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Recent experiments in optimally hole-doped iron arsenides have revealed a novel magnetically ordered
ground state that preserves tetragonal symmetry, consistent with either a charge-spin density wave (CSDW),
which displays a nonuniform magnetization, or a spin-vortex crystal (SVC), which displays a noncollinear
magnetization. Here we show that, similarly to the partial melting of the usual stripe antiferromagnet into a
nematic phase, either of these phases can also melt in two stages. As a result, intermediate paramagnetic phases
with vestigial order appears: a checkerboard charge density wave for the CSDW ground state, characterized by
an Ising-like order parameter, and a remarkable spin-vorticity density wave for the SVC ground state—a triplet
d-density wave characterized by a vector chiral order parameter. We propose experimentally detectable signatures
of these phases, show that their fluctuations can enhance the superconducting transition temperature, and discuss
their relevance to other correlated materials.
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I. INTRODUCTION

One of the hallmarks of the superconducting state of the
iron-based materials [1] is its typical proximity to a stripe
magnetically ordered state, with spins aligned parallel to each
other along one in-plane direction and antiparallel along the
other [see Fig. 1(a)] [2]. As a result, this stripe state breaks two
distinct symmetries of the high-temperature paramagnetic-
tetragonal state: a continuous spin-rotational O(3) symmetry
and an Ising-like Z2 symmetry related to the equivalence of
the x and y directions [3–9]. Magnetic fluctuations present
in the paramagnetic state can cause these two symmetries
to be broken at different temperatures, giving rise to an
intermediate nematic phase that preserves the spin-rotational
O(3) symmetry but, as a “vestige” of the stripe order [10],
breaks the tetragonal Z2 symmetry [11]. Indeed, in the phase
diagrams of most iron-based superconductors, the magnetic
transition line is closely followed by the structural/nematic one
at slightly higher temperatures. The corresponding nematic
degrees of freedom impact not only the normal state electronic
properties [12–21] but also the onset and gap structure of the
superconducting state [22–24].

Recently, experiments in the hole-doped pnictides
Ba(Fe1−xMnx)2As2 [25], (Ba1−xNax)Fe2As2 [26], and
(Ba1−xKx)Fe2As2 [27] have revealed another type of mag-
netically ordered state that does not break the tetragonal
Z2 symmetry of the lattice. Neutron scattering experiments
[25,26] showed that its magnetic Bragg peaks are at the same
momenta as in the stripe magnetic phase—namely, Q1 = (π,0)
and Q2 = (0,π ) in the Fe-only Brillouin zone. Consequently,
it has been proposed [26,28–31] that the tetragonal magnetic
state is the realization of one of two possible biaxial (i.e.,
double-Q) magnetic orders [6,32–34]. One possibility is a
“charge-spin density wave” (CSDW), displaying a nonuniform
magnetization which vanishes at the even lattice sites and
is staggered along the odd lattice sites [Fig. 1(b)]. The
other option is a “spin-vortex crystal” (SVC), in which the
magnetization is noncollinear (but coplanar) and forms spin
vortices staggered across the plaquettes [Fig. 1(c)]. Both

CSDW and SVC phases are tetragonal, but have a unit cell
four times larger than the paramagnetic phase. Interestingly,
in (Ba1−xNax)Fe2As2 and (Ba1−xKx)Fe2As2, the tetragonal
magnetic state is observed very close to optimal doping
[26,27], where superconductivity displays its highest transition
temperature. Therefore, understanding the properties of these
biaxial tetragonal magnetic phases is important to assess their
relevance for the superconductivity.

In this paper, we show that both the CSDW and the SVC
magnetic phases support composite order parameters that can
condense at temperatures above the onset of magnetic order,
and whose fluctuations can help enhancing Tc. As with the
nematic phase, these partially ordered phases are paramag-
netic, i.e., fluctuations restore the time-reversal symmetry that
is broken in the ground state. In contrast to the nematic phase,
however, they preserve the point group symmetry of the lattice,
but break other symmetries, including translational symmetry
[35]. In particular, upon melting the CSDW phase, we find
a vestigial Ising-like charge-density wave (CDW) phase with
ordering vector Q1 + Q2 = (π,π ), in which the previously
magnetized sites acquire a different charge than the previously
nonmagnetized sites. On the other hand, upon melting the SVC
ground state, we find a vestigial phase that retains memory
of the preferred plane of magnetization (in spin space), and
of the staggering of the spin vortices across the plaquettes.
This spin-vorticity density wave (SVDW) is a triplet d-density
wave characterized by a vector chiral order parameter, which
is manifested as a spin-current density wave with modulation
Q1 + Q2 = (π,π ). Besides shedding light on the magnetism
of hole-doped iron pnictides, our results provide a microscopic
mechanism for the formation of d-density waves, which have
also been proposed in cuprates [36] and heavy fermions [37].

The paper is organized as follows: in Sec. II we present
the theoretical model that gives rise to the vestigial CDW and
SVDW orders. Section III discusses the implications of these
vestigial orders for both the normal state and superconducting
state properties. Concluding remarks are presented in Sec. IV.
To make the paper transparent and accessible, all formal
details are presented in Appendices. Appendix A contains
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FIG. 1. Magnetic ground states of the iron pnictides: (a) stripe
antiferromagnet, (b) charge-spin density wave (CSDW), and (c) spin-
vortex crystal (SVC). The first is orthorhombic with a doubled unit
cell; the latter two remain tetragonal but with a quadrupled unit cell.
M1 and M2 are the magnetic order parameters corresponding to the
ordering vectors Q1 = (π,0) and Q2 = (0,π ). The left panels are the
actual spin density-wave patterns in real space, whereas the right
panels are schematic representations focusing on the magnetization
at the lattice sites.

the derivation of the saddle-point equations that give the
phase diagram of the SVDW phase discussed in Sec. II.
In Appendix B we derive microscopically the free energy
discussed in Sec. III. Finally, Appendix C presents the
derivation of the effective pairing interactions promoted by
CDW and SVDW fluctuations discussed in Sec. III.

II. THEORETICAL MODEL FOR THE
VESTIGIAL PHASES

A. Effective action

We define two magnetic order parameters, M1 and M2,
associated with the two ordering vectors Q1 = (π,0) and
Q2 = (0,π ), respectively. Thus, the local spin is given by
S(r) = ∑

i MieiQi ·r. As discussed in Refs. [6,8,28–30,32–34],
the most general lowest order action that respects the tetragonal

and spin-rotational symmetries is given by

S[Mi] =
∫

q

χ−1
q

(
M2

1 + M2
2

) + u

2

∫
x

(
M2

1 + M2
2

)2

− g

2

∫
x

(
M2

1 − M2
2

)2 + 2w

∫
x

(
M1 · M2

)2
. (1)

For simplicity, we will consider the finite temperature
problem, but the same conclusions can be extended to the
quantum case. Here,

∫
q

≡ ∫
ddq

(2π)d
and

∫
x

≡ ∫
ddx where q is

the momentum and x is the position. In the neighborhood of a
finite T magnetic transition, and for a quasi-two-dimensional
(quasi-2D) system, we can use the small q expansion χ−1

q ≈
r0 + q2

‖ + Jz sin2 qz

2 , where r0 is the distance to the mean-field
magnetic critical point.

