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Nonuniform superconducting state in an antiferromagnetic superconductor
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We consider the superconducting state in a clean crystal with antiferromagnetic (AF) structure of localized
magnetic moments taking into account the exchange interaction between magnetic moments and conduction
electrons. We assume that the localized moments order at the Neel temperature TN due to the RKKY interaction
predominantly. In such crystals, the periodic exchange field acting on conducting electrons results in the formation
of an insulating gap on the Fermi surface for electrons moving in directions that depend on the orientation of
the wave vector of AF ordering. We assume a scenario in which the Cooper pairing occurs in the open parts
of the Fermi surface at the temperature Tc. We show that at high amplitudes of exchange field he > Tc/μB , the
structure of superconducting state just below the temperature Tc depends on the relation between Tc and TN .
At low ratio Tc/TN , a nonuniform superconducting state, like the Fulde-Farrell-Larkin-Ovchinnikov high-field
phase, should exist, while at bigger ratio superconducting order parameter is uniform. The nonuniform structure
of superconducting state may be probed by tunneling measurements.

DOI: 10.1103/PhysRevB.93.014501

I. INTRODUCTION

The question posed by V. Ginzburg [1] in 1956 whether
antiferromagnetic (AF) ordering and superconductivity can
coexist was answered positively both theoretically and experi-
mentally long ago. It was argued [1–6] that in antiferromagnets
the effect of magnetic moments on Cooper pairing produced by
modulated exchange and magnetic fields is not so destructive
as that produced by uniform fields. Indeed, the periodic
exchange field is weakened by averaging in volumes of a
coherence length size ξ = vF /(2πTc) since the moments are
separated by the interatomic length a � ξ . Here, vF is the
electron Fermi velocity. The electromagnetic field induced
by magnetic moments is averaged even more effectively
because the London penetration length λL � ξ in type-II
superconductors. Let us denote he the amplitude of the AF
exchange field and q the wave vector of antiferromagnetic
ordering whose magnitude we assume to be of the order 2π/a.
The effect of an AF exchange field on the superconducting
pairing is controlled not only by the small parameter 1/(ξq),
characterizing exchange field averaging, but also by the
parameter γ = μBhe/(�vF q) characterizing the strength of
the exchange field, which is also small even if μBhe is
strong in comparison with Tc. In the framework of the BCS
model Machida et al. [5] showed that an antiferromagnetic
exchange field suppresses the superconducting critical tem-
perature insignificantly, by the factor (1 − γ /2) at γ � 1. The
magnetic scattering of electrons near Tc and the scattering
by spin waves at low temperatures are also weak if the Neel
temperature TN � Tc. It is also weak in crystals with high
values of magnetic moments or in crystals with a high magnetic
anisotropy [6–8].

The next question, which should be addressed, is whether
antiferromagnetic ordering may affect significantly supercon-
ducting pairing due to the presence of a periodic exchange
field in the antiferromagnetically ordered phase. The effec-
tive exchange field acting on pairing electrons is heγ =
μBh2

e/(�vF q), and we argue that only if the energy of one

electron in an effective exchange field, μBh2
e/(�vF q), is

comparable with Tc, the superconducting order parameter
may be modified by the presence of the AF ordering. In the
following we discuss, in the framework of the BCS model, how
AF ordering affects superconducting pairing if such condition
is fulfilled.

We consider the systems with localized magnetic moments
such as MRh4B4, MMo6S8, MNi2B2C and κ-(BETS)2MBr4,
where M stands for the ion with a magnetic moment (rare-
earth or element with d electrons) [9–14]. The coexistence
of the AF ordering with superconductivity was confirmed
experimentally in all these systems. In all of them, the magnetic
ordering is due to direct magnetic dipole-dipole interaction
and the indirect RKKY interaction caused by polarization of
the conducting electrons induced by the exchange field of
localized moments. We assume the latter dominates and thus
AF critical temperature TN is of the order of μ2

Bh2
e/εF , where

εF is the Fermi energy. As vF q is of the order of εF , the energy
of electron in the effective exchange field is of the order of TN

and one can anticipate a significant effect of an AF exchange
field on the superconducting structure when Tc � TN .

