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In mechanically driven superfluid turbulence, the mean velocities of the normal- and superfluid components
are known to coincide: Un = U s. Numerous laboratory, numerical, and analytical studies showed that under
these conditions, the mutual friction between the normal- and superfluid velocity components also couples
their fluctuations: u′

n(r,t) ≈ u′
s(r,t), almost at all scales. We show that this is not the case in thermally driven

superfluid turbulence; here the counterflow velocity Uns ≡ Un − U s �= 0. We suggest a simple analytic model
for the cross-correlation function 〈u′

n(r,t) · u′
s(r ′,t)〉 and its dependence on Uns. We demonstrate that u′

n(r,t) and
u′

s(r,t) are decoupled almost in the entire range of separations |r − r ′| between the energy-containing scale and
intervortex distance.

DOI: 10.1103/PhysRevB.93.014516

I. INTRODUCTION

Much of the thinking about turbulence in quantum fluids
such as 4He at low temperature is still influenced by the
“two-fluid” model of Landau and Tisza. Within this model,
the dynamics of the superfluid 4He is described in terms
of a viscous normal component and an inviscid superfluid
component, each with its own density, ρn(T ) and ρs(T ),
and its own velocity field, un(r,t) and us(r,t). Due to the
quantum-mechanical restriction, the circulation around the
superfluid vortices is quantized to integer values of κ = h/m,
where h is the Plank constant and m is the mass of the 4He
atom. The quantization of circulation results in the appearance
of a characteristic “quantum” length scale: the mean separation
between vortex lines, �, which is typically orders of magnitude
smaller than the scale H of the largest (energy-containing)
eddies [1,2].

Experimental evidence [3,4] indicates that superfluid turbu-
lence at large scales R � � is similar to classical turbulence if
the mechanical forcing is similar. Examples are furnished by a
towed grid [5] forcing or by a pressure drop in a channel [6,7].
The reason for the similarity is that the interaction of the
normal-fluid component with the quantized-vortex tangle leads
to a mutual friction force [1,2,8], “which couples together
un(r,t) and us(r,t) so strongly that they move as one fluid” [9].
This strong-coupling effect was demonstrated analytically in
Ref. [10] and was later confirmed by numerical simulations
of the two-fluid model [11,12] over a wide temperature range
(1.44 < T < 2.157 K, corresponding to the ratio of densities
ρn/ρs from 0.1 to 10). The simulations showed strong locking
of normal- and superfluid velocities at large scales, over one
decade of the inertial range. In particular, it was found that even
if either the normal fluid or the superfluid is forced at large
scale (the dominant one), both fluids get locked very efficiently.
Only detailed numerical simulations (in the framework of
so-called shell models of turbulence) with a very large inertial
interval [13,14] showed minor decoupling of us and un at the
viscous edge of the inertial interval, in agreement with the
analytical result of Ref. [10].

A different situation is expected for thermally driven
superfluid turbulence. This type of turbulence is generated by
a heater located at the closed end of a channel which is open at
the other end to a superfluid helium bath. In this case, the heat

flux is carried away from the heater by the normal fluid alone
with the mean velocity Un, and, by conservation of mass,
a superfluid current with the mean velocity U s arises in the
opposite direction. This gives rise to a relative (counterflow)
velocity,

Uns ≡ Un − U s, (1)

which is proportional to the applied heat flux. Invariably, this
counterflow excites an accompanying tangle of vortex lines. In
counterflow experiments, there is no mean mass flux and the
mean velocities U s and Un of the superfluid and the normal-
fluid components are related as follows: ρnUn + ρsU s = 0.

A situation very similar to counterflow appears in super-
flows. Here, superleaks (i.e., filters located at the channel end
with submicron-sized holes permeable only to the inviscid
superfluid component) allow a net flow of the superfluid
component in the channel. Contrary to counterflows, now
the normal component remains stationary on the average:
Un = 0. In both counterflows and superflows, the normal-
and superfluid components are moving with different mean
velocities and their relative velocity Uns �= 0.

Clearly, in both cases, one expects properties of the normal-
and superfluid velocity fluctuations different from that in the
mechanically driven “coflow” turbulence, in which Un = Us

and Uns = 0. The simple reason for that is illustrated in Fig. 1,
in which eddies of scales R1 < R2 < R3 are shown at three
successive moments of time, t = −τ, t = 0, and t = τ , for
coflow [Figs. 1(a)–1(c)] and for counterflow [Figs. 1(d)–1(f)].

