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We examine the statics and dynamics of vortices in the presence of a periodic quasi-one-dimensional substrate,
focusing on the limit where the vortex lattice constant is smaller than the substrate lattice period. As a function of
the substrate strength and filling factor, within the pinned state, we observe a series of order-disorder transitions
associated with buckling phenomena in which the number of vortex rows that fit between neighboring substrate
maxima increases. These transitions coincide with steps in the depinning threshold, jumps in the density of
topological defects, and changes in the structure factor. At the buckling transition, the vortices are disordered,
while between the buckling transitions the vortices form a variety of crystalline and partially ordered states.
In the weak substrate limit, the buckling transitions are absent and the vortices form an ordered hexagonal
lattice that undergoes changes in its orientation with respect to the substrate as a function of vortex density. At
intermediate substrate strength, certain ordered states appear that are correlated with peaks in the depinning force.
Under an applied drive, the system exhibits a rich variety of distinct dynamical phases, including plastic flow, a
density-modulated moving crystal, and moving floating solid phases. We also find a dynamic smectic-to-smectic
transition in which the smectic ordering changes from being aligned with the substrate to being aligned with the
external drive. The different dynamical phases can be characterized using velocity histograms and the structure
factor. We discuss how these results are related to recent experiments on vortex ordering in thin films with periodic
thickness modulations. Our results should also be relevant for other types of systems such as ions, colloids, or
Wigner crystals interacting with periodic quasi-one-dimensional substrates.
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I. INTRODUCTION

Commensurate-incommensurate transitions are relevant to
a number of condensed matter systems that can be effectively
described as a lattice of particles interacting with an underlying
periodic substrate. A commensurate state occurs when certain
length scales of the particle lattice match the periodicity of the
underlying substrate, such as when the number of particles is
equal to the number of substrate minima [1,2]. Typically when
commensurate conditions are met, the system forms an ordered
state free of topological defects, while at incommensurate
fillings there are several possibilities depending on the strength
of the substrate. If the substrate potential is weak, the particles
maintain their intrinsic lattice structure which floats on top of
the substrate, while for strong substrates a portion of the par-
ticles lock into a configuration that is commensurate with the
substrate while the remaining particles form excitations such
as kinks, vacancies, or domain walls. At intermediate substrate
strengths, the lattice ordering can be preserved but there can
be periodic distortions or rotations of the particle lattice with
respect to the substrate lattice [3–8]. These different cases are
associated with differing dynamical responses of the particles
under the application of an external drive [2,7–11]. When kinks
or domain walls are present, multistep depinning process can
occur when the kinks become mobile at a lower drive than
the commensurate portions of the sample [7,8]. Examples of
systems that exhibit commensurate-incommensurate phases
include atoms adsorbed on atomic surfaces [1,3,4], vortices
in type-II superconductors interacting with artificial pinning
arrays [12–24], vortex states in Josephson-junction arrays
[25,26], superfluid vortices in Bose-Einstein condensates in

the presence of co-rotating optical trap arrays [27–29], cold
atoms and ions on ordered substrates [30–33], and colloidal
particles on periodic [6–8,34–37] and quasiperiodic optical
substrates [38,39].

In the superconducting vortex system, commensurability
occurs when the number of vortices is an integer multiple of the
number of pinning sites, and various types of commensurate
vortex crystalline states can occur with different symmetries
[12,13,16,17,19]. At fillings where there are more vortices
than pinning sites, it is possible to have multi-quantized
vortices occupy the pinning sites, and a composite vortex
lattice can form that is comprised of individual or multiple
flux-quanta vortices localized on pinning sites coexisting
with vortices located in the interstitial regions between the
pinning sites [12,19–23]. Ordered commensurate vortex states
have been directly imaged with Lorentz microscopy [13]
and other imaging techniques [40–42], and the existence of
commensurate states can also be deduced from changes in
the depinning force needed to move the vortices, with peaks
or steps appearing in the critical current as a function of
vortex density [12,14–22]. It is also possible for ordered vortex
structures such as checkerboard states to form at rational
fractional ratios of n/m with integer m and n, where n is
the number of vortices and m is the number of pinning sites
[40–44]. Experiments [7] and simulations [8,45] of colloidal
assemblies on optical trap arrays examined the depinning
transitions and subsequent sliding of the colloids and show that
the depinning threshold is maximum for one-to-one matching
of colloids and traps, while it drops at incommensurate fillings
due to the presence of highly mobile kinks, antikinks, and
domain walls.
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FIG. 1. The real-space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions marked
with circles, and the structure factor S(k) (right column), for a system
with a periodic quasi-one-dimensional substrate with Fp = 1.5.
(a) and (b) At w/a = 1.85, each substrate minimum contains a single
row of vortices (r1) and the structure factor shows smectic order.
(c) and (d) w/a = 2.054, at the onset of a buckling transition.
(e) and (f) At w/a = 2.651 there is an ordered zigzag r2 vortex lattice.
(g) and (h) At w/a = 3.0, there is a mixture of two and three vortex
rows per potential well.

Commensurate-incommensurate transitions can also occur
for particles interacting with a periodic quasi-one-dimensional
(q1D) or washboard potential, where the particles can slide
freely along one direction of the substrate but not the other.
An example of this type of system is shown in Fig. 1
for a two-dimensional system of vortices interacting with

a quasi-one-dimensional sinusoidal substrate. The potential
maxima are indicated by the darker shadings, so the vortices
are attracted to the light colored regions. This type of system
has been studied previously for colloids interacting with q1D
periodic substrate arrays, where it was shown that various
melting and structural transitions between hexagonal, smectic,
and disordered colloidal arrangements can occur [46–52]. In
general, the colloidal studies focused on the case where the
particle lattice constant a is larger than the substrate lattice
constant w. Martinoli et al. investigated vortex pinning in
samples with a 1D periodic thickness modulation [53–55]
and observed broad commensuration peaks in the depinning
threshold that were argued to be correlated with the formation
of ordered vortex arrangements that could align with the
substrate periodicity. Other vortex studies in similar samples
also revealed peaks in the critical depinning force associated
with commensuration effects [56,57], while studies of vortices
interacting with 1D magnetic strips showed that commensurate
conditions were marked by depinning steps rather than peaks
[58]. Under an applied dc drive, depinning transitions occur
into a sliding state, and when an additional ac drive is added
to the dc drive, a series of Shapiro steps in the voltage-current
curves appears when the frequency of the oscillatory motion
of the vortex lattice moving over the periodic substrate locks
with the ac driving frequency [54]. Similar commensuration
effects and Shapiro step phenomena were also studied for
vortices interacting with periodic washboard potentials or q1D
periodic sawtooth substrates [59]. Vortices interacting with
periodic q1D planar defects have also been studied in layered
superconductors when the field is aligned parallel to the layer
directions. Here, different vortex lattice structures, smectic
states, and oscillations in the critical current occur as a function
of applied magnetic field [60–67].