Usually, γ is small and in most rare-earth superconductors
with AF ordering, Tc is either bigger or comparable with
TN . Hence a generally accepted opinion emerged that there
is nothing especially interesting in the coexistence of super-
conductivity and the AF order, unlike the effect of a constant
magnetic field that favors a nonuniform Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [16,17]. However, in crystals with
Tc < TN , such as λ-(BETS)2FeBr4 (Tc = 1.4 K and TN =
2.5 K) and Tb2Mo3Si4 with TN = 19 and Tc ≈ 0.8 K [15],
one can anticipate a nontrivial coexistence of AF order and
Cooper pairing.

The first theoretical indication that such coexistence may
not be completely trivial was presented in Ref. [18]. It was
noticed that a helix exchange field he � Tc/μB results in the
suppression of superconducting gap for quasiparticles moving
along the direction nearly perpendicular to the helix wave
vector q [18]. Later Overhouser and Daemen [3] found similar
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suppression of superconducting gap in SDW antiferromagnets
along the direction ⊥ q since SDW gap suppresses the
coupling with phonons for electrons moving in this direction.
One can anticipate that in the presence of partially vanishing
superconducting pairing the superconducting order parameter
itself may become nonuniform, as in the FFLO state. The
argument of continuity with respect to an increasing q starting
from q = 0 also tells us that the nonuniform superconducting
state would exist at some q �= 0. The question then is what
is the area in the parameter space μBh,(�vF q),Tc for such a
state. The possibility of a FFLO state in the coexistence phase
in antiferromagnets was discussed earlier by Machida et al. [5],
who suggested that in the presence of an exchange field with
a wave vector q the optimal Cooper pair net momentum could
be q rather than the standard q = 0 BCS state. However, Nass
et al. [4] showed that the approximation used in Ref. [5] to
find the minimum energy, was not self-consistent.

In the following, we find the structure of the superconduct-
ing order parameter just below Tc in the presence of a helix AF
ordering established along one (x) and two (x,y) directions
for TN > Tc. We call them the single and the double helix
cases, respectively. We consider the BCS Hamiltonian with
a two-dimensional electron motion in x,y plane. We assume
s-wave pairing in the framework of clean limit for conducting
electrons, in which the impurity and magnetic scattering rate
�/τ � Tc. We show that even if the parameters γ and Tc/(vF q)
are small and thus the suppression of Tc is weak, a nonuniform
superconducting state, similar to that of the FFLO [16,17],
should exist in the helical AF just below Tc, provided Tc < T ∗

c ,
where T ∗

c = 0.26μ2
Bh2

e/(�vF q) in a helix with AF ordering
in one direction and 3.55μ2

Bh2
e/(�vF q) in a spiral with AF

ordering in two directions. We show also that if Tc > T ∗
c , the

superconducting order parameter is uniform but nevertheless
the superconducting gap vanishes at μBhe > Tc in one and two
directions in single and double helix, respectively. This result
is a consequence of insulating “magnetic” gaps in a single
electron spectrum induced by the periodic exchange field on
the sectors of the Fermi surface along the y direction of electron
motion in a single helix and along x and y directions of motion
in a double helix. Those “magnetic” gaps do not lead to a net
insulating state because the main part of the Fermi surface
remains open, but they prevent the formation of Cooper pairs
on the parts of the Fermi surface they cover [3].

II. THE HAMILTONIAN AND THE STRUCTURE OF THE
SUPERCONDUCTING ORDER PARAMETER AT Tc

We consider the BCS Hamiltonian

Ĥ = ĤBCS +
∫

d3rψ̂+
α (r)he,i(r)(σi)αβψ̂β(r), (1)

ĤBCS =
∫

d3r
[
ψ̂+

α (r)(ε(p̂) − εF )ψ̂α(r)

− 1

2
gψ̂+

α (r)ψ̂+
β (r)ψ̂β(r)ψ̂α(r)

]
, (2)

ε(p) = p2

2m
, (3)

y

x

Single helix Double helix

FIG. 1. (Left) The single-wave-vector helix structure with an
alternating exchange field along the x axis and a constant exchange
field along the y axis, helix wave vector is q = (π/a,0,0). (Right)
Double helix with alternating exchange field in both x and y

directions, q = (π/a,π/a,0).

