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Bound collective modes in nonuniform superconductors

Andrew R. Hammer and Anton B. Vorontsov
Department of Physics, Montana State University, Bozeman, Montana 59717, USA

(Received 15 October 2015; published 7 January 2016)

We study the dynamics of a superconducting condensate in the presence of a domain wall defect in the order
parameter. We find that broken translation and reflection symmetries result in collective excitations, bound to
the domain wall region. Two additional amplitude/Higgs modes lie below the bulk pair-breaking edge 2�; one
of them is a Goldstone mode with vanishing excitation energy. The spectrum of bound collective modes is
related to the topological structure and stability of the domain wall. The “unbound” bulk collective modes and
transverse gauge field mostly propagate across the domain wall, but the longitudinal component of the gauge
field is completely reflected. Softening of the amplitude mode suggests reduced damping and a possible route to
its detection in geometrically confined superfluids or in superconductor-ferromagnetic heterostructures.

DOI: 10.1103/PhysRevB.93.014503

I. INTRODUCTION

The observation of the Higgs particle at the Large Hadron
Collider (LHC) [1] has emphasized the connection between
high-energy and condensed matter physics through collective
modes [2,3]. These excitations are the normal modes of order
parameter (OP) fluctuations, reflecting the symmetry and
structure of the OP’s potential landscape. In a singlet isotropic
superconductor with a complex order parameter �(r,t) =
ψ(r,t) exp[iϕ(r,t)], a gapless Bogoliubov-Anderson ϕ(r,t)-
phase mode [4–6] is a result of spontaneously broken U (1)
symmetry [7,8]. Interaction with an electromagnetic gauge
field shifts this mode up to plasma frequency [9]. Fluctuations
of the other degree of freedom, ψ(r,t), represent the amplitude
mode, often called the Higgs mode, due to the close analogy
to its particle counterpart [10].

Detection of the amplitude mode in condensed matter
systems has been a long-standing challenge. The original
discovery of this mode in the charge-density-wave material
NbSe2 [11,12] highlights the main difficulty associated with
the fact that its energy is 2|�|, leading to its quick decay
into two-particle excitations. This search is continuing due
to its fundamental importance and intriguing possibility of
insight into the Standard Model from low-energy experiments
[2,13]. Recently, the amplitude mode near a quantum critical
point was investigated theoretically [14] and experimentally
in a neutral superfluid of cold atoms [15]. Another report of
amplitude mode detection in disordered superconductors [16]
was questioned in Ref. [17] due to an expected strong mixing
of the amplitude and phase modes.

In this paper we show that nonuniform superfluids or
superconductors may provide a different avenue to investigate
the amplitude/Higgs mode. We consider a general problem
of a domain wall that breaks extra symmetries beside U (1),
translation and reflection, as shown in Fig. 1. In the region
of the domain wall, additional amplitude modes exist below
the pair-breaking edge, including one with a gapless spectrum.
While a free-standing domain wall is not likely, their evolution
and dynamics are interesting from the point of view of
frozen topological defects of the early Universe [18–20]. In
superconductors, domain wall structures appear in Fulde-
Ferrell-Larkin-Ovchinnikov states (FFLOs) [21], or in thin
films [22]. Half-domain walls are more common and appear

as OP suppression in the boundary regions of unconventional
superconductors [23,24], or when a singlet superconductor is
in contact with a strong ferromagnet [25]. Collective modes
in unconventional superconductors with broken momentum-
space symmetries have been studied in d-wave materials
[26], such as UPt3 and UBe13 [27–29] and Sr2RuO4 [30,31].
Superfluid 3He features many collective modes [32–35]. In
particular, several modes in the 3He-B phase [36] are easily
detectable by ultrasound [37], and have evolved into a tool
that can distinguish details of the pairing interactions on
a few percent scale [38]. Distinct characteristics of bound
collective modes can be used in the detection of nonuniform
superconducting states. Below, we investigate both a neutral
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FIG. 1. Domain wall with profile �(x)/�0 ≡ p(x) =
tanh (x/

√
2ξ ) separates two degenerate values of the order

parameter � = ±�0 (top). The dynamics of the order parameter
perturbations is described by the Schrödinger equation with
1/ cosh2(x/

√
2ξ ) potential well (bottom).
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superfluid and charged superconductor coupled to the gauge
field.

