is calculated for the general case,
which includes the specific case where all k;’s are equal to
1/3, and from this expression the boundary conditions for the
first GL equation are derived. The superconducting current
density, defined as the negative functional derivative of the GL
free energy density with respect to the vector potential, for
chiral p -wave superconductors, is

ky + k3 - -
(UM, 6, + 161017
22 i
*

kz—k3—> A

7 Syéaz\iz}, (7

(

where Fy = Ai/gZ is the bulk free energy at zero
field.

III. ISOTROPIC CASE (CYLINDRICAL FERMI SURFACE)

The results obtained using Eq. (6) for a square 8§ x 8&
sample are summarized in Fig. 1, showing the dimensionless
free energy and the vorticity of vector W as a function of
the external magnetic field H. Figs. 1(b) and 1(c) show the
vorticity of the ground states of our superconducting sample,
labeled a—j in Fig. 1(a), where vy is the vorticity of the
component ¥, _). Note that both vy and v_ remain constant
along the stability curves of each state in Fig. 1(a), and as
such are good identification numbers for these states. Contour
plots in Fig. 2 show the order parameter W corresponding
to the ground states a—d. While the left and central columns
of Fig. 2 show contour plots of the superconducting density
of each component, |, |*> and |_|?, respectively, the third
column shows the difference between the angular phases of
the components, i.e., 04 — 0_.

The ground state a of Fig. 2 shows one anisotropic vortex
in each component, i.e., vorticity v, = —1 in component
¥4+ and v_ =1 in component {_. The contour plots of
the ground state b in Fig. 2 show the vortex free state in
component V¥ and the giant vortex [22] with vorticity v_ = 2
in component ¥_. The subsequent ground state ¢ has vorticity
v, = 2and v_ = 4, where |_|? contains four vortices close to
the corners, meanwhile | |> shows a pronounced depletion
around the center of the sample. The corresponding phase
difference figure reveals that the depletion in component ¥/
is a consequence of two vortices and two vortex-antivortex
pairs there. The ground state d has six vortices in |y_|* in
full agreement with the vorticity reported in Figs. 1(b) and
1(c) (v =4 and v_ = 6). However, the density |y, |? fails
to convincingly show any signature of a vortex. The vorticity
vy =4 of component Y, is visible in the phase difference
Fig. 2(d), where ten discontinuities are found along the edges
as a consequence of six vortices from _ and four from ¥..
Four vortex-antivortex pairs at the center of the sample are also
visible in this contour plot, but do not affect the total vorticity.
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FIG. 1. (a) Free energy in units of the bulk condensation energy
at zero field (Fp) as a function of the external magnetic field in units
of the bulk upper critical field (H,,), for a square mesoscopic sample
of size 8& x 8. Letter labels denote different found ground states.
Some metastable states (not labeled) are also shown in this figure.
Vorticity of components ¥, and ¥_ of the ground states of panel
(a) are shown in (b) and (c) respectively. The difference in vorticity
(v — v_ = 2) between the components is in perfect agreement with
the analytically predicted solution U= (Pn,dnv—2)T.

From the comparison between Figs. 2(c) and 2(d) one
sees that with increasing the magnetic field the component
¥_ dominates its partner component 1. The dominance of
Y_ over ., especially at high fields, impedes the proper
description of the vortex configuration in the latter component.
In order to describe the components of the order parameter
on an equal footing, a more suitable representation is in
terms of v, and y,. Figures 3 and 4 show contour plots of
[Y¥]?, |1//y|2, and cos(6, — 6,) for ground states a—j of Fig. 1.
Figure 3(a) shows cos(9; — 6,) for ground state a (from now
on called the phase difference figure), and reveals a linear
domain wall. Its extension across the sample coincides with
the stripe where density |, | vanishes. On the other hand, the
partner component ¥, is free of vortices. Ground states b and
¢ look similar in both densities, although from the comparison
between their phase difference figures in Fig. 3(b) and 3(c)
respectively, we see four domain walls in state ¢ and none
in state b. The domain walls (DWs) of ground state ¢ define
a path where the difference between the angular phases of
components v, and v, are Oor 7, i.e., 6, — 0, = 0,7. Ground
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FIG. 2. Ground states a—d of Fig. 1. Left and central columns
show the contour plots of the superconducting densities components
[¥,|* and |_|?, respectively. Right column shows the difference
between the angular phases of the components, i.e., 6. — 6_.
state d shows two vortices in density |1, |> and none in |1/fy|2,
while its corresponding phase difference figure shows the four
domain walls of ground state ¢ plus two other alternating
domain walls that weakly connect the former ones. The contour
plots of Fig. 3(e) for state ¢ show clearly two vortices in
each component. They look indistinguishable just from the
analysis of their densities, but their phase difference figure
reveals that there are two vortices, one in each component, that
combine to produce a different signature from the remaining
vortices. While the uncorrelated vortices lead to the formation
of the alternating domain walls towards sample edges, the
pair of correlated vortices align their cores and do not show
any domain wall between them. The alternating domain wall
is therefore the signature of a half quantum vortex (HQV)
defined by the 27 -phase winding of one of its superconducting
components, in contrast to the other signature without domain
wall that corresponds to the full vortex (FV).