For higher vortex densities in the presence of a q1D
substrate where the vortex lattice constant a is smaller than the
substrate lattice constant, a < w, there are several possibilities
for how the vortices can order. In the weak substrate limit, they
can form a hexagonal lattice containing only small distortions,
while in the strong substrate limit the vortices could be strongly
confined in each potential minima to form 1D rows, so that the
overall two-dimensional (2D) vortex structure is anisotropic.
Between these limits, the vortices could exhibit buckling
transitions by forming zigzag patterns within individual
potential troughs, so that for increasing vortex density there
could be a series of transitions at which increasing numbers
of rows of vortices appear in the potential troughs. Transitions
from 1D rows of particles to zigzag states or multiple rows
have been studied for particles in single q1D trough potentials
in the context of vortices [68–70], Wigner crystals [71–73],
colloids [74–77], q1D dusty plasmas [78,79], ions in q1D traps
[80–82], and other systems [83,84] where numerous structural
transitions, diffusion behavior and dynamics can occur. In the
case of a periodic array of channels such as shown in Fig. 1,
much less is known about what buckling transitions would
occur and what the dynamics would be under an applied
driving force. Recently, Guillamón et al. studied vortex lattices
in samples with a periodic q1D array of grooves. As a function
of the commensuration ratio p = w/a, they found that for
p < 6, the vortex lattice remains triangular but undergoes a
series of transitions that are marked by rotations of the angle
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θ made by the vortex lattice with respect to the substrate
symmetry direction [85]. They also observed that at much
higher fields, the system transitions into a disordered state
with large vortex density fluctuations. Open questions include
what happens to these reorientation transitions as the substrate
strength is increased, and what are the vortex dynamics when
a driving force is applied. Dynamical phases and structural
transitions between different kinds of nonequilibrium vortex
flow states have been extensively studied for driven vortex
systems interacting with random [86–91] and 2D periodic
pining arrays [92,93]; however, there is very little work
examining the dynamic vortex phases for vortices moving over
q1D periodic substrates. It is not known whether the vortices
would undergo dynamical structural transitions or exhibit the
same types of dynamic phases found for vortices driven over
random disorder, such as a disordered plastic flow state that
transitions to a moving smectic or anisotropic crystal as a
function of increasing drive.

In this work, we consider ordering and dynamics of vortices
interacting with a periodic q1D sinusoidal potential for fillings
0 < p < 5.5. We study a model representative of vortices
in a slab of superconducting material with a q1D surface
modulation that is small compared to the slab thickness. In
the strong substrate regime, the system undergoes a series
of structural transitions that are related to the number of
rows of vortices that fit within each substrate trough. These
transitions include transformations from 1D vortex rows to
zigzag patterns that gradually increase the number of rows
that are confined in a single potential trough. The vortex
structure contains numerous dislocations at the buckling
transitions and is ordered between the buckling transitions.
For strong substrates, the transitions between buckling and
ordered phases produce a series of steps in the critical current
or depinning force as a function of vortex density, while for
weaker substrate strengths, some of the states in which the
vortices order produce peaks in the depinning force. For the
weakest substrates, the vortices form a triangular lattice that
undergoes rotations with respect to the underlying substrate
symmetry direction as a function of applied magnetic field,
similar to the behavior observed by Guillamon et al. [85].
Under an applied drive, we observe plastic flow states, moving
density-modulated crystals, and dynamic floating solids. For
certain fillings, we also find smectic-to-smectic transitions
where the two smectic states have different orientations. These
different flowing phases produce distinct features in the veloc-
ity histograms and the structure factor. The commensurability
ratio p also strongly affects the driving force at which the
transition to a moving floating solid occurs. Our results should
be general to other types of systems that can be represented as
a collection of repulsive particles interacting with a periodic
q1D substrate, such as colloids on optical line traps, ions in
coupled traps, and Wigner crystals on corrugated substrates.

II. SIMULATION

We model a two-dimensional system of vortices interacting
with a periodic q1D potential with period w, where there are
periodic boundary conditions in the x and y directions. The
vortices are modeled as point particles and the dynamics of an

individual vortex i obeys the following equation of motion:

η
dRi

dt
= Fi

vv + Fs
i + Fi

d + Fi
T . (1)

Here, η is the damping constant which we set equal to unity.
The vortex-vortex forces Fvv

i = ∑Nv

j=1 F0K1(Rij/λ)R̂ij , where
F0 = φ2

0/2πμ0λ
3, φ0 is the elementary flux quantum, μ is the

permittivity, K1 is the modified Bessel function, Ri is the
location of vortex i, Rij = |Ri − Rj |, R̂ij = (Ri − Rj )/Rij ,
and λ is the penetration depth. If we match our simulation
parameters to the experiment in Ref. [94] on Nb thin films, as
an example, we have η = 1.4 × 10−12 N s/m, λ = 368 nm,
and F0 = 1.09 × 10−5 N/m. The vortices have repulsive
interactions and form a triangular lattice in the absence of
a substrate.

The vortex interaction with the substrate is given by Fs
i =

−∇V (xi)x̂ where the substrate has the sinusoidal form

V (x) = V0 sin(2πx/w). (2)

We define the pinning strength of the substrate to be Fp =
F02πV0/w. Possible ways to experimentally create this type
of pinning include growing a uniform thin superconducting
film on a wave-modulated substrate or on a flat substrate
with periodically modulated interface properties, or growing
a superconducting film with periodic thickness modulations.
The dc driving force Fi

d arises from the Lorentz force induced
by a current applied along the easy direction (y axis) of
the substrate which produces a perpendicular force on the
vortices and causes them to move in the x direction in our
system. Our simulations are performed in the limit that is
well below the Larkin-Ovchinnikov instability where vortex
cores may deform [95]. We measure the vortex velocity 〈Vx〉
along the driving direction as we increase the external drive
in increments of δFd , and average the vortex velocities over a
fixed time in order to avoid any transient effects. The thermal
forces FT are modeled as random Langevin kicks with the
properties 〈FT 〉 = 0 and 〈Fi

T (t)Fj

T (t ′)〉 = 2ηkBT δij δ(t − t ′),
where kB is the Boltzmann constant. The initial vortex
positions are obtained by annealing from a high temperature
state and cooling down to T = 0. The dc drive is applied only
after the annealing procedure is completed. We consider a
range of vortex densities, which we report in terms of the ratio
w/a of the periodicity of the substrate to the vortex lattice
constant that would appear in the absence of a substrate. We
denote a state containing n rows of vortices in each potential
minimum as rn.