In the coflow, the quantized-vortex tangles (blue solid
lines) are swept by the superfluid component with the mean
velocity close to U s together with the normal-fluid eddies (red
dashed lines), which are swept by the normal-fluid component
with their mean velocity Un. Since in the coflow Us = Un,
all (normal- and superfluid eddies) are swept with the same
velocity, and the entire eddy configuration is moving as a
whole from the left, in Fig. 1(a), to the right, in Fig. 1(c), in
the “laboratory” reference system, shown in all panels as a
black frame. During their common motion, the mutual friction
effectively couples the velocities and un(r,t) = us(r,t). The
situation is completely different in the counterflow, where the
mean velocities have opposite directions and Uns �= 0. We have
chosen for concreteness Un > 0, and therefore the normal-fluid
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Co-flow
(a) t = −τ (b) t = 0 (c) t = τ

Counter-flow
(d) t = −τ (e) t = 0 (f) t = τ

FIG. 1. Schematic view of the normal-fluid eddies of scales R1,R2, and R3 (red dashed lines), swept by the mean normal-fluid velocity Un,
and of the superfluid eddies of the same scales (blue solid lines) swept by the mean superfluid velocity Us in (a)–(c) the coflow with Un = U s

and (d)–(f) the counterflow with Uns = |Un − U s| �= 0, at three consequent moments of time: (a),(d) t = −τ , (b),(e) t = 0, and (c),(f) t = τ .
The time interval τ 	 R2/Uns is of the order of overlapping time of the middle-scale R2 eddies.

(red dashed line) eddies are moving in our pictures from the
left [in Fig. 1(d)] to the right [in Fig. 1(f)]. At the same time,
Us < 0 and superfluid (blue solid line) eddies are moving in
the opposite direction.

Assume that at some intermediate moment of time [chosen
as t = 0 in Fig. 1(e)], all normal- and superfluid eddies of
scales R1,R2, and R3 overlap. Choose the time step τ , such
that τ 	 R2/Uns. The largest eddies of scale R3 are almost
fully overlapping during the time step τ , while smaller eddies
of scale R1, which were overlapping at t = 0, are fully
separated at times t ± τ . Intermediate R2-scale eddies are
partially overlapping during the time step τ 	 τol(R2). Here
the “overlapping time” of R eddies τol(R) = R/Uns is the
time that is required for eddies to be swept by the counterflow
velocity Uns over the distance of their scale R.

This time may be small compared to the time τcor required
for an effective coupling of the us(r,t) and un(r,t) velocities.
As we show in the last paragraph of Sec. II B, τcor is scale
independent and may be estimated as τcor ∼ 1/(κL), where L
is the vortex line density. The detailed analysis shows that for
most eddies in the relevant range of scales H < R < �, the
time τol � τcor and therefore the velocities us(r,t) and un(r,t)
are decoupled. This makes the energy dissipation due to mutual

friction very effective and results in significant suppression
of the energy spectra of the normal- and superfluid turbulent
velocity spectra as compared to that in the mechanically driven
turbulence, in which Uns = 0.

Notice that in Ref. [15], it was mentioned that in the coun-
terflow, the coupling at all length scales must, to some extent,
break down because similar eddies in the two components are
continually pulled apart, and this leads to dissipation at all
length scales.

The main goal of the present paper is to offer a relatively
simple, physically transparent model of the cross-correlation
function of the normal- and superfluid velocities, which ac-
counts for the nonzero value of the mean counterflow velocity
Uns. For simplicity, we consider only the case of homogeneous
and isotropic turbulence of an incompressible flow of 4He. In
this flow, the difference between the counterflow and a pure
superflow turbulence disappears due to Galilean invariance.
The paper is organized as follows. First, we overview the
two-fluid coarse-grained Hall-Vinen-Bekarevich-Khalatnikov
(HVBK) model [8,16], properly generalized for the case of
counterflow turbulence, given by Eqs. (3). Second, we suggest
an approach that leads to a crucial simplification that allows
us to derive analytical equations (14) for the cross-correlation
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function of the normal- and superfluid velocity fluctuations,
Ens(k,Uns). Third, we analyze the equation for Ens(k,Uns) and
show that as a rule, Ens(k,Uns) � Ens(k,0); see Fig. 3. Finally,
in the concluding section, we discuss how the decoupling
of velocities should affect the normal- and superfluid energy
spectra.