in a superconductor with a helix magnetic ordering resulting
in the exchange field

he(r) = he[cos(q · r), sin(q · r),0]. (4)

Here, g > 0 describes electron attraction due to phonon or spin
wave exchange, a summation over repeated indices is implied,
σi with i = x,y,z are the Pauli matrices, and α,β = 1,2
are spin indices. In the single helix with a wave vector
q = (π/a,0,0), the exchange field oscillates with a period
2a along the x axis and remains constant along the y axis,
while for a double helix with q = (π/a,π/a,0) the exchange
field oscillates in both x and y directions, see Fig. 1. The
Hamiltonian H results in the RKKY interaction of localized
magnetic moments. We assume that this is the predominant
interaction and that it leads to the helical ordering displayed
in Fig. 1, below the Neel temperature TN .

In Eq. (4), the magnitude of the exchange field may
be presented as he = he0|〈S〉|, where he0 is the material
parameter, while the quantum-mechanical and thermodynamic
average value of a localized spin on the site, 〈S〉, depends
on the spin value S and the relative temperature T/TN . The
important point is that the structure of the superconducting
order parameter may be found at a given he(T ) because the
energy of superconducting pairing, of the order of T 2

c /εF per
spin, is much smaller than the magnetic energy, of the order of
TN per spin. In the following, we assume that this condition is
fulfilled. The temperature dependence in he may be neglected
if T � TN or γ � 1. Hence superconducting ordering does
not affect the magnetic ordering so much, and we will consider
he as a fixed temperature independent parameter.

The superconducting pairing is described by the Green
function Gα,β (r,r′) = −〈T ψ̂α(r)ψ̂+

β (r′)〉 and by the anoma-

lous Gor’kov function F+
α,β (r,r′) = 〈T ψ̂+

α (r)ψ̂+
β (r′)〉. They

obey the equations

[iωn − ξ (p̂) − V̂ (r)]Ĝ(r,r′) + �ÎF̂+(r,r′) = δ(r − r′),

(5)

[iωn + ξ (p̂) + V̂ (r)]F̂+(r,r′) − �∗Î Ĝ(r,r′) = 0. (6)
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Here, Vkk = 0, V12 = μBhe exp(iqr) = V ∗
21, ξ (p) = ε(p) −

εF , Matsubara frequencies are ωn, while Ĝ, Î , and V̂ are
matrices in the spin-1/2 space.

To find the second-order phase transition line N-S between
the normal and the superconducting states, it is sufficient
to know the normal state Green functions Ĝ(r,r′) and to
solve the Bethe-Salpeter equation for the vortex (see, e.g.,
Refs. [17,19]). The equation for Gα,β (r,r′) in the normal sate
is Eq. (5) with � = 0. In Fourier representation, we then have

(iω − ξ+)G11(p+,p′) + heG21(p−,p′) = δ(p′ − p),
(7)

(iω − ξ+)G12(p+,p′) + heG22(p−,p′) = 0,

where p± = p ± q/2 and ξ± = ξ (p±). In the equations for
G22 and G21, we need to replace vice/versa + by −.

A. The single helix, the AF ordering in one direction

The solutions for a single helix are [18]

G11(p+,p′) = iωn − ξ−
(iω − ξ+)(iωn − ξ−) − h2

e

δ(p′ − p),

(8)
G12(p+,p′) = − he

(iωn − ξ+)(iωn − ξ−) − h2
e

δ(p′ − p).

Here and in the following, he is the Zeeman electron energy
in the exchange field, v = vF and � = 1. It is seen that G11

depends on the momenta p ± q so that G11(r,r′) describes an
anisotropic electron motion as it depends not only on |r − r′|
but also on the direction of (r − r′) relative to q.