The quartic coefficients u,g,w determine the nature of
the magnetic ground state. These are, in turn, sensitive to
microscopic considerations. The localized J1-J2 model favors
positive g and w [38]. On the other hand, itinerant ap-
proaches (at weak and strong coupling) have found parameter
regimes in which g and w can be either positive or negative
[6,8,28–30,32–34,39]. For g > max (0,−w), the energy is
minimized by the stripe state shown in Fig. 1(a), in which
either 〈M1〉 = 0 or 〈M2〉 = 0. Thus, in addition to breaking
the O(3) spin-rotational symmetry, the magnetic ground state
spontaneously breaks a Z2 symmetry by selecting one of the
two order parameters to be nonzero. Since M1 and M2 are
related by a 90◦ rotation, once this Z2 symmetry is broken the
tetragonal symmetry of the system is lowered to orthorhombic
[see Fig. 2(a)]. A composite Ising-nematic order parameter,
living on the bonds of the lattice, can be identified by perform-
ing a Hubbard-Stratonovich transformation on the quartic term
with coefficient g, yielding 〈ϕnem〉 = g〈M2

1 − M2
2〉. Because

Z2 is a discrete symmetry, while spin-rotational O(3) is a con-
tinuous symmetry, a strongly anisotropic three-dimensional
(3D) system will generically display a vestigial paramagnetic
nematic phase where 〈Mi〉 = 0 but 〈ϕnem〉 �= 0 [3,8,40].

For g < max (0,−w), the ground state of Eq. (1) is no
longer a uniaxial magnetic stripe state, but a biaxial magnetic
state with |〈M1〉| = |〈M2〉| that preserves tetragonal symmetry.
If w < 0, the energy is minimized by 〈M1〉 ‖ 〈M2〉, which in
terms of the local spin configuration S(r) corresponds to a
nonuniform state as depicted in Fig. 1(b). We identify this
state as a charge-spin density wave (CSDW). On the other
hand, if w > 0, the energy minimization gives 〈M1〉 ⊥ 〈M2〉,
corresponding to a noncollinear, coplanar spin configuration
[see Fig. 1(c)]. This state is identified as a spin-vortex crystal
(SVC). We now discuss whether these tetragonal magnetic
phases can melt in a two-stage process, giving rise to vestigial
orders akin to the nematic phase.

B. Charge-density wave

Consider the CSDW state: Once the magnetization
direction is chosen by spontaneous breaking of the
O(3) spin-rotational symmetry, there remains a fourfold
degeneracy corresponding to whether M1 and M2 are parallel
or antiparallel to the chosen direction. As is apparent in
Fig. 1(b), this corresponds to the breaking of translational
symmetry, leading to a four-site unit cell. Notice, however,
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FIG. 2. The vestigial composite states associated with (a) the
stripe antiferromaget, (b) the CSDW state, and (c) the SVC state. The
real-space spins (in gray) and the magnetic order parameters in spin
space (red and blue arrows, representing M1 and M2, respectively)
should be understood as fluctuating, i.e., 〈Mi〉 = 0 in all cases. In (a),
the vestigial state is nematic (unequal blue and red bonds), associated
with selecting between M1 and M2 fluctuations in spin space. The
original unit cell is shown as a dashed square. In (b), the vestigial
state breaks translational symmetry via a checkerboard charge density
wave (unequal blue and red sites). M1 and M2 are locked to be
collinear in spin space. In (c), the vestigial spin-vorticity density-wave
state breaks inversion and translational symmetries via a staggered
pattern of spin vortices in the center of the plaquettes (unequal blue
and red plaquettes). The corresponding spin-current pattern is shown
by the green arrows. Because M1 and M2 are locked to be orthogonal
in spin space, the residual spin-rotational symmetry is O(2) instead
of O(3). Both (b) and (c) preserve tetragonal symmetry, as shown by
the dashed-line unit cell.

that the product of a translation by the vector x̂ + ŷ followed
by time reversal is preserved. Thus, there is an essential Z2

symmetry that interchanges the magnetic and nonmagnetic
sublattices of the CSDW state.

The order parameter field for this Z2 symmetry is obtained
via a Hubbard-Stratonovich transformation on the quartic
term with coefficient 2w in Eq. (1), 〈ϕCDW〉 = 2|w|〈M1 · M2〉.
Clearly, ϕCDW is a scalar that carries momentum Q1 + Q2 =
(π,π ), i.e., the condensed phase is a CDW that doubles the
unit cell, but leaves time-reversal and the tetragonal symmetry
of the lattice intact [see Fig. 2(b)]. Thus, in real space, the

CDW order parameter lives on the lattice sites. The fact that
the unit cell decreases from four to two sites upon going from
the CSDW to the CDW phase is due to the restoration of
time-reversal symmetry, which implies the restoration of the
translational symmetry by x̂ + ŷ. A simple change of variables
in Eq. (1), M1 → 2−1/2[M1 + M2] and M1 → 2−1/2[M1 −
M2], interchanges the identities of the two scalar orders,
ϕnem ↔ ϕCDW, but leaves the form of S unchanged albeit
with (g,w) → −(w,g). Thus, the properties of the CDW phase
are akin to those of the Ising-nematic phase—in particular, a
quasi-2D system will again display for a range of intermediate
temperatures a phase with 〈Mi〉 = 0 but 〈ϕCDW〉 �= 0.

C. Spin-vorticity density wave

Consider now the SVC state, characterized by two equal
magnitude orthogonal vectors M1 and M2. Upon fixing the
direction of M1, which breaks the O(3) spin-rotational sym-
metry, there remains an additional O(2) symmetry related to
choosing M2 in any direction along the plane perpendicular to
M1 [41]. Thus, the SVC phase can be completely characterized
by a pseudovector order parameter ϕSVDW that specifies the
ordering plane which contains M1 and M2, and also by
the orientation of M1 within that plane. ϕSVDW is obtained
via a Hubbard-Stratonovich transformation of the quartic
term w(M1 · M2)2 → −w(M1 × M2)2 in Eq. (1), yielding
〈ϕSVDW〉 = 2w〈M1 × M2〉, which can be identified as a vector
chirality [42–44]. Thus, upon approaching the SVC phase
from high-temperatures or by melting it, there can be an
intermediate state where 〈ϕSVDW〉 �= 0 but the orientation of
M1 is not fixed, 〈M1〉 = 0. This chiral paramagnetic state
preserves time-reversal symmetry and retains the memory of
the staggering pattern of spin vortices along the plaquettes
in the SVC phase, and is therefore called a spin-vorticity
density wave (SVDW) [43]. Note that the vector chiral order
parameter produces an emergent Dzyaloshinskii-Moriya cou-
pling ϕSVDW · (M1 × M2) relating the translational symmetry
breaking to a preferred “handedness” in spin space. In the
SVDW state, not only is the translational symmetry lowered by
the doubling of the unit cell [since ϕSVDW carries momentum
Q1 + Q2 = (π,π )], but also the soft spin fluctuations near the
magnetic transition are constrained to lie in the plane defined
by ϕSVDW [see Fig. 2(c)].