II. BASIC EQUATIONS OF MOTION FOR
COUNTERFLOW TURBULENCE

A. Two-fluid, gradually damped HVBK equations

As said above, the large-scale motions of superfluid 4He
(with characteristic scales R � �) are well described by the
two-fluid model, consisting of a normal-fluid and a superfluid
component with densities ρn(T ) and ρs(T ), respectively.
Neglecting both the bulk viscosity and the thermal conductivity
leads to the simplest model with two incompressible fluids,
with the form of an Euler equation for us and a Navier-Stokes
equation for un; see, e.g., Eqs. (2.2) and (2.3) in Ref. [1].
Supplemented with quantized vortices that give rise to a
mutual friction force Fns between the superfluid and the
normal-fluid components, these equations are known as the
HVBK model [8,16]:

∂ us

∂t
+ (us · ∇)us + 1

ρs
∇ps = ν ′

s �us − Fns, (2a)

∂ un

∂t
+ (un · ∇)un + 1

ρn
∇pn = νn �un + ρs

ρn
Fns. (2b)

Here, pn,ps are the pressures of the normal-fluid and the
superfluid components,

pn = ρn

ρ

[
p + ρs

2
|us − un|2

]
, ps = ρs

ρ

[
p − ρn

2
|us − un|2

]
,

ρ ≡ ρs + ρn is the total density, and νn is the kinematic
viscosity of normal fluid. The mutual friction force is given by

Fns = α ω̂ × [ω × (un − us)] + α′ω̂ × (un − us).

In this equation, α,α′ are temperature-dependent dimen-
sionless mutual friction parameters and ω is traditionally
understood as the superfluid vorticity: ω = ∇ × us and ω̂ ≡
ω/|ω|.

Notice also that the original HVBK model does not take
into account the important process of vortex reconnection. In
fact, vortex reconnections are responsible for the dissipation
of the superfluid motion due to mutual friction.

For temperatures above 1 K, this extra dissipation can be
modeled using an effective superfluid viscosity ν ′

s(T ) [17],

ν ′
s(T ) ≈ ακ, (2c)

and, following Ref. [13], we have added a dissipative term
proportional to ν ′

s to the standard HVBK model.
The effective superfluid viscosity ν ′

s involves a quantum-
mechanical parameter κ , proportional to the Plank’s constant
h. This underlies the fact that the corresponding term in Eqs. (2)
originates from the motions of quantized vortex lines at
quantum scales ∼ �. This is not captured by the coarse-grained,
classical HVBK equations.

Bearing in mind that experimentally the counterflow cannot
be realized for T < 1 K (due to practically zero normal-fluid

density), we cannot discuss here the delicate issue of how to
account for the superfluid dissipation in Eqs. (2) for such low
temperatures.

B. Counterflow HVBK equations

To proceed, we separate the mean velocities Un and U s

from the turbulent velocity fluctuations, u′
n(r,t) and u′

s(r,t),
with zero mean. Equations (2) for u′

n(r,t) and u′
s(r,t) may be

written as follows:(
∂

∂t
+ U s · ∇ − ν ′

s �

)
u′

s + NL{u′
s,u

′
s} = − f ′

ns, (3a)

(
∂

∂t
+ Un · ∇ − νn �

)
u′

n + NL{u′
n,u

′
n} = ρs

ρn
f ′

ns. (3b)

Here the nonlinear terms NL{u′
s,u

′
s} and NL{u′

n,u
′
n} are

quadratic in the corresponding velocities functionals. These
terms originate from the terms u′ · ∇u′ and from the ∇p′
terms, where the pressure fluctuations p′(r,t) were expressed
via a quadratic velocity fluctuation functional, using the
incompressibility condition. For our purpose, we will not need
to specify the nonlinear terms NL{u′

s,u
′
s} and NL{u′

n,u
′
n}.

Next we approximate the mutual friction fluctuation term
f ′

ns. In the spirit of Ref. [18], we write as follows:

f ′
ns 	 −α(T ) (u′

n − u′
s)�. (3c)

In Ref. [18], the characteristic superfluid vorticity �

in Eq. (3c) was understood as the root-mean-square (rms)
vorticity: � 	

√
〈|ω|2〉. However, in counterflow turbulence,

there is an additional quantum mechanism of creating vortex
lines, elucidated in pioneering works by Schwarz [19]: the
force of mutual friction can lead to the stretching of the
vortex lines, and this in turn can lead to a self-sustaining
turbulence in the superfluid component provided that vortex
lines are allowed to reconnect. This mechanism is leading to
the creation of an additional peak in the superfluid energy
spectrum near the intervortex scale �, sketched in Fig. 2. In
the counterflowing superfluid turbulence, this peak provides
the main contribution to the rms vorticity, which cannot be
described in the framework of the coarse-grained HVBK of
Eqs. (3a) and (3b), which is valid only for scales R � �.
Therefore, � in Eq. (3c) should be understood as an external
parameter in the HVBK equations for the counterflow, simply
estimated via the vortex line density L, which in its turn is
proportional to the square of the counterflow velocity:

� 	 κL, L ≈ (γLUns)
2. (3d)