In the case of strongly anisotropic (2D) electron spectrum
with Fermi velocities vx,vy � vz, all three vectors q,p, and
R = r − r′ are essentially in the x,y plane. We obtain

G11(R) =
∫

dp
(2π )2

(iω − ε + δ) exp(ip · R)

(iω − ε − δ)(iω − ε + δ) − h2
e

, (9)

with p · R = (p0 + ε/v)R cos(θ − φ), where p0 is the Fermi
momentum, θ , φq and φ are the angles of R, q, and p with
respect to the x axis. Here we denote ε = (1/2)[ξ (p+) +
ξ (p−)] and δ = (1/2)[ξ (p+) − ξ (p−)] = v · p/2. We replace
the integration over p by the integration over variables ε and
φ. The denominator of G11 is (ε − iω − A)(ε − iω + A) with

A = (
δ2 + h2

e

)1/2
, δ = vq cos(φ − φq). (10)

The quasiparticle spectrum is given as E(ε,δ) = ε ± A. It
consists of two branches corresponding to two different super-
positions of up and down spins. The pieces of the Fermi surface
are ε = ±A. There are insulating magnetic gaps on the Fermi
surface in the direction of p along the y axis (θ = π/2,3π/2),
see Fig. 2. These gaps prevent the Cooper pairing on the Fermi
surface patches destroyed by magnetic gaps, as was noticed in
the case of SDW by Overhauser and Daemen [3]. As a result,
superconducting electrons cannot move in the direction along
the y axis even when the superconducting order parameter is
uniform. [18]. However, the development of such magnetic
pseudogaps below TN does not result in the overall insulation
behavior at small γ because the most part of the Fermi surface
remains open for both electron motion and Cooper pairing.

The integration over φ from 0 to 2π in Eq. (9) can be
done from θ − π/2 to θ + π/2, where cos(θ − φ) > 0, and
from θ + π/2 to θ + 3π/2, where cos(θ − φ) < 0. Integrating

px

py

px

py
(a) (b)

FIG. 2. The magnetic (red) and superconducting (green) gaps on
the Fermi surface.

over ε by residues we choose the integration contour in the
upper half-plane in the first integral for ω > 0 and in the lower
half-plane at ω < 0. We obtain for ω > 0,

G11,ω(R) = im

π

∫ π

0
dφ

∑
±

{
(±δ − A)

2A

× exp

[
i

(
p0 + iω ± A

v

)
R cos(θ − φ)

]}
. (11)

For ω < 0, it suffices to take the complex conjugated expres-
sion. In our calculations of Tc, following Eq. (13), we need
values of R � ξ . For large R, the main contribution to the
integral over φ comes from φ ≈ θ . Hence we take φ = θ in
δ(φ) when integrating over φ near θ . The result for ω > 0 is

G11,ω(R)

= − im

π
√

p0R
exp

(
ip0R − |ω|R

v

)

×
{

δ − A

2A
exp

[
iR

δ + A

v

]
− δ + A

2A
exp

[
iR

δ − A

v

]}
,

G12,ω(R)

= mhe

πA
√

p0R
exp

(
ip0R − (|ω| + δ)R

v

)
sin

AR

v
, (12)

and now δ = (vq/2) cos(θ − φq). For ω < 0, again one takes
the complex conjugate of this result. In a similar way,
we derive the other components of the Green functions in
coordinate space. We see explicitly that the Green functions
Ĝ(r) depend on R = |R| and, via δ(θ ), on the direction of
the electron motion described by the angle θ counted from
the direction of q. At he �= 0, there is an additional periodic
coordinate dependence in G11,ω due to the exchange field
A − δ ≈ h2

e/(vq). It is this additional coordinate dependence,
which results in a nonuniform structure of the superconducting
order parameter at Tc, when Tc is low enough.

Next, we find the critical temperature Tc of the second-order
phase transition N-S solving the linear equation for the order
parameter �(r) [19],

�(r) =
∫

dlK(r − l)�(l),
(13)

K(r) = g

2
T

∑
|ω|<ωD

Tr(iσy)Ĝω(r)(iσy)Ĝ−ω(r),
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where ωD is the Debye frequency for a phonon mechanism
or the maximum spin wave frequency of the order of TN

for a spin-wave exchange mechanism. We consider the
pairing of electrons with single particle energies close to
either ε = δ + A or ε = δ − A. Thus we account for pairs of
electrons with energies A + δ for δ < 0 and A − δ for δ > 0.
We readily get with u = cos θ