Figure 4 shows the remaining ground states f—j of Fig. 1.
Both densities in ground state f clearly show two vortices in
each component, which are indeed four HQVs according to
the corresponding phase difference figure. Ground states g
and & show one common feature, having a different number
of vortices per component, but all of them aligned vertically
in component v/, and horizontally in component /. On the
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FIG. 3. Ground states a—e of Fig. 1, plotted correspondingly in
panels (a)—(e). Left and central columns show the contour plots of the
superconducting densities components |, |* and |, |?, respectively.
Right column shows cos (6, — 6,), where 6, , are the angular phases
of components v, and v,.

other hand, the corresponding phase difference figures for
states g and /& show that (i) two vortices, one per component,
combine to form one FV in state g, and (ii) four vortices,
two per each component, combine to form one skyrmion
in state h. The signature of the skyrmion is shown here:
four alternating domain walls which are connected into a
circular structure [30,31]. The skyrmion state here of course
differs from those of magnetic materials due to physics
and the formation mechanism [20,32,33]. Nevertheless, their
topological properties remain similar, as will be presented
later. The phase difference figure of the ground state i shows
four DWs around the corners, four HQVs close to the edges,
and three FVs in the center. What draws attention in all three
contour plots of Fig. 4(i) is that there are five vortices in
each component (fractional vortices), and among them three

PHYSICAL REVIEW B 93, 014518 (2016)
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FIG. 4. Ground states f—j of Fig. 1, plotted correspondingly in
panels (f)—(j). Displayed quantities are the same as in Fig. 3.

align their cores to form FVs according to the corresponding
phase difference figure. The triangular array formed by them
resembles the consequences of vortex-vortex repulsion in
conventional type-II superconductors. Therefore, this supports
our initial premise that the FV in our analysis is the usual
Abrikosov vortex of conventional superconductivity. Finally,
the phase difference figure of the ground state j shows four
DWs, six HQVs, and two FVs. One systematic comparison of
the phase difference figure of ground states f—j clearly shows
that HQV and FV are indeed very different states. While FVs
are formed in the sample center, being favored by confinement,
all the HQVs remain close to the sample edges. In order to
explain this difference the following subsection discusses the
calculated superconducting currents in the sample.

So far, DWs, HQVs, FVs, and skyrmions have been distin-
guished in this work according to their signatures in the phase
difference plots. The superconducting current, the physical
quantity intertwined with the magnetic field, also allows us
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FIG. 5. Superconducting currents around (a) the upper right DW
of Fig. 3(c), (b) the upper HQV of Fig. 3(d), (c) the FV of Fig. 4(g),
and (d) the skyrmion of Fig. 4(h).

to identify more characteristic features of the topological
solutions. Figures 5(a)-5(d) show the supercurrents around
one DW, HQV, FV, and skyrmion, respectively. Figure 5(a)
zooms in the supercurrents around the right-top DW of
Fig. 3(c). One can see two streams flowing in opposite senses
at the upper right and lower left corners, respectively. The
DW currents arise when these superconducting currents with
opposite chiralities meet. In order to understand better the
origin of the DW currents, Fig. 6(a) shows the line profiles
of the corresponding superconducting densities |1/ |*> along

2V2 2 6V2
Distance along the sample diagonal [€]