Here, γL is a temperature-dependent phenomenological
parameter that varies from about 70 s/cm2 to about 150 s/cm2

when T grows from 1.3 to 1.9 K (see, e.g., Fig. 9 in Ref. [20]).
Here we have added a subscript L to distinguish the traditional
notation γ in Eq. (3d) from the characteristic frequencies γs

and γn that are used below.
The resulting gradually damped HVBK model for turbulent

counterflow in 4He, given by Eqs. (3), serves as a basis for
our study of the correlations between normal- and superfluid
velocity correlations. We will refer to these equations as the
“counterflow HVBK equations.”
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FIG. 2. The sketch of the stationary superfluid turbulent energy
spectrum in the counterflow [log-log coordinates, log Es(k) vs
log(k�)]. The spectrum Es(k) consists of a classical E cl

s (k) and a
quantum Eqn

s (k) part, colored in gray and light blue, respectively.
For concreteness, as a large-scale classical peak, we used the
Lvov-Nazarenko-Volovik spectrum (19), found for 3He with resting
normal-fluid component, but presumably valid for counterflowing
4He in the k range with fully decoupled normal- and superfluid
velocities. The quantum (light blue) contribution EQ

s (k) has 1/k

asymptotics at large k, originated from superfluid motions near the
vortex cores. It is adjacent to the classical thermal bath part ETD

s (k) ∝
k2, with equipartition of energy between degrees of freedoms.

Equations (3) allow one to estimate the time τcor required for
the coupling of the normal- and superfluid turbulent velocities
by mutual friction. To this end, we consider an equation
for their difference, u′

ns ≡ u′
n − u′

s, subtracting Eq. (3a) from
Eq. (3b):

∂ u′
ns

∂t
+ · · · = − (κL) αnsu′

ns, αns ≡ αρ

ρn
.

Here we denoted by · · · the sweeping, viscous, and nonlinear
terms that are irrelevant for the current discussion. Evidently,
τcor should be estimated as 1/(αnsκL). The temperature
dependence of αns, shown in Fig. 4 by a red line with
squares, indicates that αns ∼ 1. Therefore, we can conclude
that τcor ∼ 1/(κL), as mentioned in Sec. I.

III. NORMAL- AND SUPERFLUID VELOCITY
CORRELATIONS IN 4He

The main result of this section is Eq. (14) for the cross-
correlation function of the normal- and superfluid velocity
turbulent fluctuations in a stationary, space homogenous
counterflow 4He turbulence. This equation describes how
the cross correlations depend on the counterflow velocity,
the scale (wave number), and the temperature. Its derivation
requires some definitions and relationships that are common
in statistical physics. We recall them in Appendix.

A. Derivation of the cross correlation Ens(k)

The first step in the derivation of the cross correlation is
rewriting the counterflow HVBK given by Eqs. (3) in (k,t)
representation, defined by Eq. (A1a):(

∂

∂t
+ iU s · k + ν ′

sk
2 + �s

)
vs + NLk{vs,vs} = �svn, (4a)

(
∂

∂t
+ iUn · k + νnk

2 + �n

)
vn + NLk{vn,vn} = �nvs, (4b)

where the mutual friction frequencies are given by

�s ≡ α�, �n ≡ αn�, αn ≡ α ρs/ρn. (4c)

The nonlinear terms NLk{vs,vs} and NLk{vn,vn} in Eqs. (4a)
and (4b) couple all k-Fourier harmonics, making their analytic
solution intractable. To proceed, we therefore simplify the
equations in the spirit of the direct interaction approximation
(DIA) that was developed by Kraichnan for classical turbu-
lence [21]. This approximation is equivalent to a one-loop
truncation of the Wyld diagrammatic expansion [22] of the
nonlinear equations with a one-pole approximation [23] for
the Green’s function. While uncontrolled, this approximation
has served usefully in the study of classical turbulence, and we
propose that it is also useful in the present context. The upshot
of the DIA is a rewriting of the nonlinear terms in Eqs. (4a)
and (4b) as a sum of two contributions [24]:

NLk{vs,vs} = γs(k)vs(k,t) − ϕs(k,t), (5a)

NLk{vn,vn} = γn(k)vn(k,t) − ϕn(k,t). (5b)

The γs(k) and γn(k) are the characteristic frequencies and
ϕs(k,t) and ϕn(k,t) are the force terms. The terms proportional
to γs(k) and γn(k) describe the energy flux from fluctuations
with given k to all others degrees of freedom. In classical
turbulence theory, these characteristic frequencies are referred
to as “turbulent viscosity” and estimated as follows:

γn(k) 	
√

k3En(k), γs(k) 	
√

k3Es(k). (5c)

In turbulent systems with strong interactions, these frequencies
are the inverse turnover times of eddies of scale 1/k.