K(r) = T
∑

|ω|<ωD

gm2

π2p0R
B(r,θ ) exp(−2|ω|R/v),

B(r,θ ) = S(u) cos[2�(u)r]

+ γ 2

u2 + γ 2
[cos((2�(u) + u)r) − 2 sin2(qru)],

S(u) = (
√

u2 + γ 2 + u)2

2(u2 + γ 2)
, �(u) =

√
u2 + γ 2 − u. (14)

We drop in the following the term proportional to γ 2. In
B(r,θ ), we expressed distances in units of ξ so that r = R/ξ ,
where ξ = vF /(2πTc0) and Tc0 at γ � 1 satisfies the equation

λ

2π

∑
n

∫ π

0
dθS(cos θ )

ωn

ω2
n + �2(cos θ )

= 1. (15)

This equation was obtained assuming a uniform supercon-
ducting order parameter by the integration over r of Eqs. (13)
and (14), with ωn = πρ0(2n + 1) with ρ0 = Tc0/(2πvq) and λ

being the dimensionless parameter associated with the electron
coupling for frequencies |ωn| < ωD/(2vq). Here and in the fol-
lowing, we introduce a dimensionless temperature parameter

ρ = T/(2vq).

The periodic space dependence, cos[2�(u)r], in the B(r,θ )
leads to the suppression of the formation of Cooper pairs
moving in the direction defined by the angle θ . This factor
results in the suppression of Tc in comparison with Tc at
he = 0. The most interesting case for real antiferromagnets is
γρ−1 � 1, γ � 1, while ρ−1 � 1. In this situation, Cooper
pairs moving in the directions perpendicular to q would
be destroyed by the strong exchange field he � Tc if not
supported, due to a proximity effect, by pairs moving in other
directions.

Clearly, the oscillatory space dependence of the supercon-
ducting order parameter may compensate the destructive effect
of the oscillating exchange field resulting in an increase of Tc

in comparison with that given by Eq. (15). The order parameter
with oscillations along y turns out to be the most favorable.
For a nonuniform state with �(y) = �0 cos(iky) we obtain
the condition of the second-order phase transition N-Sk from
normal to nonuniform superconducting state with a nonzero
Cooper pair center-of-mass k, as

λ

2π
[K(k) +K(−k)] = 1,

K(k) =
∑

n

∫ π

0
dθS(cos θ )

ωn

ω2
n + [�(cos θ ) − k cos θ ]2

.

(16)

The parameter k (the wave vector of the nonuniform state in
units 1/ξ ) should be determined by the condition of maximum

�0.00293

�0.00295

�0.00297

�0.00299

�0.00301

0.0000 0.0005 0.0010 0.0015
�0.10

�0.05

0.00

0.05

0.10

FIG. 3. The functionK(k) that defines the parameter k of nonuni-
formity of superconducting state in a single helix AF for different
transition temperatures ρ = T/vq at γ = 0.1. The formation of k �= 0
peak as ρ decreases below ρ∗ = 0.002 97 signals the nonuniform state
below the second-order phase transition from the normal state to the
superconducting state.

Tc. To find the optimal parameter k, we maximized numerically
the function K(k) +K(−k) − 2K(0) over k at a given γ and
the critical temperature parameter ρ. The functionK(k) at γ =
0.1 for different ρ is shown in Fig. 3. We see that at ρ above
0.002 97 there is only one peak at k = 0 corresponding to the
uniform superconducting state. But at ρ below this critical
value ρ∗

c , a peak at nonzero k develops, signaling the normal
state instability with respect to the transition to a nonuniform
superconducting state.

The plot ρ∗
c (γ ) is shown in Fig. 4. The parameter ρ∗

c

increases with γ as ρ∗
c ≈ 0.26γ 2. The value of optimal k, kopt,

increases as ρ drops. Thus the formation of the nonuniform
state becomes less favorable at high temperatures, as in the
case of FFLO at constant exchange field, where a nonuniform
FFLO state develops only at temperatures Tc(he) below T ∗

c =
0.55Tc(he = 0) [16,17]. Similarly, in helix antiferromagnets,
the nonuniform state develops when the second-order phase
transition temperature Tc(he,vq) satisfies the condition ρ =
Tc/(2vq) < ρ∗

c . Accounting for ρ∗
c ≈ 0.26γ 2, we obtain the

0.00 0.02 0.04 0.06 0.08 0.10
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