FIG. 6. Diagonal profiles of the contour plots |1/.|* correspond-
ing to ground states ¢ and & of Fig. 1, shown in panels (a) and (b),
respectively. Blue and green arrows indicate the DW and vortex core
locations, respectively.
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FIG. 7. Contour plots of the magnetic induction corresponding to
(a) the supercurrents of the DW of Fig. 5(a), (b) the HQV of Fig. 5(b),
the FV of Fig. 5(c), and (d) the skyrmion of Fig. 5(d).

the diagonal line defined by y = x. Light (green) arrows point
towards the already seen vortex cores of component _ in
Fig. 2(c). Dark (blue) arrows indicate the center of two DWs
defined by the intersection where the densities |_|?> and |, |?
become equal. Where 1y, = 0, in the center of the sample, the
other component (y_) is nonzero and contributes to the chiral
superconducting current. On the other hand, where ¥_ = 0,
Y4 is nonzero and its current represents the chiral current
flowing close to the corners of the sample.

The magnetic induction that corresponds to the DW
supercurrents of Fig. 5(a) is shown in Fig. 7. It is calculated
using the Maxwell equation

K1V xB=1J, (10)

where £2 = «?/d, with k = 2.3 being the GL parameter
reported for SRO along the ab plane [4], and d being the sample
thickness which we suitably choose to be 2£. The contour plot
of Fig. 7(a) shows that the magnetic induction corresponding
to the DW is weak and strongly screened by the Meissner
effect. This fact represents an obstacle for the detection of DWs
signatures in direct measurements of their magnetic response
such as in magnetic force microscopy (MFM) or scanning Hall
probe microscopy (SHPM).

Figure 5(b) zooms in the supercurrents around the upper
HQV of Fig. 3(d). It shows two adjacent counterflow-
ing streams with the bottom one flowing clockwise and
belonging to the HQV supercurrents, while the top one
flows counterclockwise and represents the screening currents.
The Meissner effect for the HQV is anisotropic due to
the boundary conditions of Eq. (8). From the supercur-
rent equation (7), and the local approximation v, ~ 0, or

Y4+ ~ ¥_, drawn from Fig. 3(d), one easily obtains J =~
Im{y} Dyvry 7 + % Yy Dy 7). After straightforward calcula-
tions agd replacing the covariant derivative once again one ob-
tains J ~ |y [7[(0:0 1 + 10,0 /) + E(sing i — L cos¢ f)],
which draws attention since the screening currents are defining

014518-6



VORTICAL VERSUS SKYRMIONIC STATES IN ...

elliptical equipotential lines. Thus, the anisotropic screening
of the superconductor towards the HQV's causes them to move
along the easy-screening direction which in this case is along
9. The contour plot of the magnetic induction corresponding
to the supercurrents of Fig. 5(b) is shown in Fig. 7(b). As
expected from the two counterflowing streams seen in the HQV
supercurrents, the magnetic induction also shows adjacent
local maximum and local minimum.

Figure 5(c) zooms in the superconducting currents around
the FV of Fig. 4(g), and shows that the FV currents flow
clockwise and vanish as we move away from the FV core.
This vanishing is due to the spatially isotropic Meissner effect,
unlike in a HQYV, that screens the FV currents. As expected, its
magnetic induction signature [see Fig. 7(c)] agrees well with
that of the Abrikosov vortex.

The superconducting currents around the skyrmion of
Fig. 4(h) are shown in Fig. 5(d). Unlike the FV, the skyrmion
supercurrents clearly show outer and inner structures. The
supercurrents of the outer structure flow clockwise while the
supercurrents of the inner structure flow counterclockwise.
The skyrmionic DW of Fig. 4(h) along with its supercurrents in
Fig. 5(d) shows cylindrical symmetry, and one easily deduces
that the same symmetry is present in densities |y|>. Line
profiles of |1/+|> then provide enough information to unveil
the skyrmion supercurrents [see Fig. 6(b)]. The inner structure
of the skyrmion is defined by ¥_ = 0 and vy # 0, i.e., the
counterclockwise currents at the core of the skyrmion arise
from the chiral component .. However, away from the
skyrmion core the scenario changes since the circular DW
of Fig. 4(h) is met, as indicated by arrows in Fig. 6(b). Close
beyond the circular DW, we find that while component ¥
drops to zero, ¥_ becomes nonzero. Replacing in Eq. (7)
¥+ = 0 and bearing in mind that one giant vortex is hosted in
component /_, the supercurrent in cylindrical coordinates be-
comes J ~ K+k1|,(p7|2(_% + %r)@. The magnetic induction
corresponding to the skyrmionic supercurrents of Fig. 5(d)
is shown in the contour plot of Fig. 7(d). It clearly shows
one local minimum at the skyrmion core surrounded by one
circular stripe of local maxima, and as such can be directly
imaged in magnetic measurements.