The force terms in the approximation (5a) and (5b) mimic
the energy influx to fluctuations with given k from all others
degrees of freedom. In the simplest Langevin approach, these
forces are random Gaussian processes with zero mean and are
δ correlated in time:

〈ϕs(k,t) · ϕ∗
s (k′,t ′)〉 = (2π )3δ(k − k′)δ(t − t ′)ϕ2

ss(k),

〈ϕn(k,t) · ϕ∗
n(k′,t ′)〉 = (2π )3δ(k − k′)δ(t − t ′)ϕ2

nn(k),

〈ϕs(k,t) · ϕ∗
n(k′,t ′)〉 = 0. (5d)

Here the δ functions, δ(k − k′), originate from the space
homogeneity. An important difference from the traditional
Langevin approach is that our turbulent system is not in
the thermodynamic equilibrium and therefore the correlation
amplitudes ϕ2

nn and ϕ2
ss are not determined by fluctuation-

dissipation theorems. We will show below that these am-
plitudes may be expressed via the energy spectra Es(k) and
En(k).
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With these approximations, the counterflow HVBK given
by Eqs. (4) become linear in vs and vn:[

∂

∂t
+ ik · U s + �s

]
vs(k,t) = �svn(k,t) + ϕs(k,t), (6a)

[
∂

∂t
+ ik · Un + �n

]
vn(k,t) = �nvs(k,t) + ϕn(k,t), (6b)

�n = γn + �n + νnk
2, �s = γs + �s + ν ′

sk
2. (6c)

Clearly, counterflow turbulence in a channel is anisotropic due
to the existence of two preferred directions: the streamwise di-
rection x and the wall-normal direction y. Even far away from
the wall, in the channel core, where classical hydrodynamic
turbulence can be treated as isotropic, in quantum turbulence
there remains one preferred direction x of the counterflow
velocity Uns. Schwarz [19] introduced an anisotropy index I‖,
equal to 2/3 in the case of isotropy. Numerical simulations
(see, e.g., Ref. [25]) show that I‖ varies between 0.74 and 0.82,
depending on the temperature and the counterflow velocity.
Therefore, the dimensionless measure of anisotropy 3I‖/2 − 1
is below 20% in any case. According to our understanding,
this level of anisotropy cannot significantly affect the results
presented below. Aiming at simplicity and transparency of
the derivation, we assume isotropy from the very beginning,
leaving a more general derivation (in the framework of the
same formal scheme) for the future. For weak anisotropy, all
of our results should be understood as angular averages.

Multiplying Eqs. (6a) and (6b) by v∗
s , and v∗

n, respectively,
and averaging, we get equations for the velocity correlations
Enn,Ess and the cross correlation Ens, defined by Eqs. (A4):[

∂

2 ∂t
+ �s

]
Ess = �sRe[Ens] + Re[�ss], (7a)

[
∂

2 ∂t
+ �n

]
Enn = �nRe[Ens] + Re[�nn], (7b)

[
∂

∂t
+ ik · Uns + �s + �n

]
Ens

= [�sEnn + �nEss] + �∗
sn + �ns. (7c)

These equations involve the presently unknown simultaneous
cross correlations of the velocities and the forces, �..., defined
similarly to Eqs. (A2):

〈ϕn(k,t) · v∗
n(k′,t)〉 = (2π )3�nn(k) δ(k − k′), (8a)

〈ϕs(k,t) · v∗
s (k′,t)〉 = (2π )3�ss(k) δ(k − k′), (8b)

〈ϕn(k,t) · v∗
s (k′,t)〉 = (2π )3�ns(k) δ(k − k′), (8c)

〈ϕs(k,t) · v∗
n(k′,t)〉 = (2π )3�sn(k) δ(k − k′). (8d)

To find these correlations, we rewrite Eqs. (6) in Fourier (k,ω)
representation,

[i(k · U s − ω) + �s]̃vs(k,ω) = �s̃vn(k,ω) + ϕ̃s(k,ω), (9a)

[i(k · Un − ω) + �n]̃vn(k,ω) = �ñvs(k,ω) + ϕ̃n(k,ω), (9b)

where ϕ̃s(k,ω) and ϕ̃n(k,ω) are the (k,ω) representation of
the force terms ϕs(k,t) or ϕn(k,t). The solution of the linear

Eqs. (9) reads

ṽs = −{[i(k · Un − ω) + �n]ϕ̃s + �sϕ̃n}/�, (10a)

ṽn = −{[i(k · U s − ω) + �s]ϕ̃n + �nϕ̃s}/�, (10b)

� ≡ (ω − k · Un + i�n)(ω − k · U s + i�s) + �n�s, (10c)

where for brevity we suppressed the arguments (k,ω) in all
functions.