FIG. 4. The critical dimensionless temperature ρ∗
c = Tc/vq, sep-

arating transitions to the uniform and the nonuniform states, as a
function of the parameter γ in a single helix antiferromagnet. The fit
for ρ∗

c (γ ) is ρ∗
c ≈ 0.26γ 2.
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condition of nonuniform state below Tc as

Tc(he,vq) < T ∗
c = 0.26h2

e/vq. (17)

When the dominant mechanism of the AF ordering is the
RKKY interaction with TN ≈ h2

e/εF and when vq � εF , we
get this condition as T ∗

c = 0.26TN .
As was mentioned before, the Cooper pairing is suppressed

in the sectors of the Fermi surface in which a magnetic
pseudogap exists. Correspondingly, at low critical tempera-
tures Tc < T ∗

c , the superconducting order parameter becomes
nonuniform and vanishing in the coordinate space at lines
where cos(ky) = 0. At higher critical temperatures, Tc > T ∗

c ,
the thermal motion of an electron averages over all directions
(effect similar to the proximity effect) and the superconducting
order parameter becomes uniform since the pairing in other
directions, where a magnetic gap is absent, supports a total
nonzero order parameter.

B. The double helix, the AF ordering in two dimension

For a double helix with q = (π/a,π/a,0), Eq. (7) results
in eight different equations for G11(px,py), G11(px,py +
π/a), G11(px + π/a,py), G11(px + π/a,py + π/a),
and G12(px,py), G12(px,py + π/a), G12(px +
π/a,py), and G12(px + π/a,py + π/a). The solution
for G11 is

G11(p,p′) = (iω − ξ0+)(iω − ξ+0)(iω − ξ++)δ(p − p′)
P− h2

eQ
,

P = (iω − ξ0+)(iω − ξ+0)(iω − ξ++)(iω − ξ00).

Q = (2iω − ξ00 − ξ++)(2iω − ξ0+ − ξ+0). (18)

Here, ξ+0 = ξ (px + π/a,py), ξ0+ = ξ (px,py + π/a) and
similar for others energies ξ . From the denominator P− h2

eQ,
we obtain four branches of quasiparticle energies in the normal
state, i = 1,2,3,4:

E0,i(p) = ε ± [
(vF q cos θ )2 + h2

e

]1/2

±[
(vF q sin θ )2 + h2

e

]1/2
. (19)

Hence we get two gaps 2he on the Fermi surface in the
directions of p along x and y axes, see Fig. 2. Next, we find the
Green functions in the coordinate space. They have oscillatory
dependence on both coordinates x and y with the wave vectors

�x(θ ) = (cos2 θ + 4γ 2)1/2 − cos θ, (20)

�y(θ ) = (sin2 θ + 4γ 2)1/2 − sin θ. (21)

We obtain for B(r,θ ) with s = sin θ

B(r,θ ) = A
8(u + �x)2(s + �y)2

,

A = A1 cos[(2u + 2s + �x + �y)r]

+A4 cos[�x + �y)r] +A2 cos[(2u + �x − �y)r]

+A3 cos[(2s − �x + �y)r],

A1 = (2u + s + �x + �y)2(u + 2s + �x + �y)2

A2 = (2u − s + �x − �y)2(u + �x − �y)2,

Single Helix

Double Helix

0.001 0.005 0.010 0.050 0.100

10�5

10�4

0.001

0.010

FIG. 5. The dependence of the critical dimensionless temperature
ρ∗

c on the parameter γ . At Tc < T ∗
c , a nonuniform superconducting

state establishes below Tc, while at Tc > T ∗
c the system undergoes

a transition from a normal to a uniform superconducting state. The
upper (black) curve is for q = (π/a,π/a,0) helix. The solid line
is ln ρ∗

c = ln a + 2 ln γ with a = 3.55. The lower (red) curve is for
a helix q = (π/a,0,0,). The solid line is ln ρ∗

c = ln b + 2 ln γ with
b = 0.26.