Finally, before concluding this section, we briefly describe
the superconducting order parameter W in terms of the 3D real
vector field 71, defined by [21,34]

o Ulsw
===, (11)
Wi g

which maps the complex spaces C x C of components ¥, ¥,
into the real space R3. A straightforward calculation yields

R . . . . 2 ,
i = sinw cos ¢, sinw sin ¢, cos, where sina = %
X y
22
coso = %, and ¢ = 6, — 0,. Then, the target space

of mapping (11) is the 2D sphere of radius 1, S? [35,36]. The
topological invariant of the spaces that result from mapping
(11) is defined by the integral [20,21]

1
Q= _/ﬁ (34 x 3,7)dx dy, (12)
4

which is widely known as the Hopf invariant. One convenient
interpretation of this topological invariant is that it counts the
number of times that the 3D real field (77) wraps around the
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2D sphere (S?). Left and right panels of Fig. 8 show the
texture 7 for ground states i and g of Fig. 4, respectively.
The texture for the skyrmion (left panel) differs from the
texture for the FV (right panel) owing to the alternating circular
DW characteristic of the former state. While at the skyrmion
core, field 71 points towards — j, outside the skyrmion it points
towards j. Along the DW that separates the skyrmion core
from the outside, the field texture whirls, therefore providing
to the space the topological charge Q@ = —2. The field texture
that corresponds to the FV shows a four lobe C4 symmetric
profile where 7i changes smoothly. Unlike the skyrmion and
in agreement with our earlier results, the field texture for the
FV does not show any signature of a domain wall separating
unequivalent outer and inner regions.

IV. FIELD-DRIVEN TRANSITIONS BETWEEN
SKYRMIONIC AND VORTICAL STATES

In bulk and type-II superconducting samples vortices with
phase windings higher than 2nm, where n is integer, are en-
ergetically disfavored. The superconductor prefers two distant
vortices each with phase winding 27 rather than one single
vortex (giant vortex) with phase winding 4. Nevertheless, in
samples with dimensions of the order of the superconducting
coherence length (mesoscopic samples), giant vortices can
appear as stable configurations. The stabilization is provided
mainly by the confinement due to the small sample size,
although the external magnetic field also contributes through
the screening currents and the confining force they exert on
vortices. Field driven transitions from states with multiple
distant vortices to giant vortices have been widely reported
[22,37].

In this section we first report the field-driven transitions
from HQV to FV states. Figure 9(a) shows the energy of state f
of Fig. 1(a), along with some of its neighboring states. Panel (b)
shows the second-order derivative of the energy with respect to
the external field only for state f. While the energy of state fis
continuous, its second-order derivative shows discontinuities
indicating transitions between distinct states. Three different
states can be easily distinguished, which we labeled by a circle,
square, and triangle marker. The corresponding distributions
of the superconducting order parameters are also shown in
the figure: logarithmic contour plots of [,|* and [, |* are
shown in the left and central columns, while the cosine of
the phase difference is shown in the right column. State (O)
shows two fractional vortices in each component rendering
four HQVs according to the phase difference contour plot.
State ([J) shows two HQVs and two FVs. The FVs are
composed of two fractional vortices belonging separately to
each component. The fractional vortices composing the FVs
are slightly misaligned as can be seen in the density figures.
This makes the FVs display a small closed domain wall in
the phase difference contour plot. At high fields the screening
currents confine even more the superconducting configuration
of state ([J) transforming it into one state with three HQV's and
one FV (A). Due to the strong screening currents the upper FV
of state ([J) loses one of its fractional vortices which renders
one HQV in state (A). The strong confinement also forces
the alignment of the fractional vortices composing the FV of
state (A).
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FIG. 8. Textures of the ground states & and g of Fig. 4, according to the mapping 71 = Tisw / Ut .U, where 6 are the Pauli matrices.

Colors show the amplitude of the z component of 7.