Because ϕSVDW breaks a continuous O(3) symmetry, there
are two Goldstone modes in the SVDW phase. Consequently,
in contrast to the Ising-nematic cases, the Mermin-Wagner the-
orem does not ensure the existence of the SVDW phase even in
the two-dimensional limit. To investigate whether 〈ϕSVDW〉 �=
0 while 〈M1〉 = 0 is possible, we calculated the phase diagram
for a magnetic SVC ground state treating the action in Eq. (1) in
the saddle point approximation (see Appendix A). We find that
for a strongly anisotropic system, i.e., Jz � w, there is a wide
range of values of u/w for which there are two transitions,
with an intermediate SVDW phase and a low-temperature
SVC phase (see Fig. 3). However, in this approximation, the
transition to the SVDW phase is always first order.

Spin rotational symmetry is not an exact symmetry of
nature, and indeed most iron pnictides display a sizable spin
anisotropy [45–47]. Because the ordered moments tend to
point parallel to the FeAs plane, the most significant effects
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FIG. 3. Phase diagram, within the saddle-point approximation, of
the coupled SVDW paramagnetic and SVC magnetic transitions. In
the shaded area, where the out-of-plane anisotropy is strong, the two
transitions are split. The tuning parameters are the Ginzburg-Landau
coefficients u and w [see Eq. (1)] and the magnetic coupling between
layers Jz. The parameter w̄ is given by w = TN,0w/2π , as discussed
in Appendix B.

of spin-orbit coupling can be captured phenomenologically
in Eq. (1) by including an easy-plane anisotropy term
κ(M2

1,z + M2
2,z) with coupling constant κ > 0 [48]. The spin

rotational symmetry is thus reduced to O(2) and the SVDW
chiral order parameter becomes the pseudoscalar ϕSVDW =
2w(M1 × M2) · ẑ, which only breaks a discrete chiral Z2

symmetry. For such an O(2) × Z2 model, it is known from both
numerical and analytical investigations that in two dimensions
the Z2 symmetry is broken at higher temperatures than the
Kosterlitz-Thouless transition of the O(2) order parameter
[49,50], i.e., there is no doubt that there is a vestigial chiral
SVDW phase. The extent to which the spin anisotropy is
quantitatively significant depends on the (currently unknown)
value of the ratio κ/(TSVDW − TSVC).

III. MICROSCOPIC IMPLICATIONS
OF THE VESTIGIAL ORDERS

A. Normal-state manifestations

To discuss the experimental manifestations of the vestigial
CDW and SVDW states, we investigate their coupling to the
low-energy electronic states of the pnictides. We consider a
three-band model [6,8] with a circular hole pocket ξh,k at
the center of the Brillouin zone, and two elliptical electron
pockets ξe1,k+Q1 and ξe2,k+Q2 centered at momenta Q1 = (π,0)
and Q2 = (0,π ), respectively (see Fig. 4). The magnetic order
parameters couple to these electronic states via

∑
k,αβ Mi ·

σ αβ(c†h,kαcei ,kβ + H.c.), where the operator ca,kα annihilates
an electron in band a with momentum k (measured with
respect to the center of the pocket) and spin α, and σ αβ are
Pauli matrices. We further introduce magnetic �S and charge
	C order parameters with ordering vector Q1 + Q2 = (π,π ),

FIG. 4. Schematic Fermi surface of the iron pnictides, with
a central hole pocket and elliptical electron pockets. The wavy
lines represent the interpocket pairing interactions generated by the
magnetic fluctuations (repulsive V > 0) and by fluctuations of the
vestigial CDW and SVDW states (attractive U < 0).

which couple to the electronic states via

HS =
∑
k,αβ

[
�S · σ αβc

†
e2,kαce1,kβ + H.c.

]
,

HC =
∑
k,αβ

[
	Cδαβc

†
e2,kαce1,kβ + H.c.

]
. (2)

Here these fields have real and imaginary parts,
�S = �′

S + i�′′
S and 	C = 	′

C + i	′′
C , where the real

parts correspond to conventional spin-density wave (SDW) or
CDW orders, while the imaginary parts corresponds to spin
or charge current orders. By integrating out the electronic
degrees of freedom, we obtain the coupling between Mi and
�S,	C to the lowest order in the action (see Appendix B):

δSeff = λ[�′′
S · (M1 × M2) − 	′

C(M1 · M2)], (3)

with the coefficient λ = 4
∫
k
Gh,kGe1,kGe2,k , where G−1

a,k =
iωn − ξa,k is the corresponding noninteracting Green’s func-
tion. As expected, the Ising-like order parameter ϕCDW ∝ M1 ·
M2 induces a checkerboardlike charge order [see Fig. 2(b)].
On the other hand, the SVDW order parameter ϕSVDW ∝
M1 × M2 is manifested as a spin-current density wave with
propagation vector (π,π ), i.e., a spin current polarized parallel
to ϕSVDW and propagating along the bonds of the lattice in a
staggered pattern across the square plaquettes [see Fig. 2(c)].
Thus, the SVDW corresponds to a triplet d-density wave [36].

Note that probing the CDW via x rays may be difficult,
since the hybridization between Fe and As/Se doubles the
unit cell of the Fe-only square lattice, making (π,π ) a lattice
Bragg peak. While the real CDW could in principle be
detected experimentally by a probe sensitive to the local
charge on the Fe sites, such as scanning tunneling microscopy
(STM), detecting a spin-current density wave would be rather
challenging. Alternatively, one can consider the effects of a
Zeeman field H. Despite not coupling to ϕnem, we find that it
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TABLE I. Magnetic ground states of the pnictides and their corresponding vestigial states. M1 and M2 are the magnetic order parameters
corresponding to the ordering vectors Q1 = (π,0) and Q2 = (0,π ).

Magnetic ground state Vestigial state Broken symmetry Real space pattern Physical manifestation

Stripe: 〈M2〉 or 〈M1〉 = 0 Nematic: 〈M2
1 − M2

2〉 �= 0 Rotational (tetragonal) Unequal bonds Orthorhombic distortion
CSDW: 〈M1〉 ‖ 〈M2〉 CDW: 〈M1 · M2〉 �= 0 Translational Unequal sites Charge density wave
SVC: 〈M1〉 ⊥ 〈M2〉 SVDW: 〈M1 × M2〉 �= 0 Translational + inversion Unequal plaquettes Spin-current density wave

couples to both ϕCDW and ϕSVDW in the action via the terms
γ	′′

CH · (M1 × M2) and γ (H · �′
S)(M1 · M2), with the same

Ginzburg-Landau coefficient γ . Therefore, in the presence of
a magnetic field, a pattern of staggering orbital currents (i.e., a
singlet d-density wave [36]) appears in the SVDW state, which
can in principle be detected by NMR. Table I summarizes the
magnetic ground states of the pnictides along their vestigial
paramagnetic states.