A3 = (s − �x + �y)2(2s − u − �x + �y)2,

A4 = (u + �x + �y)2(s + �x + �y)2. (22)

At small superconducting coupling λ � 1 the main con-
tribution to Tc comes from slowly spatially varying term
A4 cos[(�x + �y)r] in B(r), while terms with A1,A2,A3 as
well as �x and �y in the denominator ofB(r) may be dropped.
We obtain for the optimal nonuniform superconducting order
parameter �(r) = �0 cos[k(u + s)] or �(r) = �0 cos[k(u −
s)] (due to symmetry of x and y coordinates). Optimizing with
respect to k we get ρ∗

c ≈ 3.55γ 2 and kopt(γ,T ∗
c ) ≈ 4.23γ 2.43.

They are both represented for the double and single helix in
Figs. 5 and 6. As T drops below Tc, the value of kopt increases,
but to find it we need to solve the nonlinear equations (5)
and (6).

Single Helix

Double Helix

0.001 0.005 0.010 0.050 0.100
10�7

10�6

10�5

10�4

0.001

0.010

FIG. 6. The dependence of the optimal wave vector k∗
opt at the

critical temperature Tc < T ∗
c on the parameter γ . The upper (black)

curve is for a q = (π/a,π/a,0) helix, the solid line is ln k∗
opt = ln c +

2.43 ln γ with c = 4.23. The lower (red) curve is for the helix q =
(π/a,0,0,). The solid line is ln k∗

opt = ln g + 2.48 ln γ with g = 0.81.
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C. The type of superconducting transition in helix
antiferromagnets

In the case of the FFLO transition, in a constant exchange
field, the temperature T ∗

c actually separates the second-order
phase transition N-S into the uniform superconducting state
from the first-order phase transition into the nonuniform state.
We check now the order of the N-S transition in a helix AF by
calculating the third-order term in �(r) in Eq. (13). This cubic
term has the form [19]

− g

2
T

∑
ω

∫
Ĝω(l,m)�(m)Ĝω(s,r)�∗(s)Ĝ−ω(s,m)

×�∗(l)Ĝ−ω(l,r)dldmds. (23)

The Green functions drop exponentially with |l − r|/ξ , while
at γ � 1 their additional coordinate dependence and the spa-
tial dependence of the order parameter are much weaker and
as a result they can be neglected altogether. Then we have the
additional standard negative cubic term [19] in the right-hand
side of Eq. (13). Hence the transition N-Sk in a helix AF with
the small γ � 1 is a second-order phase transition in contrast
to the FFLO transition in a uniform exchange field [20].

D. Quasiparticle gaps in superconducting state at Tc > T ∗
c

For a single helix, the quasiparticle spectrum E(p) was
found in Ref. [18]. At he � �, it has the form

E2
1,2 = [

ε ± (
δ2 + h2

e

)1/2]2 + δ2

δ2 + h2
e

�2. (24)

The first term describes an insulating magnetic gap 2he on the
part of the Fermi surface at angles cos θ � γ around the py

axis, see Fig. 2. The second term describes the superconducting
gap, which vanishes in the same angular interval. For a
helix with AF ordering along x and y directions, we solve
Eqs. (5) and (6) for a coordinate independent � and expand
the determinant of these equations,D(�), in powers of �2:

D(iω,p) =
4∏

i=1

(iω − ε − E0,i)
2 + 1

2
sin2(2θ )

×[1 + (cos2 θ + γ 2)1/2

×(sin2 θ + γ 2)1/2]�2 + o(�2). (25)

Hence the quasiparticle spectrum is

E2
i (p) = E2

0,i(p) + sin2(2θ )�2

4(cos2 θ + γ 2)(sin2 θ + γ 2)
. (26)

Now the magnetic gaps are around px and py axes, and there
the superconducting gap is absent. The rest of the Fermi surface
is covered by the superconducting gap �.