II. MODEL

We consider the time-dependent Ginzburg-Landau (TDGL)
Lagrangian, where the order parameter field �(r,t) is
minimally coupled to the electromagnetic gauge field
[�(r,t),A(r,t)],

L = −γ |(i�∂t − 2e�)�|2 + κ

∣∣∣∣
(

�

i
∇ − 2e

c
A

)
�

∣∣∣∣
2

−α

(
|�|2 − 1

2�2
0

|�|4
)

+ B2 − E2

8π
. (1)

Here, B = ∇ × A, E = −∇� − (1/c)∂tA are magnetic and
electric fields, and we put � = 1 from now on. In the
superconducting state below Tc we take α > 0, and �0 is the
real amplitude of the uniform solution to GL equations without
fields. In relativistic Lorentz-invariant theories, γ = κ . This
particular choice of L agrees with microscopically derived
equations of motion for the OP, which are of the wave type at
low temperatures [39,40]. From Ref. [40] we can extract low-T
phenomenological coefficients γ = Nf /8�2

0, α = Nf /4 =
2γ�2

0, κ = Nf v2
f /24�2

0 = n/8m�2
0, where Nf is the density

of states at the Fermi level for two spin projections, vf is the
Fermi velocity, and n = Nf mv2

f /3 is the uniform electronic
density. We define the wave speed v2 = κ/γ = v2

f /3, and the
coherence length ξ 2 = κ�

2/α = �
2v2/2�2

0.
Model (1) is an adequate first step to investigate general

relations between collective modes, topology, and broken
spatial symmetry. However, its main limitation is the lack
of coupling to fermionic quasiparticles that would contribute
to the damping of collective modes. This is in part due to
the absence of first-order time derivative terms (diffusion),
dominant near Tc [39], which is also an indication of complete
particle-hole symmetry that results in full decoupling of the
amplitude and phase dynamics [3,41]. The domain wall region
hosts a high density of Andreev bound states that interact with
collective modes and limit their lifetime. One might expect
that the bound states’ damping effects are similar to those of
low-energy quasiparticles in uniform nodal superconductors.
For example, in the 3He-A phase, collective modes are damped
[42] but still detectable [43]. It is then plausible that in
some frequency range, depending on the availability of the
excitation phase space, the collective modes near a domain
wall will not be overdamped [44]. The complete treatment of
the dynamics of coupled order parameter modes, excitations,
and charge density will require future fully microscopic
calculations.

In terms of the OP amplitude and phase, this model is

L = −γ [(∂tψ)2 + ψ2(∂tϕ + 2e�)2] + B2 − E2

8π

+ κ

[
(∇ψ)2 + ψ2

(
∇ϕ − 2e

c
A

)2]
− α

(
ψ2 − ψ4

2�2
0

)
.

(2)

Finding the extrema of the action S = ∫
dr

∫
dt L with

respect to amplitude ψ , and field potentials A and �, gives

the dynamics of the order parameter

γ
∂2

∂t2
ψ − κ ∇2ψ − αψ

(
1 − ψ2

�2
0

)
− γψ(∂tϕ + 2e�)2

+ κψ

(
∇ϕ − 2e

c
A

)2

= 0, (3)

and that of the gauge field,

∇ × B − 1

c

∂E
∂t

= 4π

c
j, ∇ · E = 4πρ,

(4)

j = 4eκψ2

(
∇ϕ − 2e

c
A

)
, ρ = −4eγψ2(∂tϕ + 2e�).

Minimization with respect to the phase of the order parameter
ϕ results in a statement of charge conservation, ∂tρ + ∇ · j =
0, which also follows from Eqs. (4) as a consequence of the
gauge symmetry [45].