III. PINNED PHASES

In Figs. 1(a), 1(c), 1(e), and 1(g), we plot the real space
locations of the vortices on the potential substrate after
annealing for a system with Fp = 1.5 at fillings of w/a =
1.85, 2.054, 2.651, and 3.0, while in Figs. 1(b), 1(d), 1(f),
and 1(h), we show the corresponding structure factors S(k).
At w/a = 1.58 in Fig. 1(a) the vortices form single 1D rows
in each potential minimum, corresponding to an r1 state, and
the overall vortex structure is highly anisotropic with lattice
constants ax = 4.5 in the x direction and ay = 1.31 in the
y direction. Additionally, each potential trough captures a
slightly different number of vortices, introducing disorder in
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the alignment of rows in adjacent minima, and leaving the
system with periodic ordering only along the x direction.
The corresponding structure factor in Fig. 1(b) exhibits a
series of spots at ky = 0.0 and finite kx , indicative of the 1D
ordering associated with a smectic phase. As the magnetic
field increases, the vortex ordering must become increasingly
anisotropic in order to maintain single rows of particles in
each minimum. This is energetically unfavorable, so instead a
transition occurs to a zigzag or buckled state in which there
are two partial rows of vortices in every substrate minimum.
Figure 1(c) illustrates the real space vortex positions for
w/a = 2.054 at the beginning of the zigzag transition, where
some of the troughs contain a buckled vortex pattern. In the
corresponding S(k) plot in Fig. 1(d), the smectic ordering
develops additional features at large k associated with the
shorter range structure that arises on the length scale associated
with the zigzag pattern. As the magnetic field is further
increased, the zigzag pattern appears in all the substrate
minima and the system forms an ordered anisotropic 2D r2

lattice as shown in Fig. 1(e) for w/a = 2.651, where there
are two rows of vortices in each potential minimum that form
a zigzag structure which is aligned with zigzag structures in
neighboring minima. The corresponding S(k) in Fig. 1(f) has
a series of peaks at small and large k indicating the presence of
a more ordered vortex structure. For higher fields, the zigzag
lattice becomes increasingly anisotropic until another buckling
transition occurs to produce r3 with three vortex rows per
substrate minimum. Figure 1(g) shows the transition point at
w/a = 3.0 where certain potential troughs contain three vortex
rows while others contain two vortex rows or mixtures of two
and three vortex rows. In Fig. 1(h), S(k) for this case shows
that the system is considerably more disordered than at the
commensurate case illustrated in Figs. 1(e) and 1(f).

In Fig. 2, we show the continuation of the evolution of the
vortex lattice from Fig. 1 in both real space and k space. At
w/a = 3.3 in Fig. 2(a), there is an ordered r3 structure with
three vortex rows in each potential minimum, producing the
ordered S(k) shown in Fig. 2(b). As the vortex density is further
increased, the row structure disorders as shown in Fig. 2(c)
for w/a = 3.644, corresponding to a ring like structure in
S(k) as indicated in Fig. 2(d). There are still peaks along the
ky = 0.0 line due to the anisotropy induced by the substrate.
For this value of Fp, further increasing the vortex density does
not produce a more ordered configuration; however, certain
partially ordered structures can occur as illustrated in Fig. 2(e)
for w/a = 4.1455, where there are four vortex rows per trough
(r4) with mixed peaks and smearing in the corresponding
structure factor shown in Fig. 2(f). At higher fields, the
vortex structures become disordered as shown in Fig. 2(g)
at w/a = 5.15, where S(k) in Fig. 2(h) has pronounced ring
structures. There are still two peaks at ky = 0 and finite kx due
to the smectic ordering imposed by the q1D substrate.

We can also characterize the system using the fraction of
sixfold coordinated vortices P6 = N−1 ∑N

i=1 δ(6 − zi), where
zi is the coordination number of vortex i obtained from a
Voronoi construction. In general, we find that P6 drops at the
buckling transitions due to the formation of dislocations that
are associated with the splitting of a single row of vortices into
two rows, creating a kink at the intersection of the two rows. In
Fig. 3(a), we plot P6 versus w/a for a system with Fp = 0.5.

FIG. 2. The continuation of the real space images (left column)
and S(k) (right column) from the system in Fig. 1 with Fp = 1.5.
(a) and (b) At w/a = 3.3, there is an ordered structure with three
vortex rows per potential minimum (r3). (c) and (d) At w/a = 3.644,
there is a partially disordered state with roughly three vortex rows
per potential minimum. (e) and (f) At w/a = 4.1455 there is a
partially ordered state with four vortex rows per minimum (r4).
(g) and (h) The disordered state at w/a = 5.15 showing ring
structures in S(k).

Over the range 1.0 < w/a < 1.7, each pinning trough contains
an r1 state, while the dip in P6 at w/a = 1.77 corresponds to the
middle of the buckling transition when there is roughly a 50 :
50 mixture of r1 and r2. For 1.85 < w/a < 2.35, the system
forms an ordered r2 state similar to that shown in Fig. 1(e),
but less anisotropic since the weaker substrate compresses
the zigzag structure less and permits it to be wider. Near
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FIG. 3. The fraction of sixfold coordinated vortices P6 vs w/a

for (a) Fp = 0.5, (b) 1.0, (c) 1.5, and (d) 2.0. In (c), the labels a, c,
e, g indicate the values of w/a at which the images in Fig. 1 were
obtained, while the labels A, C, E, and G indicate the values of w/a

at which the images in Fig. 2 were obtained. The dips in P6 coincide
with transitions in the number of vortex rows contained within each
potential minimum.

w/a = 2.4, there is another buckling transition from r2 to
r3 and the system forms a disordered state similar to that
shown in Fig. 1(g). As w/a is further increased, there is a
partially ordered state near w/a = 3 that is similar to the state
in Fig. 2(a); however, due to the weaker substrate strength a
fully ordered r3 state does not form. For w/a > 3.2 the system
adopts a polycrystalline configuration that becomes more
ordered at high vortex densities. In Fig. 3(b), we show that
a similar set of features associated with buckling transitions
occurs for a stronger substrate with Fp = 1.0; however, in this
case the transition from r2 to r3 is sharper and a fully ordered
three row state appears near w/a = 3.0.