B. Impact on the superconducting state

Fluctuations of the SVDW and CDW states arise from four-
spin correlations, and are complementary to the magnetic fluc-
tuations that arise from two-spin correlations. An important
issue is whether these fluctuation modes promote compatible
superconducting states. Because the magnetic fluctuations are
peaked at momenta Q1 = (π,0) and Q2 = (0,π ), they promote
a repulsive interpocket interaction V > 0 between the hole and
the electron pockets (see Fig. 4). Solution of the corresponding
linearized gap equations yields the so-called s+− state, where
the gap functions have different signs in the electron and in
the hole pockets [51]. The transition temperature is given by
Tc ∝ exp (− 1

�0
), with �0 = √

2NhNeV , and Na denoting the
density of states of band a.

The SVDW and CDW fluctuations, on the other hand,
are peaked at the momentum Q1 + Q2 = (π,π ) and promote
an attractive interpocket interaction U < 0 between the two
electron pockets (see Fig. 4 and Appendix C). Solution of
the linearized gap equation reveals that the leading eigenstate
remains the s+− one, but the eigenvalue is enhanced, � =√

�2
0 + �2

U + �U , with �U = Ne|U |
2 > 0. Therefore, fluctua-

tions associated with these vestigial states may enhance the
value of Tc promoted by spin-fluctuations pairing, without
affecting the symmetry of the Cooper pair wave function.
Similar conclusions have been found for the combination of
pairing promoted by nematic fluctuations (peaked at Q = 0)
and magnetic fluctuations (peaked at Q1 and Q2) [23].

IV. CONCLUDING REMARKS

In summary, we showed that both biaxial tetragonal mag-
netic ground states of the pnictides—the nonuniform CSDW

and noncollinear SVC states—can melt in two-stage processes,
giving rise to CDW and SVDW vestigial states, respectively.
While both preserve the point-group and time-reversal symme-
tries, but break the translational symmetry of the iron square
lattice, only the SVDW state also breaks inversion symmetry
by entangling the spin-space handedness to a doubling of the
real-space unit cell. Because in the iron superconductors the
hybridization with the puckered As atoms already doubles the
unit cell of the Fe square lattice, the CDW and SVDW states
are more rigorously classified as intra-unit-cell orders. Recent
experiments on Sr1−xNaxFe2As2 [52] and Ba1−xKxFe2As2

[53] found direct evidence for a low-temperature CSDW phase,
which can support a CDW vestigial phase. It remains to be seen
whether the tetragonal magnetic phase can be reached in these
compounds without first crossing the stripe magnetic state. In
contrast, in Ba(Fe1−xMnx)2As2 [25], the tetragonal magnetic
phase has been reported to exist over a wide doping range as
the primary instability of the paramagnetic phase.

Beyond the physics of iron-based superconductors, our
results establish the melting of double-Q orders as a micro-
scopic mechanism to create d-density wave states. The latter
have been proposed to be realized in other strongly correlated
systems, such as the pseudogap phase of underdoped cuprates
[36] and the hidden-order phase of the heavy fermion com-
pound URu2Si2 [37,54,55], mostly on a phenomenological
basis. Whether our mechanism is directly applicable to those
systems is an appealing topic for future investigation.
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APPENDIX A: SADDLE-POINT EQUATIONS FOR THE SVDW ORDER

We start with the effective action for the magnetic order parameters:

S[Mi] =
∫

q

χ−1
q

(
M2

1 + M2
2

) + u

2

∫
x

(
M2

1 + M2
2

)2 − g

2

∫
x

(
M2

1 − M2
2

)2 + 2w

∫
x

(M1 · M2)2, (A1)
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where
∫
q

≡ T
∑

ωn

∫
ddq

(2π)d
and

∫
x

≡ ∫ β

0 dτ
∫

ddx. To proceed, we use the identity

(M1 · M2)2 = 1
4

(
M2

1 + M2
2

)2 − 1
4

(
M2

1 − M2
2

)2 − (M1 × M2)2 (A2)

yielding

S[Mi] =
∫

q

χ−1
q

(
M2

1 + M2
2

) + (u + w)

2

∫
x

(
M2

1 + M2
2

)2 − (g + w)

2

∫
x

(
M2

1 − M2
2

)2 − 2w

∫
x

(M1 × M2)2. (A3)

Hereafter for simplicity we introduce the parameters g̃ = g + w and ũ = u + w. Since we are interested in the vestigial phase
of the spin-vortex crystal, which has tetragonal symmetry, the nematic order parameter 〈M2

1 〉 − 〈M2
2 〉 never condenses, and we

can ignore the corresponding quartic term. Introducing the Hubbard-Stratonovich fields corresponding to the other two quadratic
terms, we obtain

e− u
2 (M2

1 +M2
2 )2 = N

∫
dψ e

ψ2

2u
−ψ(M2

1 +M2
2 ),

e2w(M1×M2)·(M1×M2) = N
∫

dϕSVDW e
−ϕ2

2w
+2ϕSVDW·(M1×M2). (A4)

Here, ϕSVDW is the SVDW vectorial order parameter whose mean value is given by 〈ϕSVDW〉 = 2w〈M1 × M2〉. The field ψ

is not an order parameter, and just renormalizes the magnetic correlation length via 〈ψ〉 = ũ(〈M2
1 〉 + 〈M2

2 〉), i.e., it corresponds
to Gaussian magnetic fluctuations. Thus, the effective action is given by

S[Mi ,ψ,ϕSVDW] =
∫

q

(
χ−1

q + ψ
)(

M2
1 + M2

2

) − 2
∫

x

ϕSVDW · (M1 × M2) + ϕ2
SVDW

2w
− ψ2

2ũ
. (A5)

Approaching the SVDW phase from the paramagnetic state, we can integrate out the magnetic degrees of freedom, yielding
an effective action for ψ and ϕSVDW:

Seff[ψ,ϕSVDW] = ϕ2
SVDW

2w
− ψ2

2ũ
+ 1

2

∫
q

ln

(∏
i

λi,q

)
, (A6)

where λi,q are the eigenvalues of the matrix Aij corresponding to the Gaussian action in Mi . The Gaussian part of the action can
be rewritten in the convenient matrix form:

(M1 M2)

⎛
⎜⎜⎜⎜⎜⎜⎝

χ−1
q + ψ 0 0 0 −ϕz ϕy

0 χ−1
q + ψ 0 ϕz 0 −ϕx

0 0 χ−1
q + ψ −ϕy ϕx 0

0 ϕz −ϕy χ−1
q + ψ 0 0

−ϕz 0 ϕx 0 χ−1
q + ψ 0

ϕy −ϕx 0 0 0 χ−1
q + ψ

⎞
⎟⎟⎟⎟⎟⎟⎠

(
M1

M2

)
. (A7)

Evaluation of the eigenvalues gives

Seff[ψ,ϕSVDW] = ϕ2
SVDW

2w
− ψ2

2ũ
+

∫
q

log
[(

χ−1
q + ψ

)(
χ−1

q + ψ + ϕSVDW
)(

χ−1
q + ψ − ϕSVDW

)]
. (A8)

So far our result is exact. To proceed, we employ the saddle-point approximation to determine the equations of state for ψ and
ϕSVDW, which corresponds to self-consistently accounting for the Gaussian magnetic fluctuations. The saddle-point equations
become