Another field-driven transition from skyrmion to FV state
is presented in Fig. 10. Panel (a) shows the energy of state
j of Fig. 1, along with some of its neighboring states. Panel
(b) shows the first- and second-order derivatives of the energy
with respect to the external field only for state j. Unlike in
Fig. 9(b), here the second derivative is continuous as well
as the first derivative. Nevertheless, this does not mean that
there are no distinct states along the stability curve of state j.
Circle, square, and triangle markers (O, [J, and A) indicate
three states at weak, intermediate, and strong confinement,
respectively. At weak confinement the phase difference figure
shows six HQVs and one skyrmion [see Fig. 10 (O)]. At
intermediate confinement, state ((J) shows in |1, | that two out
of the four fractional vortices composing the skyrmion of panel
(O) have merged into one single discontinuity. This merger
of initially distant fractional vortices renders the domain wall
of the skyrmion asymmetric. At strong confinement (A) the
former fractional vortices split their cores along the horizontal
axis. According to the phase difference figure they join two
other fractional vortices in density |, |2 to form two horizontal
FVs in the center of the sample. As can be easily seen,
the vorticity of the superconducting components along this
field-driven transition is constant, unlike in Fig. 9 where it
was not. This fact explains why the second-order derivative is
continuous here and discontinuous in Fig. 9.

V. TEMPORAL DYNAMIC TRANSITIONS

Here we benefit from the temporal evolution included in
the TDGL equations to report dynamic transitions involving
vortices and skyrmions.

The dimensionless free energy as a function of the external
field for states i and j is shown in Fig. 11(a). Unlike in Fig. 1 the

sample size here is 12 x 12& rather than 8 x 8&, which was
a suitable choice to study the evolution of the superconducting
configuration. Panel (b) shows the temporal evolution of the
free energy at the discontinuous step in energy in panel
(a). Three states, initial, intermediate, and final, are denoted
by circle, square, and triangle markers. The corresponding
superconducting order parameters are shown in panels (O),
(), and (A), respectively. The displayed quantities in the
latter panels are the same as in those of Fig. 9. The initial state
(©) is a multivortex-skyrmion state containing two pairs of
skyrmions and FVs, surrounded by eight HQVs at the sample
edges. This state was not obtained for sample size 8& x 8&
mainly due to the strong confinement there. At the intermediate
state (LJ) two fractional vortices nucleate in each component
of the superconducting order parameter forming two FVs
according to the phase difference contour plot. The four FVs
of the intermediate state then combine following the inverse
process of the one described in Fig. 10, to form two skyrmions
as depicted in state (A). In the Supplemental Material [38],
we present the animated data showing the temporal evolution
of the superconducting order parameter, as a more convenient
view of the transition reported here. It is noteworthy here that
all field-driven transitions from HQV or skyrmion to FV states
and vice versa are essentially driven by HQV penetration and
recombination into other topological entities.

Finally we note that the above principles hold also for larger
mesoscopic samples, though with more multivortex-skyrmion
states found inside the sample, as well as more HQVs at the
sample edges. Effectively, the edges of a large mesoscopic
sample support realization of the quasi-1D periodic distribu-
tion of chiral domains discussed in Ref. [12], with domain
walls of length ~3£(T), i.e., 600 nm for T = 0.97,. This
length is already matching the limits of scanning SQUID and
Hall probe microscopies, explaining why spontaneous currents
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FIG. 9. Field-driven transition from HQV to FV due to confine-
ment in a square mesoscopic sample of size 8 x 8. (a) Energy
of the state f of Fig. 1(a), along with some of its neighboring
states. (b) Second-order derivative of the energy with respect to
the external field showing three distinct states indicated by circular,
squared, and triangular symbols. The corresponding components of
the superconducting order parameter are shown in panels (O), (),
and (/\). Displayed quantities are logarithmic contour plots of |/, |?
and |¥,|? in left and central columns, respectively, while the cosine
of the phase difference is shown at the right column.

remained elusive in experiments to date, always performed on
larger samples than considered in this work.