In Fig. 3(c), we plot P6 versus w/a for samples with Fp =
1.5, the same pinning strength at which the images in Figs. 1
and 2 were obtained. Here the dips in P6 associated with
the r1 to r2, r2 to r3, and r3 to r4 transitions are sharper.
We also observe the development of a small dip near w/a =
4.4 corresponding to a partial transition from r4 to r5. The
values of w/a at which row transitions occur shift upward
with increasing Fp. For example, the r1 to r2 transition occurs
at w/a = 1.768 for Fp = 0.5 but at w/a = 2.05 for Fp =
1.5, since the higher Fp stabilizes the r1 state up to higher
anisotropies. Figure 3(d) shows P6 versus w/a for samples
with Fp = 2.0. Here the dip in P6 at the r1 to r2 transition
broadens, while a pronounced jump emerges at w/a = 4.7
corresponding to the r4 to r5 transition. We expect that for
higher values of Fp, additional dips in P6 for transitions from
rn to rn+1 states for n � 5 will appear at w/a values higher
than those we consider here.

It is difficult to determine if the buckling transitions are
first or second order in nature. For particles in an isolated
trough, the transition from a single row to a zigzag pattern
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FIG. 4. The depinning force Fc vs w/a for Fp = 0.1 (circles),
0.25 (squares), 0.5 (diamonds), 1.0 (up triangles), 1.5 (left triangles),
and 2.0 (down triangles) showing that for Fp > 0.25 the buckling
transitions correspond to step features in Fc. The labels a, c, e, g
indicate the values of w/a at which the images in Fig. 1 were obtained,
while the labels A, C, and E indicate the values of w/a at which the
images in Fig. 2 were obtained. (Inset) A highlight of the main panel
illustrates that for weaker pinning, peaks in Fc occur, as shown for
Fp = 0.1 (circles) and 0.25 (squares). The peak is associated with
the formation of an ordered zigzag lattice similar to that shown in
Fig. 1(e).

is second order, and there have been several studies in cold
ion systems of quenches through this transition in which the
density of kinks was calculated for different quench rates
and compared to predictions from nonequilibrium physics on
quenches through continuous phase transitions [80–82]. We
expect that the buckling transitions we observe are second
order; however, it may be possible that the additional coupling
to particles in neighboring potential minima could change the
nature of the transition, and we have observed a coexistence of
chain states which is suggestive of phase separation. For vortex
systems it could be difficult to change the substrate strength
as a function of time, but for colloidal systems it is possible to
create q1D periodic optical substrates of adjustable depth and
use them to study time dependent transitions by counting the
number of kinks that form as a function of the rate at which
the substrate strength is changed.

In Fig. 4, we plot the depinning force Fc versus w/a for
Fp = 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 to show that the buckling
transitions are associated with changes in the slope of the
depinning force, which decreases with increasing w/a in a
series of steps. The first drop in Fc near w/a = 2.0 corresponds
to the r1 to r2 transition. In the r1 state, the particle-particle
interactions roughly cancel in the x-direction, so the depinning
force is approximately equal to Fp, while close to the buckling
transition the vortices on the right side of a zigzag experience
an additional repulsive force in the driving direction from the
vortices on the left side of the zigzag, decreasing the driving
force needed to depin the vortices. To estimate the magnitude
of this reduction in Fc, we note that the average x-direction
spacing between vortices in a given zigzag is approximately
rx = 2.0. For a zigzag with a 30◦ angle between the two closest
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FIG. 5. (a) Real space image of the vortex configuration at the
peak in Fc at Fp = 0.5 and w/a = 1.94 for the system shown
in the inset of Fig. 4 where an ordered zigzag structure occurs.
(b) The corresponding S(k) contains various peaks reflecting the
ordered nature of the state.

neighbors on the other side of the chain from each vortex, the
vortex-vortex interaction force of K1(2) produces an additional
repulsive force of fr = 0.55, giving a value of Fc = Fp − fr

that is close to the value of Fc = 0.78 observed after the r1

to r2 step for the Fp = 1.5 system. Similar arguments can be
made for the magnitudes of the drops in Fc at the higher
order transitions as well. At w/a = 1.85 in the Fp = 1.5
sample, Fc already begins to drop below Fp even though the
pinned configuration shown in Fig. 1(a) is an r1 state. This
occurs because in this range of w/a, application of a finite
Fd < Fc induces a slight buckling of the vortices, while for
w/a < 1.5 the r1 rows remain in a 1D pinned state up to
Fd = Fc. The inset of Fig. 4 shows a blowup of Fc versus
w/a for the weaker pinning cases Fp = 0.25 and Fp = 0.1.
At w/a = 1.94, there is a peak in Fc for the Fp = 0.25 sample
coinciding with the formation of the long-range ordered zigzag
state shown in Fig. 5(a). The corresponding S(k) in Fig. 5(b)
contains a series of peaks that reflect the ordered nature of
the state, which resembles the zigzag state in Figs. 1(e) and
1(f) expect that the system is more ordered and the zigzag
structure is wider. For Fp = 0.1 the zigzag state transitions
into a hexagonal lattice and the peak in Fc begins to disappear.
Some experiments examining vortices in q1D periodic pinning
structures show that peaks in the critical current occur at certain
fillings [53,55–57] in regimes where the pinning is weak,
whereas other experiments performed in the strong pinning
limit reveal more steplike features in the critical current. This
suggests that the experiments in the strong pinning limit are
producing buckling transitions [58].

In Fig. 6, we plot representative real space images with
the matching S(k) for some other substrate strengths to
highlight other types of ordering we observe. Figure 6(a)
shows the real space ordering of the vortices at Fp = 0.5
and w/a = 4.825, where the vortex lattice is polycrystalline
and contains regions of triangular ordering with different
orientations. The corresponding structure factor in Fig. 6(b)
has ring features with some remnant of the smectic ordering
appearing at smaller values of k. In Fig. 6(c), at Fp = 2.0
and w/a = 4.33 an r4 state appears, while S(k) in Fig. 6(d)
has smectic ordering features along with additional crystalline
ordering signatures due to the ordered arrangement of the
particles within the troughs. At Fp = 2.0 and w/a = 4.67 in

FIG. 6. Real-space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions marked
with circles, and S(k) (right column). (a) and (b) At Fp = 0.5 and
w/a = 4.825, there is a polycrystalline structure. (c) and (d) At
Fp = 2.0 and w/a = 4.33 there is a partially ordered r4 structure.
(e) and (f) At Fp = 2.0 and w/a = 4.67, an ordered structure appears.
(g) and (h) At Fp = 2.0 and w/a = 5.15, the structure is disordered.