ϕSVDW

w
=

∫
q

1

χ−1
q + ψ − ϕSVDW

−
∫

q

1

χ−1
q + ψ + ϕSVDW

,

ψ

ũ
=

∫
q

1

χ−1
q + ψ − ϕSVDW

+
∫

q

1

χ−1
q + ψ + ϕSVDW

+
∫

q

1

χ−1
q + ψ

. (A9)

Since our focus is on the proximity to a finite-temperature magnetic transition, we ignore the spin dynamics and use the
low-energy expansion for the spin susceptibility appropriate for anisotropic layered systems:

χ−1
q = r0 + q2

‖ + Jz sin2 qz

2
, (A10)

where r0 = a(T − TN ), a > 0, TN is the mean-field magnetic transition temperature, q2
‖ = q2

x + q2
y , and Jz is the interlayer

magnetic coupling. Defining the renormalized magnetic mass

r = r0 + ψ ∝ ξ−2, (A11)
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where ξ is the magnetic correlation length, we obtain

ϕSVDW = w

[∫
q

1

r + q2
‖ + Jz sin2 qz

2 − ϕSVDW
−

∫
q

1

r + q2
‖ + Jz sin2 qz

2 + ϕSVDW

]
,

r = r0 + ũ

[∫
q

1

r + q2
‖ + Jz sin2 qz

2 − ϕSVDW
+

∫
q

1

r + q2
‖ + Jz sin2 qz

2 + ϕSVDW
+

∫
q

1

r + q2
‖ + Jz sin2 qz

2

]
. (A12)

The integrals can be evaluated in a straightforward way (we consider only the ωn = 0 contribution to the sum over Matsubara
frequencies, since we are interested in the finite temperature transition):∫

q

1

q2
‖ + Jz sin2 qz

2 + a
= TN

4π

∫ 2π

0

dqz

2π

∫ �2

Jz sin2 qz
2 +a

dx

x

= TN

4π

∫ 2π

0

dqz

2π
ln

(
�2

Jz sin2 qz

2 + a

)

= TN

2π
[ln 2� − ln(

√
Jz + a + √

a)]. (A13)

Defining the renormalized critical temperature r̃0 = a(T − T̃N ) via

r̃0 = r0 + 3ũTN

2π
ln

2�√
Jz

, (A14)

we obtain the self-consistent equations

ϕSVDW = wTN

2π
ln

√
Jz + r + ϕSVDW + √

r + ϕSVDW√
Jz + r − ϕSVDW + √

r − ϕSVDW
,

r = r̃0 − ũTN

2π
ln

[
(
√

Jz + r + ϕSVDW + √
r + ϕSVDW)(

√
Jz + r − ϕSVDW + √

r − ϕSVDW)(
√

Jz + r + √
r)

J
3/2
z

]
. (A15)

For simplicity, we define the renormalized parameters (w̄,ū) ≡ (w,u) TN

2π
as well as α ≡ ũ

w
= u

w
+ 1 and J̃z ≡ Jz/w̄. Then the

equations can be written as

ϕSVDW = ln

√
J̃z + r + ϕSVDW + √

r + ϕSVDW√
J̃z + r − ϕSVDW + √

r − ϕSVDW

,

(A16)

r = r̃0 − α ln

[
(
√

J̃z + r + ϕSVDW + √
r + ϕSVDW)(

√
J̃z + r − ϕSVDW + √

r − ϕSVDW)(
√

J̃z + r + √
r)

J̃
3/2
z

]
,

where r, r̃0, and ϕSVDW were rescaled by w̄ as well. The SVDW transition temperature can be obtained by linearizing the equations
around ϕSVDW = 0. From the first equation, we obtain the correlation length r1 at the SVDW transition:

r1 =
√

J̃ 2
z + 4 − J̃z

2
, (A17)

which, when substituted in the second equation, gives the SVDW transition temperature r̃0,SVDW

r̃0,SVDW =
√

J̃ 2
z + 4 − J̃z

2
+ 3α ln

⎛
⎜⎜⎝

√√
J̃ 2

z + 4 + J̃z +
√√

J̃ 2
z + 4 − J̃z√

2J̃z

⎞
⎟⎟⎠. (A18)

The magnetic transition temperature r̃0,mag is signaled by the vanishing of the renormalized magnetic mass, i.e., the lowest
eigenvalue of the Eq. (A7), r − ϕSVDW. Therefore, it takes place when r reaches the value r2 determined implicitly by

r2 = ln

√
J̃z + 2r2 + √

2r2√
J̃z

. (A19)

The magnetic transition temperature is therefore given by

r̃0,mag = r2(1 + α) + α ln

[√
J̃z + r2 + √

r2√
J̃z

]
. (A20)
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The SVDW and magnetic transitions are split when r̃0,SVDW > r̃0,mag. The region in the ( u
w
,J̃z) parameter space where this

condition is satisfied corresponds to the shaded area of Fig. 3 in the main text (recall that u
w

= α − 1).
To determine the character of the SVDW transition, we can expand r̃0 for small ϕSVDW. Substituting r = r1 + aϕ2

SVDW in the
first equation of (A16) and expanding for small ϕSVDW gives the coefficient of the quadratic term:

a = 8 + 3J̃ 2
z

12
√

J̃ 2
z + 4

. (A21)

Substituting it in the second equation of (A16) and collecting the quadratic terms in ϕSVDW yields

r̃0(ϕSVDW) ≈ r̃0,SVDW +
⎡
⎣16 + 3J̃ 2

z (2 + α)

24
√

J̃ 2
z + 4

⎤
⎦ϕ2

SVDW. (A22)

Therefore, because the coefficient is always positive, the solution with ϕSVDW �= 0 is achieved at a larger temperature than
the solution with ϕSVDW = 0; in other words, r̃0(ϕSVDW > 0) > r̃0(ϕSVDW → 0). As a result, the SVDW transition is first order
within the saddle-point approximation, even when it is split from the magnetic transition.

APPENDIX B: DERIVATION OF THE GINZBURG-LANDAU FREE ENERGY

Our starting point is a three-band model with a circular hole pocket h centered at (0,0) and two elliptical electron pockets e1,2

centered at Q1 = (π,0) and Q2 = (0,π ), respectively. The band dispersions can be conveniently parametrized by [8]

ξh,k = −ξk = − k2

2m
+ ε0,

ξe1,k+Q1 = ξk − (δ0 + δ2 cos 2θ ),

ξe2,k+Q2 = ξk − (δ0 − δ2 cos 2θ ). (B1)

Here, δ0 is proportional to the chemical potential and δ2 to the ellipticity of the electron pockets. The angle θ is measured
relative to the kx axis. The noninteracting Hamiltonian is therefore given by (hereafter sums over repeated spin indices are
implicitly assumed):

H0 =
∑

k

ξh,kc
†
h,kσ ch,kσ +

∑
k

ξe1,kc
†
e1,kσ ce1,kσ +

∑
k

ξe2,kc
†
e2,kσ ce2,kσ . (B2)

These electronic states couple to the magnetic order parameters M1 and M2 according to

Hmag =
∑
k,i

Mi · (
c
†
ei ,kασ αβch,kβ + H.c.