A real-valued domain wall ψ0(x) in the absence of the fields
is a solution to −κψ ′′ − αψ(1 − ψ2/�2

0) = 0:

p(x) ≡ ψ0(x)

�0
= tanh

x√
2ξ

. (5)

A free-standing kink extends from −∞ < x < ∞ (Fig. 1).
Half of the domain wall 0 � x < ∞ can be pinned by an
interface with �(x = 0) = 0.

A. Neutral condensate

First, consider a neutral superconductor e = 0, where the
condensate is not coupled to the gauge field. The field
equations ∇2A − ∂2

t A/c2 = 0 give the electromagnetic (EM)
wave with two transverse polarizations ω = ck, k · Ak = 0,

propagating with the speed of light. The dynamics of the
order parameter perturbation around the domain wall solution
[ψ0(x),ϕ0 = 0] follows from (1) with the substitution �(r,t) =
ψ0(x) + D(r,t). One introduces D± = [D(r,t) ± D(r,t)∗]/2,
related to amplitude and phase fluctuations in linearized
theory: D+(r,t) = δψ(r,t) and D−(r,t) = iψ0(x)δϕ(r,t). The
equations for the amplitude and phase are

1

v2

∂2

∂t2
D+ − ∇2D+ − 3

ξ 2
[1 − p2(x)]D+ = − 2

ξ 2
D+,

1

v2

∂2

∂t2
D− − ∇2D− − 1

ξ 2
[1 − p2(x)]D− = 0. (6)

In a uniform superconductor we put p(x) = 1 and obtain an
amplitude (Higgs) mode ω2

+ = v2k2 + 2v2/ξ 2 = v2k2 + 4�2
0,

with “mass” 2�0 [12], and the massless Bogoliubov-Anderson
phase mode ω− = vk = (vf /

√
3)k [6].

In the presence of a domain wall we look for collective
modes that are localized in the x direction, and propagate
along y, D±(r,t) = D±(x)e−iωt+ikyy . For D±(x) prefactors
from Eq. (6) we obtain

− D′′
+ − 3/ξ 2

cosh2(x/
√

2ξ )
D+ =

(
ω2

v2
− k2

y − 2

ξ 2

)
D+,

−D′′
− − 1/ξ 2

cosh2(x/
√

2ξ )
D− =

(
ω2

v2
− k2

y

)
D−. (7)
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FIG. 2. Dispersion of order parameter modes propagating along
the domain wall. ω0 = 2�0. The solid lines are the modes bound to
the domain wall with ω+ < ωuniform (dotted line). The phase mode
ω− is unstable for long wavelengths k < 1/

√
2ξ . The transverse EM

modes are decoupled from the order parameter dynamics. We use
exaggerated v/c = 0.2.

These equations are similar to the Schrödinger equation for
eigenstates of a particle in a one-dimensional Eckart potential
−U0[1 − tanh2(x/w)] = −U0/ cosh2(x/w), shown in Fig. 1.
The energies of the bound states are En = −(s − n)2/w2 with
n < s = −1/2 +

√
1/4 + U0w2 [46]. Even/odd n give sym-

metric/asymmetric eigenfunctions D(−x) = ±D(x). The OP
amplitude has two bound eigenmodes (U0 = 3/ξ 2, w = √

2ξ ,
s = 2, and n = 0,1) ω2

+/v2 − k2
y − 2/ξ 2 = −(2 − n)2/2ξ 2,

resulting in the dispersion relations

ω2
+s = v2k2

y, ω2
+a = v2k2

y + 3�2
0, (8)

shown in Fig. 2. The symmetric, n = 0, Higgs mode is mass-
less. Its eigenfunction is D+s(x,y) ∝ exp(ikyy)/ cosh2(x/w),

which can be written as tanh(x/w)|x+δx0 exp(ikyy)
x —a ripple

of the domain wall plane. For ky = 0 it is a uniform lateral
shift of the entire domain wall plane without energy cost—a
consequence of spontaneously broken translational symmetry.
Thus, the amplitude Higgs mode became a Goldstone mode,
propagating along the defect with speed v = vf /

√
3. The

n = 1 mode, in addition to translations, breaks the discrete
reflection symmetry x → −x and corresponds to an excited
state of the domain wall condensate; it has a minimal
energy

√
3�0 = ω0

√
3/4. Analogous results appear in the

extended-hadron model in field theory [47], and for the
dynamics of domain walls in structurally unstable lattices
[48]. Low-energy modes associated with the dynamics
of periodic latticelike FFLO structures were explored in
superconductors [49] and in cold atoms [50].