Fig. 6(e) a new type of ordered structure appears in which the
vortices can pack more closely by forming alternate regions of
r3 and r4 states, producing a considerable amount of triangular
ordering as seen in the plot of S(k) in Fig. 6(f), where there
are sixfold peaks at large k and smectic peaks at smaller k.
In Figs. 6(g) and 6(h), for Fp = 2.0 and w/a = 5.15, a more
disordered structure appears, with some regions of the sample
containing r4 or r5 states.
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IV. LATTICE ROTATIONS FOR WEAK SUBSTRATES

We have also studied systems with a pinning strength
of Fp = 0.02. Here, for w/a > 1.77, the vortices form a
triangular lattice and the features associated with the buckling
transitions observed in Fig. 3 are lost. In this case the
vortex lattice can orient at various angles with respect to the
underlying substrate. We measure this angle as in Ref. [85]
by identifying the smallest positive angle between a major
symmetry axis of the vortex lattice and the x axis, which is
the underlying substrate periodicity direction. In Fig. 7(a), we
show the real-space vortex positions at w/a = 2.8, where the
vortices form a triangular lattice that is aligned at an angle θ =
2.4◦ with respect to the x-axis. In Fig. 7(b) at w/a = 3.272,
θ = 24◦, while in Fig. 7(c) at w/a = 3.53, θ = 27.1◦, and in
Fig. 7(d) at w/a = 3.75, θ = 13.2◦. In Ref. [85], Guillamon
et al. observed experimentally that vortices on a q1D substrate
retained triangular ordering but that the vortex lattice was
oriented at an angle θ ranging from θ = 0 to θ = 30◦ with
respect to the substrate. In several cases, they found that the
system locked to specific angles close to θ = 30◦, 24◦, and 0◦.
We find a much larger variation in the orientation of the lattice
with respect to the substrate as a function of filling than was
observed in the experiments, which may be due to differences
in the pinning strength or the finite size of our simulations. Our
results show that for weak pinning, the buckling transitions are
lost and are replaced with orientational transitions of the vortex
lattice with respect to the substrate. Another feature we observe
when the pinning strength is increased is that the vortex
lattice becomes disordered or polycrystalline. Guillamon et al.
also observe that at higher fillings the vortex lattice becomes

FIG. 7. Real space images of the vortices in a sample with
Fp = 0.2 showing that the hexagonal vortex lattice can adopt various
orientations θ with respect to the substrate periodicity direction.
(a) At w/a = 2.0, θ = 2.4◦. (b) At w/a = 3.272, θ = 24◦. (c) At
w/a = 3.53, θ = 27.1◦. (d) At w/a = 3.75, θ = 13.2◦.
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FIG. 8. The fraction of sixfold coordinated vortices P6 (dark
black curves) and the average nearest-neighbor distance d̄nn (light
red curves) vs Fd for a system with Fp = 1.5. (a) At w/a = 1.767,
the system depins from an r1 state. (b) At w/a = 2.5, the system
dynamically orders into a moving triangular lattice with P6 = 0.97.
(c) w/a = 3.061. (d) At w/a = 3.535, the onset of the dynamically
ordered phase coincides with a drop in d̄nn near Fd = 4.0. The labels
a, c, and e correspond to the values of Fd used for the images in
Fig. 9.

disordered; however, in their system there are strong random
vortex density fluctuations, while for our samples the vortex
density at higher fields is generally uniform.

V. DYNAMIC PHASES

In Fig. 8, we plot simultaneously P6 and the average nearest
neighbor spacing d̄nn versus Fd for a sample with Fp = 1.5
at varied w/a. Here, we obtain d̄nn by performing a Voronoi
tessellation to identify the zi nearest neighbors of particle i,
and then take d̄nn = (N

∑
i zi)−1 ∑N

i=1

∑zi

j=1 rij , where rij is
the distance between particle i and its j th nearest neighbor.
For w/a = 1.76 in Fig. 8(a), P6 = 0.83 in the pinned r1 state
that occurs for 0 < Fd < 1.4. There is a dip in P6 over the
range 1.4 < Fd < 1.7, corresponding to the plastic flow state
in which some of the vortices remain immobile, while other
vortices hop in and out of the potential wells. For Fd > 1.7,
P6 increases and reaches a saturated value of P6 = 0.93 when
the vortices form a moving triangular lattice containing a
small fraction of dislocations. The value of d̄nn drops at the
depinning transition, and several additional drops in d̄nn occur
at higher drives. In the r1 pinned state, each vortex has two
close nearest neighbors that are in the same pinning trough,
and four more distant nearest neighbors that are in adjacent
pinning troughs. Once the vortices depin and enter a moving
state, they adopt a more isotropic structure, causing d̄nn to
drop as the distance to the four more distant nearest neighbors
decreases. The additional drops in d̄nn at higher Fd occur
whenever the vortex lattice rearranges to become still more
isotropic.

In Fig. 8(b), we plot P6 and d̄nn versus Fd for the same
sample at w/a = 2.5 where an ordered zigzag state with
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P6 = 0.89 appears at zero drive, as shown in Fig. 1(e). The
depinning threshold is Fc = 0.65, much lower than the value of
Fc for the w/a = 1.767 filling in Fig. 8(a), and the depinning
transition is marked by a drop in P6 to P6 = 0.2. Over the range
0.65 < Fd � 2.0, the vortices are in a dynamically disordered
state, while the saturation of d̄nn above Fd ≈ 2.0 indicates that
a partially ordered state has formed. The value of P6 does
not reach a maximum until Fd = 3.9, where P6 ≈ 0.97 and
an ordered state appears. For 1.5 < Fd < 3.9, we observe a
moving density-modulated solid. The value of F tr

c , the drive at
which the sample reaches a moving triangular lattice state, is
higher for w/a = 2.5 than for w/a = 1.767, even though the
depinning threshold Fc is smaller for the w/a = 2.5 system. At
w/a = 2.5, d̄nn is initially small and jumps up at the depinning
transition, unlike the decrease in d̄nn at depinning found in
Fig. 8(a). Since the vortices in Fig. 8(b) form a zigzag r2

structure in the pinned state, each vortex has four close nearest
neighbors in the same pinning trough, and two more distant
nearest neighbors in an adjacent pinning trough. This causes
d̄nn to be smaller in the pinned state than it was for the r1

structure in Fig. 8(a), and when the vortex lattice becomes
more isotropic in the moving state, d̄nn increases rather than
decreasing as the two halves of each zigzag structure move
further apart. At Fd = 4.1, we observe a drop in d̄nn that
coincides with a dip in P6. This feature is associated with a
transition from a density-modulated lattice to a more uniform
moving floating lattice.