Multiplying the two Eqs. (10) by ϕ̃n and ϕ̃s, respectively,
and averaging, we get equations for the (cross) correlations
�̃ns(k,ω) and �̃sn(k,ω), which give after integration over ω

the simultaneous cross-correlation functions,

�sn(k) = −�sf
2
n

2π

∫
dω

�∗(k,ω)
= 0, (11a)

�ns(k) = −�nf
2
s

2π

∫
dω

�∗(k,ω)
= 0. (11b)

To compute the above integrals, we found the solutions of the
equations �(k,ω) = 0 with respect to ω,

ω = ω± = i

2
[−ik · (Un + U s) + �s + �n]

±
√

(�s − �n + ik · Uns)2 + 4�s�n. (12)

Using these solutions, after relatively simple analysis, we find
that both roots have positive imaginary parts: Im[ω+] > 0 and
Im[ω−] > 0. Therefore, the integral in Eqs. (11) vanishes. Now
Eq. (7c) in the stationary case gives

Ens(k) = A

B + ik · Uns
, (13a)

A ≡ �sEnn(k) + �nEss(k), (13b)

B ≡ �n + �s. (13c)

Averaging Eq. (13a) with respect to all orientations of k, we
get

〈Ens(k)〉angle = A

kUns
arctan

(
kUns

B

)
. (13d)

Using Eqs. (A5), this can finally be rewritten as follows:

Ens(k) = E (0)
ns (k)D(ζ ), (14a)

E (0)
ns (k) = �sEn(k) + �nEs(k)

�s(k) + �n(k)
, (14b)

D(ζ ) = 1

ζ (k)
arctan[ζ (k)], (14c)

ζ (k) ≡ kUns

�s(k) + �n(k)
. (14d)

Here, E (0)
ns (k) is the cross-correlation function for zero coun-

terflow velocity, which was previously found in Ref. [10]. The
dimensionless “decoupling function” D(ζ ) of the dimension-
less “decoupling parameter” ζ (k) describes the decoupling of
the normal- and superfluid velocity fluctuations, caused by the
counterflow velocity.

Notice that in future comparisons of the experimental or
numerical data with Eqs. (14), one needs to bear in mind
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FIG. 3. The decoupling function Ens/E (0)
ns = D(k/k×) vs the

dimensionless wave number k/k×.

that the counterflow velocity affects not only the decoupling
function D(ξ ), but also the energy spectra En(k) and Es(k) in
Eq. (14b) for E (0)

ns (k).
Considering the limits of small and large values of the

decoupling parameter ζ , we get, from Eq. (14a),

Ens(k) =
[

1 − ζ (k)2

3

]
E (0)

ns (k) for ζ (k) � 1, (15a)

Ens(k) = π

2 ζ (k)
E (0)

ns (k) for ζ (k) � 1. (15b)

We choose the crossover value ζ× ≈ 2 such that D(ζ×) =
1/2. Below we show that with good accuracy, ζ (k) ∝ k.
Therefore, we can consider D[ζ (k)] as a function of k and
present in Fig. 3 the decoupling ratio due to counterflow
velocity Ens(k)/E (0)

ns (k) = D[ζ (k)], as a function of k/k×. Our
estimate below shows that the crossover wave number k× [for
which Ens(k) = E (0)

ns (k)/2] is independent of the counterflow
velocity and typically is in the relevant interval of scales,
between π/H and π/�.

B. Typical value of the decoupling parameter ζ (k)

To clarify what the typical values of ζ (k) are in realistic
conditions and how ζ (k) depends on the temperature and the
counterflow velocity, we note [20] that the main contributions
to �n and �s, given by Eq. (6c), come from �n and �s, given
by Eq 6(c):

�n + �s ≈ �n + �s = αns �, αns = α + αn = α ρ

ρn
. (16)

Indeed, for scales k� � 1, the viscous terms νs,nk
2 � γs,n(k)

and may be safely neglected, while for scales near the
intervortex distance, they are of the same order of magnitude.
Moreover, for k� ∼ 1,νs,nk

2 ∼ γs,n(k) ∼ �s,n, if one estimates
�s,n ∼ �cl in a classical manner via the root mean square
of the vorticity (see, e.g., Refs. [13,18]), then �cl ∼

√
〈ω2〉.

However, as we explained above, in the counterflow there
is an additional quantum mechanism of the random vortex
tangle excitation with scales of the order of �. This mechanism
provides the leading contribution to �s,n and, consequently,
the leading contribution to �s,n, as written in Eq. (16).