VI. ANISOTROPIC CASE
A. Strong chiral limit

This far, the ground states of a p-wave mesoscopic
superconductor with size 8 x 8 have been obtained under
the assumption of weak coupling and with a cylindrical Fermi
surface, which led us to set the k; parameters to 1/3 [18,27,28].
However, several works have reported or suggested other
scenarios for SRO such as (i) multiband superconductivity
with the 1D Fermi sheets developing superconducting order
[39—42], or (ii) anisotropy in the cylindrical Fermi surface
[21,27]. In order to include just anisotropy in the Fermi surface,
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FIG. 10. Another example of a field-driven transition between
skyrmionic and vortical states along the state j of Fig. 1. Displayed
quantities are the same as in Fig. 9 with the only exception that in
panel (b) the first-order derivative of the energy with respect to the
external field is also shown.

while preserving single-band superconductivity, and electron-
hole symmetry [17,18,29], in this section we introduce the
parameter (8;), which sets the k;’s to k; = 1/3 4+ 26;, and
ky = k3 = 1/3 — §;. The motivation behind this choice is that
the theoretical values for the k; parameters corresponding to
the three Fermi sheets (y, «, and 8) lie between 1/3 < kl.y <1

and 0 < k™ < 1/3 [27], respectively. The GL equation for

1
p -wave superconductors with anisotropy in the Fermi surface

becomes

80 = 2D+ 126, + 2619
t —5[ + +U++ _—]

- 302 U6
+\y<1— W, ¥ )

4 4
+&ID* — 226, + I26)10.  (13)

By tuning §; within the interval [0,1/3], the strength of the
nondiagonal (chiral) terms of Eq. (5) is changed, therefore
driving the system between two limiting cases, the left limiting
case being at §; = 0 and given by Eq. (6), and the right limiting
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FIG. 11. Temporal vortex-skyrmion transition in a square meso-
scopic sample of size 12§ x 12£. Panel (a) shows the free energy of
states i and j containing 10 and 12 fractional vortices per component,
respectively. The energy of state i is discontinuous at H =~ 1.06H,,
reflecting a first-order transition. Panel (b) shows the temporal
evolution of the energy at the latter transition. Three states, initial,
intermediate, and final, are denoted by circle, square, and triangle
markers, respectively. The components of the superconducting order
parameter corresponding to each state are shown in panels (O), (O),

and (/).

case being at §; = 1/3 where the chiral coupling between the
superconducting components is set to zero.

Figure 12 summarizes the results obtained from the sim-
ulations that numerically approach Eq. (13) with & = 0.03.
The energy against field plot of Fig. 12 shows nine ground
states labeled by letters. The comparison between Figs. 12
and 1 reveals one important fact: the energy of the state a is
higher than the energy of its adjacent state b. Actually, state a
here is no longer the ground state at low fields H & 0, unlike
in Fig. 1 where it was. Contour plots of the superconducting
order parameter (W) that correspond to states a and b of Fig. 12
are depicted in insets (a) and (b), respectively. The comparison
between the insets of Fig. 12 and the corresponding states in
Fig. 2 shows that despite the small anisotropy introduced in
the GL equation, the superconducting configuration of these
states is practically identical in both cases.

PHYSICAL REVIEW B 93, 014518 (2016)
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FIG. 12. The free energy as a function of the external magnetic
field, showing ground states b—j plus one metastable state a, from the
numerical simulations using Eq. (13) with §; = 0.03. The parameters
k; thus only slightly deviate from the value 1/3 obtained when a
cylindrical Fermi surface is considered. Panels (a) and (b) show the
superconducting density components | |> and |_|? of the states a
and b, respectively.

Two decades have passed since the discovery of the
unconventional properties of strontium ruthenate, but to date
there has not been a consensus whether or not it is a
chiral p -wave superconductor [11,12]. The main experimental
results that support unconventional superconductivity in SRO
are provided by the set of measurements carried out using
techniques such as the Knight shift [6,7], uSR [8], the
optical Kerr effect [9], and cantilever magnetometry [24].
The smoking gun evidence that lacks, and which, if found,
would convince the scientific community, is the finding of
the theoretically predicted spontaneous currents in Sr,RuQOy4
[10,18,43]. Interestingly, what we just found in this work is
that the state with spontaneous currents is no longer the ground
state when the GL model slightly deviates from the isotropic
case at H =~ 0, i.e., slightly deviated from the cylindrical
Fermi surface. This energy lift of the state with spontaneous
currents makes it even harder to be detected. Figure 13(a)
shows the supercurrent distribution corresponding to state a
of Fig. 12. We note that the currents displayed there were
obtained at H = 0, thus those are the spontaneous currents
widely sought in experiments. The spontaneous currents are
composed mainly of two counterflowing streams at the left
and right sides of our sample. They are the chiral edge
currents predicted by Matsumoto and Sigrist [10], Furusaki
et al. [18], and Stone and Roy [43]. Along the line x = 4¢,
the linear domain wall (DW) of Fig. 3(a) separates the left
and right sides showing an enhancement in the supercurrents
around the center. The magnetic induction corresponding to
the supercurrents of panel (a) is shown in panel (b) of the same
figure.