In Fig. 8(c), we show P6 and d̄nn versus Fd at w/a =
3.06 where there is an r3 pinned state, as illustrated in
Fig. 2(a). Here the depinning threshold Fc = 0.3, and the
system transitions into a moving triangular lattice at F tr

c = 1.6,
which is somewhat lower than the value of F tr

c for w/a = 2.5
in Fig. 8(b). The behavior of d̄nn in Fig. 8(c) follows a similar
pattern as in Fig. 8(b), with d̄nn increasing with increasing
Fd . We plot the same quantities for w/a = 3.53 in Fig. 8(d),
where the depinning threshold Fc ≈ 0.087 and the system
dynamically orders for Fd > 4.0. There is a small dip in d̄nn

at Fd = 4.15 along with a saturation in P6 which is correlated
with a structural change to a dynamic floating lattice.

In order to characterize the nature of the dynamic vortex
structures in the moving states, in Figs. 9(a) and 9(b), we plot
the real-space images and S(k) for the system in Fig. 8(d)
at w/a = 3.53 and Fd = 0.5. Here, individual vortices jump
from one pinning well to the next while a portion of the vortices
remain immobile in the substrate minima. As shown in the plot
of S(k), the vortex configuration is fairly ordered and takes the
form of a distorted nontriangular structure, which causes P6

to be low for this value of Fd . For Fd > Fp, the vortices move
together so there is no plastic motion, and form a distorted
lattice containing pronounced density modulations as shown
in Figs. 9(c) and 9(d) for Fd = 3.5. For Fd > 4.0, we find
a transition from the density modulated lattice to a moving
homogeneous floating triangular lattice which coincides with
the drop in d̄nn in Fig. 8(d) and the maximum in P6. Figure 9(e)
shows the floating lattice at Fd = 7.0, where as illustrated
in Fig. 9(f) S(k) contains sixfold peaks that are indicative
of triangular ordering. The smectic ordering induced by the
substrate is substantially weaker or almost absent at this drive,
as shown by the weakness of the spots in S(k) at ky = 0,
indicating that the system has formed a floating solid. We find

FIG. 9. Real space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions marked
with circles, and S(k) (right column) for the dynamic system from
Fig. 8(d) with Fp = 1.5 and w/a = 3.535 at the values of Fd labeled
a, c, and e. (a) and (b) At Fd = 0.5 the sample contains pinned vortices
coexisting with individual vortices that hop from trough to trough.
(c) and (d) At Fd = 3.5, all the vortices move together to form a
disordered lattice with a periodic density modulations. (e) and (f) At
Fd = 7.0, the system forms a moving floating triangular lattice.

similar types of transitions in the dynamics at other fillings as
well.

We can also characterize the different dynamic states in
Figs. 8 and 9 by examining histograms of the vortex velocities.
In Fig. 10(a), we plot the distribution P (Vx) of Vx in the driving
direction at Fd = 0.5 for the system in Figs. 8(a) and 8(b) with
Fp = 1.5 and w/a = 3.535. Figure 10(b) shows the transverse
velocities P (Vy), while in Fig. 10(c), we plot Vy versus Vx as a
heightfield map. At this drive, the motion is plastic and occurs
by individual vortex hopping, so there is a sharp peak in P (Vx)
at Vx = 0.15, which reflects the fact that most of the vortices
are slowly moving within an individual pinning trough. When a
single vortex jumps into an adjacent pinning trough, it creates
a pulse of motion through the trapped vortices that triggers
the jump of another single vortex to the next pinning trough,
where the process repeats. This depinning cycle creates two
peaks in P (Vx). The peak at low Vx corresponds to the motion
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FIG. 10. Vortex velocities for the system in Fig. 9 with Fp = 1.5
and w/a = 3.535. (Left) Histogram P (Vx) of the instantaneous
vortex velocities in the driving direction Vx . (Center) Histogram
P (Vy) of the instantaneous vortex velocities in the transverse
direction Vy . (Right) Heightfield map of Vy vs Vx . (a)–(c) The
plastic flow regime at Fd = 0.5. (d)–(f) The moving modulated solid
regime at Fd = 3.5. (g)–(i) The moving floating solid regime at
Fd = 7.0.

of a velocity pulse through the dense assembly of vortices at
the bottom of the pinning trough, while the peak at high Vx

is produced by individual vortices escaping over the potential
maximum. This peak falls near Vx = 1.1, which is larger than
Fd , reflecting the fact that after an individual vortex passes
the crest of the substrate maximum, the substrate contributes
an additional force term in the driving direction as the vortex
moves toward the next substrate minimum. In this case the
maximum force exerted by the pinning site is Fp = 1.5, while
the driving force is Fd = 0.5, so that the maximum possible
instantaneous vortex velocity would be Vx = 2.0; however,
vortex-vortex interactions prevent individual vortices from
moving this rapidly. In Fig. 10(b), P (Vy) is centered at Vy = 0
since there is no driving force in the transverse direction;
however, we observe some asymmetry in P (Vy) as well as
peaks at finite Vy due to the fact that the vortex lattice segments
inside the pinning troughs are oriented at an angle with respect
to the substrate symmetry direction, as shown in Fig. 9(a). This
asymmetry also appears in the Vy versus Vx plot in Fig. 10(c),
which has two prominent features. The first is a wide band of
Vy values at low Vx that are associated with solitonlike pulses
moving through the dense regions of the vortex clusters, which
pushes vortices in both the positive and negative y-direction.

In Figs. 10(d)–10(f), we show instantaneous velocity plots
for the system in Figs. 9(c) and 9(d) with Fd = 3.5 where
the vortices are moving elastically in the density-modulated
solid phase. Here, P (Vx) in Fig. 10(d) has peaks at Vx =
2.01 and Vx = 4.75, which are smoothly connected by finite
P (Vx) values. The shape of this histogram shows the velocity
imposed by the driving force of Fd = 3.5 when the substrate
forces alternately act with or against the driving force. When

the substrate force is against the drive the velocity is Vx =
Fd − Fp = 2.0, while when the substrate and driving forces
are in the same direction, Vx = Fd + Fp = 5.0, close to the
observed values of the peaks in P (Vx). In Fig. 10(e), P (Vy)
has two peaks close to Vy = 0.1 and Vy = −0.1, indicating
that there is an oscillatory motion in the y direction. This
effect can be seen more clearly in the Vy versus Vx plot in
Fig. 10(f) which has two symmetric lobes. Since the vortices
are in a density-modulated lattice, shearing in the y direction
occurs between adjacent density modulations, with one density
modulation moving in the positive y direction, while the other
moves in the negative y direction.