)
. (B3)

In principle, this last term can be obtained via a Hubbard-Stratonovich transformation of the original interaction terms
projected into the magnetic channel, as shown in Ref. [8]. Here, because we are interested in the higher-order couplings of the
action involving the Mi order parameters, we neglect these interaction terms, since they only affect the quadratic terms of the
action.

1. Absence of magnetic field

In the case where there is no external magnetic field, we focus on the two types of fermionic order that couple directly to
the SVDW order parameter, M1 × M2, and to the CDW order parameter M1 · M2. Thus, we introduce the Q1 + Q2 = (π,π )
spin-current density wave �′′

S (i.e., a purely imaginary SDW) and the checkerboard charge order 	′
C (i.e., a purely real CDW)

defined by

HiS = i
∑

k

�′′
S · σ αβ

(
c
†
e2,kαce1,kβ − c

†
e1,kαce2,kβ

)
, HC =

∑
k

	′
Cδαβ

(
c
†
e2,kαce1,kβ + c

†
e1,kαce2,kβ

)
. (B4)

To proceed, we introduce the six-dimensional Nambu operator

�
†
k = (

c
†
h,k↑ c

†
h,k↓ c

†
e1,k↑ c

†
e1,k↓ c

†
e2,k↑ c

†
e2,k↓

)
, (B5)

which allows us to write the fermionic action in the compact form:

S = −
∫

k

�
†
k Ĝ−1

k �k + S0
[
M2

i

]
. (B6)
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In the previous expression, S0[M2
i ] corresponds to the terms M2

i that arise from the decoupling of the fermionic interactions.
As we explained above, these terms can be ignored for our purposes. The total Green’s function is given by

Ĝ−1
k = (

Ĝ(0)
k

)−1 − V̂mag − V̂iS − V̂C. (B7)

The bare part is

Ĝ(0)
k =

⎛
⎜⎜⎜⎜⎜⎝

Gh,k 0 0 0 0 0
0 Gh,k 0 0 0 0
0 0 Ge1,k 0 0 0
0 0 0 Ge1,k 0 0
0 0 0 0 Ge2,k 0
0 0 0 0 0 Ge2,k

⎞
⎟⎟⎟⎟⎟⎠, (B8)

where G−1
i,k = iωn − ξi,k are noninteracting single-particle Green’s functions. The interacting parts are

V̂mag =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −M1,z −M1,x + iM1,y −M2,z −M2,x + iM2,y

0 0 −M1,x − iM1,y M1,z −M2,x − iM2,y M2,z

−M1,z −M1,x + iM1,y 0 0 0 0
−M1,x − iM1,y M1,z 0 0 0 0

−M2,z −M2,x + iM2,y 0 0 0 0
−M2,x − iM2,y M2,z 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
(B9)

and

V̂iS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 i	′′

S,z i(	′′
S,x − i	′′

S,y)

0 0 0 0 i(	′′
S,x + i	′′

S,y) −i	′′
S,z

0 0 −i	′′
S,z −i(	′′

S,x − i	′′
S,y) 0 0

0 0 −i(	′′
S,x + i	′′

S,y) i	′′
S,z 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(B10)

as well as

V̂C =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −	′

C 0
0 0 0 0 0 −	′

C

0 0 −	′
C 0 0 0

0 0 0 −	′
C 0 0

⎞
⎟⎟⎟⎟⎟⎠. (B11)

It is now straightforward to integrate out the fermions and obtain the effective magnetic action

Seff[M1,M2,�
′′
S,	

′
C] = −Tr ln[1 − Ĝ0(V̂mag + V̂iS + V̂C)] ≈

∑
n

1

n
Tr[Ĝ0(V̂mag + V̂iS + V̂C)]n, (B12)

where, in the last step, we expanded for small M1,M2. Here, Tr(· · · ) refers to the sum over momentum, frequency, and Nambu
indices. A straightforward evaluation gives, to the leading order in the coupling between �′′

S,	
′
C , and Mi :

Seff[M1,M2,�
′′
S,	

′
C] = S[M1,M2] + λ�′′

S · (M1 × M2) − λ	′
C(M1 · M2), (B13)

with the coefficient

λ = 4
∫

k

Gh,kGe1,kGe2,k. (B14)

For perfect nesting, δ0 = δ2 = 0, this coefficient vanishes. For a system in proximity to a finite temperature phase transition,
expansion in powers of δ0 gives

λ ≈ 4ρF T
∑

n

∫
dξ

1

(iωn + ξ )

1

(iωn − ξ + δ0)2 ,

λ ≈ −8δ0ρF T
∑

n

∫
dξ

1

(iωn + ξ )

1

(iωn − ξ )3 ,

λ ≈ −
(

δ0

T

)
7ζ (3)ρF

2π2T
, (B15)
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where ρF is the density of states at the Fermi level. Therefore, it is clear that a spin-current density-wave �′′
S parallel to ϕSVDW is

triggered by the SVDW order parameter ϕSVDW ∝ M1 × M2, whereas a checkerboard charge order 	′
C is triggered by the CDW

order parameter ϕCDW ∝ M1 · M2.

2. Nonzero magnetic field

In the presence of a magnetic field, additional types of fermionic order are triggered by the condensation of the SVDW and
CDW order parameters. To show that, we first introduce the Zeeman coupling between the uniform field H and the electrons:

HZeeman =
∑
k,i

H · σ αβc
†
i,kαci,kβ. (B16)

We also introduce the Q1 + Q2 = (π,π ) charge-current density-wave 	′′
C (i.e., a purely imaginary CDW) and the spin

density-wave �′
S (i.e., a purely real SDW) defined by

HS =
∑

k

�′
S · σ αβ

(
c
†
e2,kαce1,kβ + c

†
e1,kαce2,kβ

)
, HiC = i

∑
k

	′′
Cδαβ

(
c
†
e2,kαce1,kβ − c

†
e1,kαce2,kβ

)
. (B17)

Following the same steps as in the previous subsection, we obtain the expanded action

Seff[M1,M2,�
′
S,	

′′
C] ≈

∑
n

1

n
Tr[Ĝ0(V̂mag + V̂S + V̂iC + V̂Zeeman)]n, (B18)

where the Nambu-space matrices are given by

V̂Zeeman =

⎛
⎜⎜⎜⎜⎜⎝

−Hz −Hx + iHy 0 0 0 0
−Hx − iHy Hz 0 0 0 0

0 0 −Hz −Hx + iHy 0 0
0 0 −Hx − iHy hz 0 0
0 0 0 0 −Hz −Hx + iHy

0 0 0 0 −Hx − iHy Hz

⎞
⎟⎟⎟⎟⎟⎠ (B19)

and

V̂iC =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 i	′′

C 0
0 0 0 0 0 i	′′

C

0 0 −i	′′
C 0 0 0

0 0 0 −i	′′
C 0 0

⎞
⎟⎟⎟⎟⎟⎠ (B20)

as well as

V̂S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −	′

S,z −(
	′

S,x − i	′
S,y

)
0 0 0 0 −(

	′
S,x + i	′

S,y

)
	′

S,z

0 0 −	′
S,z −(

	′
S,x − i	′

S,y

)
0 0

0 0 −(
	′

S,x + i	′
S,y

)
	′

S,z 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B21)