The phase mode (U0 = 1/ξ 2, w = √
2ξ , and s = 1)

has only one eigenvalue with n = 0, ω2/v2 − k2
y = −(1 −

n)2/2ξ 2, and dispersion

ω2
− = v2k2

y − �2
0. (9)

For a free-standing kink this indicates an “imaginary” mass
and instability at wave vectors ky < 1/

√
2ξ , resulting in

the decay of the domain wall, which we address later. For
a half kink pinned at the surface, the symmetric solutions
n = 0 are excluded by the boundary condition on the order
parameter �(0) = 0, and only the asymmetric amplitude mode
propagates.

B. Charged superconductor

If e 
= 0, the phase degree of freedom is no longer
independent, and is absorbed into potentials (�,A). A → A −
(c/2e)∇ϕ, � → � + (1/2e)∂tϕ. This is the unitary gauge
with a real order parameter ϕ(r,t) = 0. We assume no
topological defects in the phase (vortices) that in this gauge
would represent themselves as nonphysical singularities in the
gauge field [e.g., a superconducting vortex ϕ(r,φ) ∝ φ gives
Aφ ∼ 1/r [51]]. We linearize Eqs. (3) and (4) around the
zero-field domain wall solution ψ0(x) = �0p(x), �0 = A0 =
0. The equation for the amplitude mode does not change from
the neutral case, and the dispersion relations Eq. (8) remain
the same.

Combining the continuity equation with the Ampère law in
(4), we eliminate � and obtain a single equation for the vector
potential:

− ∇2A + 1

c2

∂2A
∂t2

+ ∇
(

divA − v2

c2

1

p2(x)
div[p2(x)A]

)

− 1

λ2
[1 − p2(x)]A = − 1

λ2
A. (10)

The magnetic penetration length is λ−2 = 32πe2κ�2
0/c

2 =
4πe2n/c2m = ω2

p/c2, with a plasma frequency ω2
p =

4πe2n/m. In a uniform superconductor this equation gives
a dispersion ω2 = c2k2 + ω2

p for two transverse (kA = 0)
modes, and ω2 = v2k2 + ω2

p for a longitudinal (kA� = kA�)
mode that couples phase oscillations with the motion of the
electric charge. For bound waves propagating along the domain
wall, A(r,t) = A(x)eikyy−iωt , we find several solutions. A
transverse wave with z polarization ẑAz(x) satisfies an equa-
tion similar to (7), with an Eckart potential amplitude U0 =
1/λ2 and eigenvalues ω2/c2 − k2

y − 1/λ2 = −(s − n)2/2ξ 2

(n < s = −1/2 +
√

1/4 + 2ξ 2/λ2) producing

ω2 = ω2
p(s,n) + c2k2

y, (11)

with a lowered plasma frequency ω2
p(s,n) =

ω2
p[1 − λ2(s − n)2/2ξ 2]. For λ � ξ there is only one

bound solution n = 0, while for λ < ξ one has s > 1 and
multiple branches of the plasmon mode. Other modes satisfy
coupled differential equations for Ax(x) and Ay(x), which we
solve numerically. The dispersion relations and structure of
these modes for λ = ξ are shown in Fig. 3. These modes have
a resemblance to the plasmon polariton modes that are bound
to the interface regions between two different dielectrics, for
example.

We close this discussion by mentioning the reflection
properties of the domain wall. The traveling wave solution
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FIG. 3. EM modes in a superconductor. Uniform superconductor
modes are gapped with plasma frequency (open symbols). Modes
bound to the domain wall are a transverse Az(x) mode, and
[Ax(x),Ay(x)] coupled modes. For the chosen parameters, c/v = 5,
λ/ξ = 1, and examples of profiles for “longitudinal” and one of the
“transverse” modes are shown in the inset.