The velocity plots for the system in Figs. 9(e) and 9(f)
at Fd = 8.5 appear in Fig. 10(g)–10(i). In Fig. 10(g), P (Vx)
has a two-peak feature similar to that in Fig. 10(d), but with
peak values at Vx = 7.0 and Vx = 10. Figure 10(h) shows that
P (Vy) has a single peak centered at Vy = 0, while in Fig. 10(i),
there is a single lobe in the Vy versus Vx plot. Here the vortices
have formed a floating triangular solid, and their motion is
close to one-dimensional along the driving direction. As Fd

is further increased, the width of the lobe feature gradually
decreases. We find similar histograms for the other fillings in
the strong pinning limit for the plastic flow, moving modulated
solid, and moving floating solid regimes.

A. Smectic to smectic transitions

For Fp < 1.0, we find that a dynamically induced smectic to
smectic transition can occur. In Figs. 11(a) and 11(b), we show
the real space and S(k) images for a system with Fp = 0.5
and w/a = 1.767 in the plastic flow regime where there is a
combination of vortices that are trapped in the pinning troughs
and a smaller amount of vortices that hop by jumping from one
trough to the next and then triggering a jump of another vortex
from one trough to the next. Here, S(k) indicates that the overall
system has smectic ordering due to the chainlike structure of
the vortices within the pinning troughs. In Fig. 12(a), we plot
P (Vx) at Fd = 0.3, where there is a peak at Vx = 0 due to
the pinned vortices along with a small bump at Vx = 0.6 due
to the vortex hopping. Figure 12(b) shows that P (Vy) has a
maximum at Vy = 0, while in Fig. 12(c), the Vy versus Vx

plot is asymmetric in Vy , with a peak at Vx = Vy = 0.0 and a
second peak at higher Vx produced by the moving vortices.

In Fig. 11(c), we show the real space vortex configuration
at Fd = 0.6, which is higher than the maximum pinning force
of Fp = 0.6. All the vortices are in motion, but instead of
retaining their alignment along the y direction induced by
the substrate, they form a chainlike structure aligned in the
x-direction with a slight tilt in the positive y direction. This
alignment in the drive direction is more clearly seen in the
corresponding S(k) in Fig. 11(d), where the peaks fall along
kx = 0.0, indicating a smectic phase with ordering along the
y direction. There are some very weak peaks on the ky = 0.0
axis due to the substrate, but overall the vortex structure is a
smectic state rotated 90◦ from the y axis. The strongest S(k)
peaks do not fall exactly at kx = 0 but are at a slight angle, due
to the channels in Fig. 11(c) being slightly tilted in the positive
y direction. In Fig. 12(d), the corresponding P (Vx) shows a
peak at Vx = 0.19, while there is an absence of weight in
P (Vx) at Vx = 0.0, indicating that the vortices are always in
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FIG. 11. Real-space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions marked
with circles, and S(k) (right column) for a system at Fp = 0.5
and w/a = 1.767. (a) and (b) The plastic flow phase at Fd = 0.3
where there is individual vortex hopping form well to well and
S(k) indicates a smectic phase with periodic ordering along the x

direction. (c) and (d) At Fd = 0.6, all the vortices are flowing and
form chains that are aligned in the x direction. S(k) shows that a
new smectic order has appeared with periodic ordering along the y

direction. (e) and (f) At Fd = 3.6, there is a moving floating triangular
crystal.

motion. Figure 12(e) shows that P (Vy) peaks at Vy = 0.0 and
has an overall asymmetry, which also appears in the Vy versus
Vx plot in Fig. 12(f). The vortex channeling occurs when the
vortices form effective pairs aligned along the x direction. In
each pair, one vortex is slowed by the backward-sloping side
of the potential trough, while the other vortex is being sped
up by the forward-sloping side of the potential. The faster
vortex pushes the slower vortex, giving the pair an increased
net motion along the x direction. This pairing effect is visible
in the real space image in Fig. 11(c).

As Fd further increases, there is a transition to a flowing
solid phase as shown in Figs. 11(e) and 11(f) for Fd = 3.6,
where S(k) has sixfold ordering. The corresponding P (Vx)
in Fig. 12(g) has two peaks, while P (Vy) in Fig. 12(h) has
a symmetrical distribution with three peaks indicating that

FIG. 12. Vortex velocities for the system in Fig. 11. (Left) P (Vx).
Center column: P (Vy). (Right) Heightfield map of Vy vs Vx . (a)–(c)
The plastic flow phase at Fd = 0.3 where there is a large peak in
P (Vx) at Vx = 0 due to the pinned vortices. (d)–(f) The moving
smectic phase from Figs. 11(c) and 11(d) at Fd = 0.6. (g)–(i) The
moving triangular solid phase at Fd = 3.6.

there is an oscillation in the vortex orbits in the x-direction.
The plot of Vy versus Vx in Fig. 12(h) contains a single
lobe similar to that found for the moving floating solid in
Fig. 10(i). As Fd is increased still further, the width of this lobe
decreases. The smectic-to-smectic transition is limited to the
range 1.5 < w/a < 2, in which two vortices can fit between
adjacent potential maxima in the dynamically moving regime.

VI. DYNAMICAL PHASE DIAGRAM

For Fp > 0.25, the drive F or
c at which the system transitions

from a density modulated moving crystal to an ordered
moving floating solid shows considerable variation with w/a,
particularly for the larger values of Fp. In Fig. 13(a), we
plot F or

c , determined from the location of a feature in P6,
versus w/a for Fp = 0.5, 1.0, 1.5, and 2.0. For Fp = 0.5,
F or

c has a local maximum near w/a = 2.5, and then drops
for w/a > 3.0. In the pinned phase for w/a > 3.0, the system
forms a polycrystalline state, and in the moving state the grains
realign to form a moving crystalline state. For Fp = 1.0, 1.5,
and 2.0, for w/a < 1.75 the system depins from a single
chain of vortices and can partially form a moving crystal
state. When w/a is large enough that a pinned zigzag state
forms, the moving density-modulated state can persist up to
much higher drives. For Fp = 1.0, the system forms a pinned
polycrystalline state for w/a > 4.5 which coincides with the
drop in F or

c for w/a > 4.5. For Fp = 1.5 and 2.0, there are
local peaks in F or

c that correlate with the moving buckled
phases which occur when groups of vortices can fit between
adjacent pinning maxima as the vortices move. This effect is
most pronounced for Fp = 2.0.