III. DISCUSSION

We consider now the electric properties in crystals with
a double helix exchange field (see, Fig. 1). The organic
superconductor with AF ordering and almost two-dimensional
electron motion λ-(BETS)2FeBr4 belongs to this type of
crystals. Above TN , the magnetic moments affect the electron
properties due to magnetic scattering only. The situation

changes below the Neel temperature TN . In the temperature
interval Tc < T < TN , an insulating gap for electrons moving
along the x and y axes results in the suppression of electrical
and thermal conductivity along these directions, though the
main part of the Fermi surface remains open and as a result
the overall nature of this system is metallic. Thus the electron
transport becomes anisotropic, but this anisotropy is not strong
in crystals with small γ . Radical change in transport properties
occurs below the superconducting transition at Tc. If Tc > T ∗

c ,
a uniform superconducting order parameter develops, resulting
in a superconducting gap on the main part of the Fermi surface
coexisting with insulating magnetic gaps near the momentum
directions px and py . The anisotropy of electron transport in
response to external electromagnetic fields, such as magnetic
field screening, becomes stronger below Tc. Electron thermal
transport vanishes due to a combination of both magnetic and
superconducting gaps. The tunneling I -V characteristics in
this phase depend on whether a normal or a superconducting
tip is used, as well as on the tip orientation.

The nonuniform state below Tc < T ∗
c shows the most

interesting electron transport properties. The superconducting
order parameter in this phase becomes periodic with the wave
vector k > k∗

opt corresponding to the period d < 2π/k∗
opt. An

important point is that that due to the small amplitude of the
effective exchange field, h2

e/(vF q), the value of the period d

in the nonuniform state of AF system is much bigger than ξ ,
while in a FFLO state in high magnetic fields it is of the order
of ξ . Thus relatively big and quite clean crystals are needed to
observe a nonuniform state in AF systems. in fact, such a state
may be observed only in crystals with size L > d and electron
mean free path � > d. This puts strict conditions on the lower
boundary of γ for a nonuniform phase observation:

γ 2.43 >
0.24�vF

[min(L,�)]Tc

, (27)

or on the lower boundary of TN because TN ≈ γ 2εF . Taking
Tc = 1 K and [min(L,�)] = 0.1 cm, we obtain the condition
γ 2 > 10−3 corresponding to TN > 0.001εF . We note that to
fulfill conditions (27) on a crystal of size L and electron
mean free path �, indeed very clean crystals with high TN

are needed. These conditions are not fulfilled in the compound
λ-(BETS)2FeBr4 with he ≈ 14 T from Hc2 measurements in
fields parallel to the layers and with TN = 2.5 K [22]. In
such crystals, the superconducting state below Tc should be
uniform. If conditions (27) would be met, a nonuniform super-
conducting phase may be checked by tunneling experiments,
which may reveal the periodicity of the quasiparticle density of
states. The change of sign of superconducting order parameter
at different crystal edges in a nonuniform state may be revealed
by measurements similar to those that showed the change of
sign in cuprate d-wave superconductors [26]. In a nonuniform
state, the Meissner screening and the thermal conductivity will
be both anisotropic and anisotropy will be more pronounced
than in the uniform state.

Recently, in relation to Fe-based superconductors, much
attention is payed to the spin density wave (SDW) state,
which may coexist with superconductivity in the case of the
s-wave pairing [21,23,24] or in the case of the anisotropic
pairing [25]. SDW ordering introduces an exchange field
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acting on the superconducting electrons and at a first glance
the problem of coexistence of SDW and superconducting
states is similar to that of the antiferromagnetism of localized
magnetic moments (f or d electrons) and superconductivity
(mainly of s electrons). However, actually, there is an important
difference since both SDW and superconducting pairing
occur on the same Fermi surface of conducting electrons.
The energies involved in the transitions with a comparable
Tc and SDW transition temperature TSDW are also of the
same magnitude and one cannot treat that superconducting
transition as occurring in a given exchange field, i.e., in
the approach used throughout this paper. Only in the limit
Tc � TN , such a treatment is correct and all our results
obtained for the magnetic pseudogaps and for the nonuniform

state may be applied to the SDW superconducting system as
well.

In conclusion, in the framework of BCS model, we establish
the condition ρc = Tc/vq < ρ∗

c (γ ) for the transition into a
nonuniform FFLO-like superconducting state for a single-
and in a double-wave-vector helical AF system with s-wave
pairing. At ρc > ρ∗

c below Tc, the superconducting order
parameter is uniform even if magnetic pseudogaps are also
present on some sectors of the Fermi surface.
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