T [K]
1.4 1.6 1.8 2 2.2

α
(T

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
α

α
n

α
ns

FIG. 4. Temperature dependence of the mutual friction param-
eters for 4He (Ref. [26]): α for the superfluid given by Eq. (3a)
(blue line with circles); αn(T ) = αρs/ρn in the normal fluid given by
Eq. (3b) (green line with triangles); and αns = α + αn = αρ/ρn given
by Eqs. (16) (red line with squares).

The temperature dependence of αns(T ) = B(T )/2, where
B(T ) is the coefficient in the Vinen equation, tabulated in
Ref. [26], is shown in Fig. 4 together with α(T ) and αn(T ). The
opposite temperature dependence of α(T ) and αn(T ) results
in a weak temperature dependence of the parameter αns(T ) in
Eq. (16); it varies between 0.7 and 0.5 in the temperature range
that is relevant for counterflow experiments, 1.4 ÷ 1.9 K.

Now Eqs. (3d) and (16) together with Eq. (14d) give

ζ (k) 	 k

αnsκγ 2
L
Uns

. (17a)

Clearly, ζ (k) ∝ k and it reaches its maximal value ζmax at the
highest k value which is permissible in our approach, i.e.,
k 	 kmax 	 π/�; this is at the edge of the applicability. With
� 	 1/

√
L 	 1/(γLUns), this gives a simple estimate of ζmax,

independent of Uns:

ζmax 	 π

αns κ γL

∼ 50 for T ≈ 1.4 K. (17b)

Here, for the numerical estimate, we used αns 	 0.6, γL 	
100 s/cm2, and κ ≈ 10−3 cm2/s. An important conclusion
is that for large k, the normal- and superfluid velocities are
practically fully decoupled: for k ∼ kmax ζ (k) ∼ 50 and the
ratio Ens/E (0)

ns is about 0.03 according to Eq. (15b).
An even more important conclusion is that according

to Eq. (17b), the range of wave numbers kmax > k >

k×, where Ens/E (0)
ns < 1/2, extends over more than one

decade:

ζmax

ζ×
	 kmax

k×
	 π

2αns κ γL

∼ 25 for T ≈ 1.4 K. (17c)

Equation (17a) allows us to also estimate the minimal value
ζmin, which is attained at kmin 	 π/H :

ζmin 	 π

Hαnsκγ 2
L
Uns

∼ 0.5 for T ≈ 1.4 K,

Uns = 1 cm/s, H = 1 cm. (17d)
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This means that the value k×, for which ζ (k×) = 2, is
a few times larger than kmin 	 π/H . Therefore, for large
scales (between H and R× 	 π/k×), we expect significant
coupling of the normal- and superfluid velocities: for ζ = 0.5,
Eq. (15b) gives Ens/E (0)

ns 	 0.9. The value of ζmin is inversely
proportional to Uns and, for Uns > 1 cm/s, becomes even
smaller than 0.5. Accordingly, for Uns > 1 cm/s, the interval
between H and R× becomes larger and the coupling between
the normal- and superfluid velocities at the largest scale H is
even stronger: the ratio Ens/E (0)

ns > 0.9.

IV. SUMMARY AND DISCUSSION

We demonstrated that the cross-correlation function be-
tween normal- and superfluid velocity fluctuations Ens(k) in
a turbulent counterflow of 4He is strongly affected by the
relative velocity Uns. As described by Eqs. (14) and illustrated
in Fig. 3, this effect is governed by a dimensionless decoupling
parameter ζ (k) ∝ k/Uns, given by Eq. (17a). This parameter
increases with k and, when k 	 kmax 	 π/�, it reaches its
maximum, ζmax � 1, as estimated in Eq. (17b). Accordingly,
the normal- and superfluid velocity fluctuations of small scales
(i.e., for large wave numbers) are almost fully decoupled: the
correlation Ens is much smaller than its value E (0)

ns ≈ 1 for
Uns = 0. On the contrary, at large scales, the energy-containing
fluctuations of R ∼ H are almost fully coupled: E (0)

ns − Ens �
E (0)

ns . The crossover scale R×, for which Ens = 1
2 E (0)

ns , is a few

times smaller than H . Therefore, the large-scale fluctuations,
for H � R � R×, may be qualitatively considered as cou-
pled: Ens ≥ 1

2E (0)
ns . On the other hand, in the large interval

of small scales, for R× � R � � the normal- and super-
fluid velocities may be considered as effectively decoupled:
Ens ≤ 1

2E (0)
ns .