In Fig. 13(b), we plot a dynamic phase diagram as a function
of Fd and w/a for a system with Fp = 1.5. Above depinning
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FIG. 13. (a) F or
c , the drive at which the system transitions from a

density modulated moving crystal to an ordered moving floating solid,
vs w/a at Fp = 0.5 (red circles), 1.0 (green squares), 1.5 (orange
diamonds), and 2.0 (black triangles). (b) Dynamic phase diagram as
a function of Fd and w/a for a system with Fp = 1.5. P: pinned
phase. Plastic: plastic flow regime. ML: moving modulated lattice
state. MFS: moving flowing solid state. Dashed lines are guides to
the eye that indicate the transition from r1 to r2, r2 to r3, and r3 to a
disordered pinned state.

in the regime where Fd < Fp, the system is in a plastic flow
state in which there is a coexistence of moving vortices and
immobile vortices. In this regime, the structure factor generally
shows disordered features. For Fd > Fp, all the vortices are
moving and the system is either in a modulated lattice (ML)
state or a moving flowing solid (MFS) state. We find similar
dynamical phase diagrams for other values of Fp > 1.0, while
for the weaker substrates, the size of the plastic flow region is
reduced and the ML phase is replaced with a smectic moving
state similar to that shown in Figs. 11(c) and 11(d).

VII. DISCUSSION

The dynamic phases we observe have certain similarities
to the dynamic states observed for vortices moving over
random pinning arrays in that there can be pinned, plastic,
and dynamically ordered phases as a function of external
drive [86–91]. There are some differences, including the
fact that the moving modulated lattice we observe does
not form a smectic state that is fully aligned in the drive
direction, as found for vortices moving over random pinning
arrays [88–91]. Experimental observations of the smectic
to smectic phase transition could be achieved using direct
dynamical imaging techniques [13,85] or neutron scattering
techniques [96]. Voltage noise measurements could also reveal
the transitions between the different dynamical phases, as
in experiments on samples with random pinning [91,97,98].
The dynamical transitions can be observed if the depinning
current is sufficiently far below the depairing current, which
will depend on the magnetic field, the strength of the intrinsic

pinning, and how close the system is to Tc. According to
Fig. 13, the dynamical reordering currents are expected to
be 2.5 to 10 times higher than the depinning current, so the
accessible current range needs to be at least this wide in order to
experimentally observe the dynamical transitions. Simulations
with random pinning arrays indicate that for increasing vortex
density, the drive at which the transition to the ordered
state occurs decreases due to the increase in the strength of
the vortex-vortex interactions [91]. For the q1D substrate,
the location of the ordering transition fluctuates strongly due
to the ability of the moving lattice to become dynamically
commensurate with the periodicity of the substrate. Future
studies might consider combinations of random disorder with
periodic disorder, which would introduce a competition in the
moving phase between the smectic ordering imposed by the
substrate and the smectic ordering induced by the drive.

We focus on vortices driven along the direction of the
substrate periodicity, but it would also be interesting to
study the response of the system when the vortices are
driven perpendicular or at an arbitrary angle to the substrate
periodicity. Previous studies of vortices driven at varied angles
through 2D periodic pinning arrays show that the substrate can
induce a number of dynamical effects, including directional
locking of the vortex motion as well as vortex channeling
effects [67,99–102]. For a q1D substrate, vortices driven at
arbitrary angles should exhibit channeling along the substrate
troughs, and the drive at which this channeling is overcome
and the vortices start to flow in the direction of drive should
be a function of driving angle. Measurements of the transverse
and longitudinal vortex velocities in this case should show
zero velocity in the direction of the substrate periodicity at low
drives, and finite velocity both parallel and perpendicular to the
driving direction for intermediate drives. Studies of vortices
driven over a 1D line potential show channeling effects of this
type [102,103].

We consider a particle based model, but simulations based
on time-dependent Ginzburg-Landau (TDGL) theory may
reveal other interesting behavior for higher fields or currents
than we study, such as the elongation of the vortices along
certain directions or the formation of multiple-quanta vortices.
TDGL studies of vortices in 2D periodic pinning arrays show
that a rich variety of commensurate and incommensurate
states can form with multi-quanta vortices or combinations of
multiquanta and interstitial vortices [19–22]. Similar effects
could arise for q1D substrates. A TDGL approach could
capture additional features in the depinning behavior and
subsequent flow such as merging, splitting, elongation, or local
heating effects of the vortices [104–107]. It can also treat the
effect of the substrate thickness in the limit of a thin film. Our
particle-based model assumes that the vortices experience the
same driving force regardless of their position in the sample;
however, recent TDGL simulations show that the applied
current can be modified by the thickness of the sample, and
that the effective viscosity also varies with thickness due to the
changing length of the vortex [108–111]. Such effects could be
explored using TDGL simulations or modified particle-based
models in which additional terms are introduced to represent
the spatial dependence of the viscosity or the applied driving
force.
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VIII. SUMMARY

We examine the statics and dynamics of vortices interacting
with a periodic quasi-one-dimensional substrate in the limit
where the vortex lattice spacing is smaller than the spacing
of the periodic lattice. For weak substrate strengths, we
find that the vortices retain hexagonal ordering but exhibit
numerous rotations with respect to the substrate, similar to
recent experimental observations. For stronger substrates there
are a series of buckling transitions where the vortices can
form anisotropic 1D chains, zigzag patterns, and higher-order
numbers of chains within each substrate minimum. At some
fillings the overall lattice has long range order and becomes
partially distorted at the transitions between these states.
For higher fillings the buckling transitions are lost and the
system forms a polycrystalline state. We also find that the
depinning shows a series of steplike features when the system
transitions from a state with n chains to a state with n + 1
chains in each substrate minimum, and that for weaker pinning
there are some cases where there is a peak in the depinning

force as a function of filling. For weak substrates, under an
applied drive the vortices depin elastically and retain their
triangular ordering, while for strong substrates the buckled
states transition to a partially disordered flowing state followed
by various other transitions into moving modulated crystal
or homogeneous floating moving crystal states. Our results
should also be applicable to other systems of particles with
repulsive interactions in the presence of a periodic quasi-one-
dimensional substrate, such as electron crystals, colloids, and
ions in optical traps.
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