Figure 13 shows line profiles of the magnetic induction
and the y component of J along the line y = 4£. This plot
agrees well with the result of Matsumoto and Sigrist which
showed that J;, (B;) is an even (odd) function of x along the
line perpendicular to the DW [10]. Finally, panels (d) and
(e) provide important information that allow us to calculate
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FIG. 13. (a) Superconducting currents corresponding to state a of Fig. 12. These currents, which were obtained at zero field, are composed
of two edge currents with different chiralities and flowing in opposite senses. (b) Contour plot of the magnetic induction (B;) calculated from
the supercurrents of panel (a). (¢) Line profiles of J, and B, along the line y = 4£. (d) Line profiles of |y.|* corresponding to the state a of
Fig. 12. (e) Line profiles of the angular phases of components 1. along the line x = 4£.

the supercurrent along the DW. From panel (d) the DW is
defined by |y, | = |Y_| at x = 4£, but along this line panel
(e) tells us that not only the magnitudes of the superconducting
components are equal but also their angular phases. Then, from
Eq. (7) our estimation for the superconducting current along
the linear domain wall is simply J,(x = 4&) = k; |w+|28y9+.

B. Strong Zeeman limit

Microscopy with superconducting quantum interference
devices (SQUIDs) and scanning Hall probes (SHPs) have
recently detected vortex coalescence in single crystals of
strontium ruthenate [13,44]. One possible explanation for this
behavior is the existence of at least two different coherence
lengths arising from multigap superconductivity, and which
lead to attractive (repulsive) interaction at long (short) ranges
[41]. References [11] and [13] have reported that within
their corresponding resolutions no convincing evidence for
spontaneous currents and DWs has been found yet. In order
to explore more superconducting configurations, comprising
DWs, HQVs, FVs, and skyrmions as the fundamental entities,
in what follows a different set of the k; parameters is defined
byk; =1/3,k; =1/3 + &,and k3 = 1/3 — &;. Such a choice
of parameters enables one to keep constant the strength of the
chiral terms while varying §k. The first GL equation for this
particular choice of parameters reads

3

- 3102
(1=

> 2[4, 2 A 2 A 36k ., |=
al\IJ:—D+H+O'++H_O'_—7HO’Z\IJ

06,0
—). (14)

4

The fourth term in the right side of Eq. (14) represents the
orbital Zeeman interaction. It is zero within the weak-coupling
limit where k, = k3 [18,29]. In this subsection, we consider
a possible asymmetry between electron and hole that leads
to slightly different k, and k3. In order to study the depen-
dence of the superconducting configuration on the anisotropy
parameter, in Eq. (14) the magnetic field is kept fixed while
8y 1s varied. Figure 14(a) plots the free energy of the states,
solving Eq. (14), as a function of the anisotropy parameter J.
Circle, square, and triangle markers denote three states whose
[ |> and |_|* diagonal (y = x) line profiles are shown in
panels (b) and (c), respectively. From panel (c), and unlike in
panel (b), one clearly sees that for high values of §; the density
|_|? diminishes. Our explanation for this behavior is through
the definition of two effective coherence lengths, one for each
superconducting component. Defining them as the coefficients
in front of the linear terms v, and i _ in Eq. (14), they read
&, =1—-6Hand&é_ =1+ 6;H, respectively. With H fixed
and &y increasing, £, (£_) becomes smaller (larger) therefore
leading to an effective reduction (increase) of confinement in
component ¥4 (). Concerning the phase, contour plots of
04, 6_, and cos (8, — 6,) corresponding to the states denoted
by circle, square, and triangle markers are shown in rows (),
(01), and (A). According to the phase difference figure, state
(Q) is composed of two concentric skyrmions, one circular
and one rhomboidal. From the contour plot of 6_ one sees that
the circular skyrmion arises from the formation of one giant
vortex in ¥_ with phase winding 4x. The phase difference
figure corresponding to state ([J) shows one irregular closed
domain wall emerging from the intersection of the circular
and rhomboidal skyrmions. Its formation is determined by
the annihilation of the giant vortex in 6_ that has split into
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respectively, along the diagonal line (y = x) corresponding to the states of panel (a). Columns (), (D), and (/) show contour plotsof 6,,6_,

and cos (6, — 6,) corresponding to the denoted states of panel (a).