A straightforward evaluation yields, to leading order in the magnetic field

Seff = Seff[H = 0] + ζ [(H · M1)2 + (H · M2)2] + γ [	′′
CH · (M1 × M2) + (H · �′

S)(M1 · M2)]

+ η[(M1 · H)(M2 · �′
S) + (M2 · H)(M1 · �′

S)], (B22)

where we neglected all isotropic biquadratic terms of the form H 2M2
i . The coefficients are given by

ζ = 4
∫

k

G2
h,kG

2
e1,k

,

γ = 4
∫

k

Gh,kGe1,kGe2,k

(
Ge1,k + Ge2,k − Gh,k

)
,

η = 4
∫

k

G2
h,kGe1,kGe2,k. (B23)
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It is useful to perform an expansion around perfect nesting, δ0 = δ2 = 0. The coefficients ζ and η become identical in this
limit:

ζ = η = ρF

T 2

(
7ζ (3)

2π2

)
. (B24)

The fact that ζ > 0 implies that the magnetic field induces an easy plane, rather than an easy axis anisotropy. As for the
coefficient η, it remains zero in all orders in perturbation theory if an infinite bandwidth is assumed. However, keeping the top
of the hole pocket W (or bottom of the electron pocket) throughout the calculation gives

γ ≈ ρF

T 2

(
W

T

)−2

. (B25)

The fact that γ �= 0 implies that, in the presence of a uniform field, the SVDW order parameter ϕSVDW ∝ M1 × M2 also
triggers a charge-current density-wave 	′′

C , whereas the CDW order parameter ϕCDW ∝ M1 · M2 triggers a spin density wave
of same period, �′

S . Although this was expected by symmetry, here we have microscopic expressions for the corresponding
Ginzburg-Landau coefficients. It is interesting then to compare the coefficient γ in Eq. (B22), which determines the amplitudes
of 	′′

C and �′
S , to the coefficient λ in Eq. (B13), which determines the amplitudes of �′′

S and 	′
C . We find that

γH

λ
≈ −2.3

(
T 2H

W 2δ0

)
. (B26)

Therefore, for pnictides whose band dispersions do not deviate strongly from perfect nesting, and whose bandwidths are not
too large either, it is conceivable that the two coupling constants γH and λ will be of similar order for moderate values of the
magnetic field H . As a result, the charge-current density wave and the spin density wave generated in the presence of the field
could be as large as the spin-current density wave and the charge density wave generated in the absence of the field.

APPENDIX C: SUPERCONDUCTING PAIRING INTERACTIONS

Here we show explicitly that fluctuations associated with an imaginary SDW instability or with a real CDW instability give
rise to attractive pairing interactions. For our purposes, it is sufficient to consider only the two Fermi pockets connected by
the momentum transfer Q = (π,π ) associated with these two ordered states. To simplify the notation, here we will denote the
fermionic operators associated with these bands by dkσ and fkσ . In both cases, k is measured relative to the center of each Fermi
pocket. Consider first the action describing the coupling between the electrons and the complex SDW bosonic field �S = 	S ẑ
(for simplicity, we consider it polarized along the z axis):

S = −
∫

k

[(iωn − εd,k)d†
kσ dkσ + (iωn − εf,k)f †

kσ fkσ ] + g

∫
k,q

σ (	′
S,−k−qd

†
kσ fqσ + 	′

S,−k−qf
†
kσ dqσ )

+ g

∫
k,q

σ (i	′′
S,−k−qd

†
kσ fqσ − i	′′

S,−k−qf
†
kσ dqσ ) +

∫
k

χ−1
S (k,�n)	′

S,k	
′
S,−k +

∫
k

χ−1
iS (k,�n)	′′

S,k	
′′
S,−k, (C1)

where k ≡ (k,ωn),
∫
k

≡ T
∑

n

∫
ddk

(2π)d
(with the appropriate bosonic �n or fermionic ωn Matsubara frequency), and we left

implicit the sum over spin indices, as well as the dependence of the fermionic operators on the fermionic Matsubara frequencies.
χS and χiS are the susceptibilities associated with the real and imaginary SDW, and g is the coupling constant. Note that, because
Q is a commensurate vector, the real and imaginary SDW fields are independent. Introducing the four-dimensional Nambu
operator

�
†
k = (d†

k↑ d−k↓ f
†
k↑ f−k↓), (C2)

the action can be written conveniently as

S = −
∫

k

�
†
k(iωn1̂ − ε̂k)�k +

∫
k

χ−1
S (k,�n)	′

S,k	
′
S,−k +

∫
k

χ−1
iS (k,�n)	′′

S,k	
′′
S,−k

+ g

∫
k,q

	′
S,−k−q�

†
kρ̂S�p + g

∫
k,q

	′′
S,−k−q�

†
kρ̂iS�p, (C3)

where we defined the 4 × 4 matrices

ε̂k =
(

εd,kτz 0
0 εf,kτz

)
, ρ̂S =

(
0 τ0

τ0 0

)
≡ τ0 ⊗ σx, ρ̂iS =

(
0 iτz

−iτz 0

)
≡ −τz ⊗ σy, (C4)

where τi are the Pauli matrices and 0 denotes the 2 × 2 matrix whose elements are all zero. To obtain the Eliashberg-like gap
equations, we need to solve Dyson’s equation

Ĝ−1
k = Ĝ−1

0,k − �̂k, (C5)
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with Ĝ−1
0,k = iωn1̂ − ε̂k and the one-loop self-energy

�̂k = g2
∫

q

χS(k − q)ρ̂SĜq ρ̂S + g2
∫

q

χiS(k − q)ρ̂iSĜq ρ̂iS . (C6)

It is convenient to parametrize the self-energy by

�̂k = (1̂ − Ẑk)iωn + Ŵk + ξ̂k, (C7)

where we introduced the imaginary normal components Zμ,k , the real normal components ξμ,k , and the anomalous components
Wμ,k (μ = d,f is a band index):

Ẑk =
(

Zd,kτ0 0
0 Zf,kτ0

)
, Ŵk =

(
Wd,kτx 0

0 Wf,kτx

)
, ξ̂k =

(
ξd,kτz 0

0 ξf,kτz

)
. (C8)

The superconducting gap in band μ is therefore proportional to Wμ,k . Using Eqs. (C5) and (C7), it is straightforward to invert
the matrix and obtain Ĝ. Substituting it in (C6) and comparing back with Eq. (C7), we arrive at a set of six self-consistent
equations. Four of them have the same form for either real or imaginary SDW, namely, the two equations that renormalize the
dispersion ε̃a,k = ξa,k + εk and the two that renormalize the quasiparticle weights Zμ,k. However, the two self-consistent gap
equations acquire different forms:

Wd,k = −
∫

q

[g2χS(k − q)]
Wf,q

Df,q

−
∫

q

[−g2χiS(k − q)]
Wf,q

Df,q

,

Wf,k = −
∫

q

[g2χS(k − q)]
Wd,q

Dd,q

−
∫

q

[−g2χiS(k − q)]
Wd,q

Dd,q

, (C9)

where we defined D2
μ,q = Z2

μ,qω
2
n + ε̃2

μ,q + W 2
μ,q . From the form of these equations, it becomes clear that while the fluctuations

near the real SDW instability give rise to a repulsive interband pairing interaction Vdf ∝ g2χS , the fluctuations near the
imaginary SDW instability promote an attractive interband pairing interaction Vdf ∝ −g2χiS . This difference relies ultimately
on the different structures of the matrix elements (C4) in Nambu space.