D±(r,t) = D±(x) exp(−iωt) to Eqs. (6), with boundary con-
ditions on the far left/right,

D±(−∞) ∼ eikxx + R±e−ikxx, D±(+∞) ∼ T±eikxx ,

is known [46]. The transmission is determined by a combina-
tions of � functions,

T± = �(−s± − ikxw)�(s± + 1 − ikxw)

�(−ikxw)�(1 − ikxw)
, (12)

with k2
x = (ω2 − ω2

0)/v2, s+ = 2 for amplitude, and k2
x =

ω2/v2, s− = 1 for phase, modes. For the integer parameter s

there is no reflected wave R± ∝ 1/�(−s) = 0 [48]. Similarly,
for transverse EM waves at normal incidence, Ay,z, Eq. (10)
reduces again to one with a −(1/λ2)/ cosh2(x/w) potential.
The transmission amplitude is given by (12) with kx =√

ω2 − ω2
p/c and s = −1/2 +

√
1/4 + ξ 2/λ2. For frequen-

cies such that kxw � 1 or s  1, |T⊥| ∼ 1. The longitudinal
component Ax is entirely reflected, T|| = 0, due to the
divergent term 1/p2(x).

C. Topology connection

Finally, we interpret the collective mode frequencies in
terms of the topological properties of the order parameter space
and stability of the domain wall. The ω2

− < 0 frequency of the
imaginary component (9) in a neutral superfluid indicates that
the real-valued domain wall is not stable. Indeed, the kink
has energy α(4

√
2/3)�2

0ξ over the uniform configuration; it is
represented by the red line on the left of Fig. 4. An alternative
solution to a hard domain wall is a long-wavelength “soft
texture” of phase variation �(x)/�0 = eiϕ(x), ϕ = π → 0

1

e i ϕ

−1 +1
+1−1

neutral  SC gauge sector

order parameter sector
ψ

A
ψ

FIG. 4. In a neutral condensate the real-valued domain wall (red
line) is unstable with respect to deformations towards the phase
texture (dashed semicircle), which can be continuously deformed into
a trivial uniform configuration. After coupling to the EM potentials,
the field/phase sector separates from the amplitude sector, and the
degeneracy space of the real OP amplitude becomes disconnected
(±1), stabilizing the real-valued kink.

along the connected U (1) degeneracy manifold, denoted by
the dashed semicircle. This configuration has the energy of a
trivial uniform state, and can be continuously deformed into
one, due to the gapless nature of the phase fluctuations [18].
|Im ω−| gives the decay rate of the hard domain wall towards
the topologically trivial texture. In a charged superconductor,
the phase degree of freedom is absorbed into the gauge
field sector, gapped with plasma frequency. The manifold
of the degenerate states of the real order parameter becomes
disconnected, containing just two points ±�0, which stabilizes
the topological kink. This manifold has Z2 symmetry: the kink
and antikink are unstable and will continuously deform into
a lower-energy uniform configuration [52]. This also follows
from the Schrödinger equation (6) for D+ with two potential
wells separated by L. In the WKB solution, the zero-frequency
mode ω2

+(ky = 0) = 0 is split, and one of the frequencies
becomes imaginary, ω2 ∼ − exp(−L/ξ ), signifying the insta-
bility of the double domain wall configuration.

III. CONCLUSIONS

In summary, a region of strongly varying condensate,
such as a domain wall or a pair-breaking interface, hosts
additional bound collective modes of the order parameter.
For a single-component complex order parameter we find two
additional amplitude modes below the bulk pair-breaking edge
2�. One mode lies at 1.73�, and the other has zero excitation
mass, due to broken translational symmetry (Fig. 2). The
nonuniform region supports extra bound gauge field modes
as well (Fig. 3). The domain wall completely reflects the
longitudinal component of the field and is transparent to others,
perfectly transmitting bulk amplitude modes.
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