two fractional vortices. Finally, the phase difference figure of
state (A) shows four FVs with cores slightly asymmetric as
can be seen from the small circular DWs present there. Due
to the density |1/_|> has been substantially depleted at this
value of 8, the superconducting state is completely defined by
component ¥, . Hence, what we have achieved by considering
asymmetry between electron and hole in the chiral p -wave
model of Eq. (5) is a chiral polarization enhanced due to the
strong confinement present in a mesoscopic sample.

VII. CONCLUSIONS

In summary, we have studied in detail the Ginzburg-
Landau model that describes chiral p -wave superconductors
[3,17-19,27,28], and all the possible states of a mesoscopic
superconducting sample as a function of the external magnetic
field and the anisotropy parameters of the material. Due
to odd parity and breaking of the time-reversal symmetry,
the order parameter is a two-component complex vector
[2,3] and the fundamental solutions of the corresponding
TDGL equations, that we obtained numerically, are fractional
vortices, i.e., solutions where the phase winding 27 is found
in one component but not in the other one. In two- and
three-band superconductors similar fractional vortices were
obtained between components, but for different reasons [45—
47]. Fractional vortices in different components can combine
to form a cored/full-vortex state, as well as a coreless/skyrmion
state seen in phase difference and magnetic response figures.
Skyrmions arise when the same number of fractional vortices
in each component combine to form a closed domain wall that

separates distinct intercomponent phase difference (6, — 6,)
regions [30,31]. Alternating segments between 1 and —1
in the cos(6; —0,) between fractional vortices along the
domain wall is the main signature for skyrmions. While for
skyrmions the topological charge (Q) is defined by the Hopf
invariant [20,21], for vortices it is defined by the circulation
of the superconducting velocity. Despite the fact that vector
ci is strongly pinned along Z in the chiral representation
d = (k, £ ik,)Z[3,19], we also obtained half quantum vortices
analogous to those of spin-triplet superconductors [23]. The
screening currents of half quantum vortices are anisotropic and
in Cartesian coordinates we have analytically shown that the
equipotential lines of the screening currents are ellipsoidal
rather than circular as in full vortices. This anisotropic
screening causes the attraction of the half quantum vortex
towards the sample edges. The mesoscopic size of our samples
provides stability to the half quantum vortices and the Q = 2
skyrmions, in contrast to larger systems where larger values
of Q were considered [21], and bulk systems where the half
quantum vortices have been usually regarded as high-energy
states. Actually the mesoscopic size of the sample plays a
remarkable role in the stability of skyrmions as well as in
the here reported transitions (e.g., from a skyrmion to a full
vortex). At high external fields, above the H,; critical field,
states with different configurations of skyrmions and half
quantum vortices gradually transform into full vortices owing
to the increased screening currents and confinement effects.
To date, the only superconductor expected to be p wave is
strontium ruthenate, with enough evidence demonstrating its
unconventional behavior [6-9,24]. Nevertheless, many works
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have failed to convincingly detect spontaneous currents, half
quantum vortices, and skyrmions in large samples [11-13].
What we have demonstrated here is that (i) even by slight
anisotropy in the Fermi surface, the state with spontaneous
currents is no longer the ground state at H = 0; (ii) for large
mesoscopic samples quasi-1D periodic distribution of chiral
domains is realized at the edges of the sample, with half
quantum vortices residing on domain walls with a length of
several coherence lengths, with magnetic features detectable
in scanning SQUID and hall probe microscopy, and (iii)

PHYSICAL REVIEW B 93, 014518 (2016)

distinct field-driven transitions between half quantum vortex,
full vortex, and skyrmions provide an alternative method to
indirectly prove the existence of these exotic states in magnetic
measurements.
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