A similar analysis can be performed in the charge channel:

S = −
∫

k

[(iωn − εd,k)d†
kσ dkσ + (iωn − εf,k)f †

kσ fkσ ] + g

∫
k,q

(	′
C,−k−qd

†
kσ fqσ + 	′

C,−k−qf
†
kσ dqσ )

+ g

∫
k,q

(i	′′
C,−k−qd

†
kσ fqσ − i	′′

C,−k−qf
†
kσ dqσ ) +

∫
k

χ−1
C (k,�n)	′

C,k	
′
C,−k +

∫
k

χ−1
iC (k,�n)	′′

C,k	
′′
C,−k. (C10)

In Nambu space, we obtain

S = −
∫

k

�
†
k(iωn1̂ − ε̂k)�k +

∫
k

χ−1
C (k,�n)	′

C,k	
′
C,−k +

∫
k

χ−1
iC (k,�n)	′′

C,k	
′′
C,−k

+ g

∫
k,q

	′
C,−k−q�

†
kρ̂C�p + g

∫
k,q

	′′
C,−k−q�

†
kρ̂iC�p, (C11)

where we defined the 4 × 4 matrices

ρ̂C =
(

0 τz

τz 0

)
≡ τz ⊗ σx, ρ̂iC =

(
0 iτ0

−iτ0 0

)
≡ −τ0 ⊗ σy. (C12)

Solving the one-loop Dyson equation, we obtain the two self-consistent gap equations

Wd,k = −
∫

q

[−g2χC(k − q)]
Wf,q

Df,q

−
∫

q

[g2χiC(k − q)]
Wf,q

Df,q

,

Wf,k = −
∫

q

[−g2χC(k − q)]
Wd,q

Dd,q

−
∫

q

[g2χiC(k − q)]
Wd,q

Dd,q

. (C13)

Therefore, in the charge channel, real CDW fluctuations promote interband pairing attraction Vdf ∝ −g2χC , whereas imaginary
CDW fluctuations promote repulsion Vdf ∝ g2χiC .

[1] K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001
(2009); D. C. Johnston, Adv. Phys. 59, 803 (2010); J. Paglione
and R. L. Greene, Nat. Phys. 6, 645 (2010); P. C. Canfield and

S. L. Bud’ko, Annu. Rev. Cond. Mat. Phys. 1, 27 (2010); H. H.
Wen and S. Li, ibid. 2, 121 (2011).

[2] P. Dai, J. Hu, and E. Dagotto, Nat. Phys. 8, 709 (2012).

014511-12

http://dx.doi.org/10.1143/JPSJ.78.062001
http://dx.doi.org/10.1143/JPSJ.78.062001
http://dx.doi.org/10.1143/JPSJ.78.062001
http://dx.doi.org/10.1143/JPSJ.78.062001
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1038/nphys1759
http://dx.doi.org/10.1038/nphys1759
http://dx.doi.org/10.1038/nphys1759
http://dx.doi.org/10.1038/nphys1759
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1038/nphys2438


VESTIGIAL CHIRAL AND CHARGE ORDERS FROM . . . PHYSICAL REVIEW B 93, 014511 (2016)

[3] C. Fang, H. Yao, W.-F. Tsai, J. P. Hu, and S. A. Kivelson, Phys.
Rev. B 77, 224509 (2008).

[4] C. Xu, M. Muller, and S. Sachdev, Phys. Rev. B 78, 020501(R)
(2008).

[5] M. D. Johannes and I. I. Mazin, Phys. Rev. B 79, 220510(R)
(2009).

[6] I. Eremin and A. V. Chubukov, Phys. Rev. B 81, 024511
(2010).

[7] E. Abrahams and Q. Si, J. Phys.: Condens. Matter 23, 223201
(2011).

[8] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J.
Schmalian, Phys. Rev. B 85, 024534 (2012).

[9] S. Liang, A. Mukherjee, N. D. Patel, C. B. Bishop, E. Dagotto,
and A. Moreo, Phys. Rev. B 90, 184507 (2014).

[10] L. Nie, G. Tarjus, and S. A. Kivelson, Proc. Natl. Acad. Sci.
USA 111, 7980 (2014).

[11] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys.
10, 97 (2014).

[12] J.-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam,
Y. Yamamoto, and I. R. Fisher, Science 329, 824 (2010).

[13] T.-M. Chuang, M. P. Allan, J. Lee, Y. Xie, N. Ni, S. L. Bud’ko,
G. S. Boebinger, P. C. Canfield, and J. C. Davis, Science 327,
181 (2010).

[14] M. Yi, D. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F.
Kemper, B. Moritz, S.-K. Mo, R. G. Moore, M. Hashimoto,
W. S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.-X.
Shen, Proc. Nat. Acad. Sci. USA 108, 6878 (2011).

[15] J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher, Science
337, 710 (2012).

[16] S. Kasahara, H. J. Shi, K. Hashimoto, S. Tonegawa, Y.
Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima,
A. H. Nevidomskyy, and Y. Matsuda, Nature (London) 486, 382
(2012).

[17] Y. Gallais, R. M. Fernandes, I. Paul, L. Chauviere, Y.-X. Yang,
M.-A. Measson, M. Cazayous, A. Sacuto, D. Colson, and A.
Forget, Phys. Rev. Lett. 111, 267001 (2013).

[18] X. Lu, J. T. Park, R. Zhang, H. Luo, A. H. Nevidomskyy, Q. Si,
and P. Dai, Science 345, 657 (2014).

[19] E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M. Fernandes,
L. Y. Xing, X. C. Wang, C. Q. Jin, A. J. Millis, and A. N.
Pasupathy, Nat. Phys. 10, 225 (2014).

[20] C. C. Lee, W. G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001
(2009).

[21] R. Applegate, R. R. P. Singh, C.-C. Chen, and T. P. Devereaux,
Phys. Rev. B 85, 054411 (2012).

[22] R. M. Fernandes and A. J. Millis, Phys. Rev. Lett. 111, 127001
(2013).

[23] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Phys. Rev.
Lett. 114, 097001 (2015).

[24] J. Kang, A. F. Kemper, and R. M. Fernandes, Phys. Rev. Lett.
113, 217001 (2014).

[25] M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian,
J. L. Zarestky, M. A. Green, S. L. Bud’ko, P. C. Canfield, R. J.
McQueeney, and A. I. Goldman, Phys. Rev. B 82, 220503(R)
(2010).

[26] S. Avci, O. Chmaissem, J. M. Allred, S. Rosenkranz, I. Eremin,
A. V. Chubukov, D. E. Bulgaris, D. Y. Chung, M. G. Kanatzidis,
J.-P Castellan, J. A. Schlueter, H. Claus, D. D. Khalyavin, P.
Manuel, A. Daoud-Aladine, and R. Osborn, Nat. Comm. 5, 3845
(2014).
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