The coupling or decoupling of normal- and superfluid
velocities crucially affects the energy dissipation due to the
mutual friction. Correspondingly, it also affects the energy
spectra Es(k,t) and En(k,t). To see this, let us consider the
evolution equations for these objects, which may be obtained
by multiplying Eqs. (3a) and (3b) in (k,t) representation by
vs(k,t) and vn(k,t), respectively, and averaging with respect
to the turbulent statistics and directions of k:[

∂

2 ∂t
+ k2ν ′

s

]
Es(k,t) + NLs = �s[Ens(k,t) − Es(k,t)],

(18a)[
∂

2 ∂t
+ k2νn

]
En(k,t) + NLn = �n[Ens(k,t) − En(k,t)].

(18b)

Here, NLs,n are nonlinear terms. For k � k×, due to the
decoupling, Ens(k) � Es(k). Therefore, it may be neglected
on the right-hand side of Eq. (18a), which becomes −�sEs.
This is similar to the equation for Es for superfluid turbulence
in 3He, where mutual friction drastically suppresses the energy
spectrum Es(k) [10,18,27]; instead of the classical Kolmogorov
spectrum E(k) ∝ k−5/3, one finds the spectrum discussed by
Lvov et al. [18]:

Es(k) ∝ 1

k5/3

[
1

k2/3
− 1

k
2/3
∗

]2

, (19)

which terminates at some critical value k∗. This means that
provided that there exists a full decoupling of the velocities, the
situation in the counterflowing superfluid component of 4He
becomes similar to that in 3He turbulence with a normal-fluid
component at rest. Thus one expects that the spectrum (19)
describes the energy distribution between scales for k � k×.

For k < k×, due to the partial velocity correlations, the
energy dissipation is much weaker than for k > k×, although
it cannot be neglected as in coflowing 4He, with classical
Kolmogorov-1941 (K41) energy spectrum. Thus we can
expect only moderate suppression of the energy spectrum
as compared to the K41 case, as was recently observed in
Ref. [28].

A more detailed analysis of the energy spectra Es(k)
and En(k) in the counterflowing 4He that account for the
decoupling of the normal- and superfluid turbulent velocity
fluctuations and the resulting energy dissipation due to the
mutual friction is beyond the scope of this paper.
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APPENDIX: SOME DEFINITIONS AND KNOWN
RELATIONSHIPS

To find the cross correlation 〈u′
n · u′

s〉, we need to recall
some definitions and relationships required for our derivation,
which are well-known in statistical physics. The first is the set
of Fourier transforms in the following normalization:

u′
n,s(r,t) ≡

∫
dk

(2π )3
vn,s(k,t) exp(ik · r), (A1a)

vn,s(k,t) ≡
∫

dω

2π
ṽn,s(k,ω) exp(−iωt), (A1b)

ṽn,s(k,ω) =
∫

d rdt u′
n,s(r,t) exp[i(ωt − k · r)]. (A1c)

The same normalization will be used for other objects of
interest.

Next we define the simultaneous correlations and cross
correlations in k representation (proportional to δ(k − k′) due
to homogeneity),

〈vn(k,t) · v∗
n(k′,t)〉 = (2π )3Enn(k) δ(k − k′), (A2a)

〈vs(k,t) · v∗
s (k′,t)〉 = (2π )3Ess(k) δ(k − k′), (A2b)

〈vn(k,t) · v∗
s (k′,t)〉 = (2π )3Ens(k) δ(k − k′). (A2c)

We also need to define cross correlations 〈̃vn · ṽ∗
s 〉 in (k,ω)

representation,

〈̃vn(k,ω) · ṽ∗
s (k′,ω′)〉 = (2π )4Ẽns(k,ω) δ(k − k′) δ(ω − ω′).

(A3a)
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This object is related to the simultaneous 〈vn · v∗
s 〉 cross

correlation (A2c) via the frequency integral,

〈vn(k,t) · v∗
s (k′,t)〉 =

∫
dωẼns(k,ω). (A3b)

Here and below, the tilde marks the objects defined in (k,ω)
representation.

It is known also that the k integration of the correla-
tions (A2) produces their one-point second moment:∫

dk
(2π )3

Enn(k) = 〈|un(r,t)|2〉, (A4a)∫
dk

(2π )3
Ess(k) = 〈|us(r,t)|2〉, (A4b)

∫
dk

(2π )3
Ens(k) = 〈un(r,t) · us(r,t)〉. (A4c)

In the isotropic case, each of the three correlations E...(k)
is independent of the direction of k: E...(k) = E...(k) and∫

. . . dk = 4π
∫

. . . k2 dk. This allows the introduction of the
one-dimensional energy spectra Es,En and the cross correlation
Ens as follows:

En(k) = k2

2π2
Enn(k), Es(k) = k2

2π2
Ess(k),

Ens(k) ≡ k2

2π2
Ens(k). (A5)
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