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A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory
in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle
antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J ′ > 0 (nearest neighbor) and
J ′′ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability
of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J ′-J ′′ plane.
It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the
spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J ′′ = 0 line
(the nearest-neighbor case), and on both sides of it for J ′′ �= 0, in an extended region bounded by the critical
lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J ′′ region has a
coplanar 120◦ antiferromagnetic order with

√
3 × √

3 structure. In this phase, all the magnetic moments are of
equal length, and the angle between any two of them on a triangle is exactly 120◦. The magnetic lattice in this
case has a unit cell consisting of three triangles. The other gapless phase, in the positive J ′′ region, is found to
exhibit a different coplanar antiferromagnetic order with ordering wave vector q = (0,0). Here, two magnetic
moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short
moments is 120◦ − 2δ, it is 120◦ + δ between a short and the long one. Only when J ′′ = J ′, their magnitudes
become equal and the relative angles 120◦. The magnetic lattice in this q = (0,0) phase has the translational
symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the
point-group symmetry is found to show up as a difference in the intensities of certain Bragg peaks, whose ratio
I(1,0)/I(0,1) = 4 sin2 ( π

6 + δ) presents an experimental measure of the deviation δ from the 120◦ order.

DOI: 10.1103/PhysRevB.93.014427

I. INTRODUCTION

The quantum antiferromagnets on frustrated lattices, with
competing interactions, tend to disfavor magnetic ordering,
and realize interesting quantum-disordered low-temperature
phases (ground states) such as the quantum spin liquids,
valence-bond-solid states, or the dimer or plaquette ordered
singlet phases [1–4]. The kagome quantum antiferromagnet is
an interesting example of a frustrated spin system, in which
the frustrated geometry of the kagome lattice (a triangular
lattice of the corner-sharing triangles) and the quantum
fluctuations together present a serious detriment to magnetic
ordering in its ground state. For instance, the low-temperature
properties of Cu3Zn(OH)6Cl2 [5,6], BaCu3V2O8(OH)2 [7],
[NH4]2[C7H14N][V7O6F18] [8], and γ -Cu3Mg(OH)6Cl2 [9],
which are the realizations of the spin- 1

2 kagome Heisenberg
antiferromagnet (KHA), seem to indicate this. While there is
a strong support for the spin- 1

2 KHA with nearest-neighbor
interactions to have a spin-liquid ground state, the difficult
nature of this problem has made it very hard to settle the
debate on the true character of its ground state [10–24]. The
relatively lesser studied spin-1 and higher spin KHA’s are also
not very well understood.

For the spin-1 antiferromagnetic Heisenberg model on
kagome lattice, which is the problem of interest to us in this
paper, a nonmagnetic hexagonal-singlet-solid (HSS) ground
state with gapped magnetic excitations was proposed by Hida
using the exact diagonalization and cluster expansion methods
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[25]. A more recent study of the spin-1 KHA model using
coupled-cluster method also found a nonmagnetic ground
state [26]. This problem is currently in a surge of theoretical
activity, motivated by the experiments on several spin-1
kagome materials [27–31]. While some of these materials do
not neatly qualify as spin-1 kagome antiferromagnets (due to
their ferromagnetic or glassy response), but there are some,
e.g. m–MPYNN·BF4 [27,28] and KV3Ge2O9 [29], which
clearly show frustrated antiferromagnetic behavior. While
m-MPYNN·BF4 is well known to be spin gapped at low
temperatures, the behavior of KV3Ge2O9 is reported to be
more exotic. Another material, NaV6O11 (a metallic vanadate),
has three types of vanadium ions, of which one type forms
the spin-1 kagome layers exhibiting spin-gap behavior below
243 K, accompanied by explicit trimerization [32,33]. The
appearance of weak spontaneous magnetization below 65
K (due to other vanadium ions), however, undermines the
trimerized singlet physics of its kagome layers.

The most recent numerical calculations using tensor net-
work algorithms [34,35], exact diagonalization, and density
matrix renormalization group (DMRG) [36] find a gapped
spontaneously trimerized singlet ground state for the quantum
spin-1 nearest-neighbor KHA model. There are others who
either support the HSS state of Hida [37], or suggest a gapped
resonating AKLT (Affleck-Kennedy-Lieb-Tasaki) loop ground
state [38]. Despite the differences, they all point towards a spin-
gapped nonmagnetic ground state for the spin-1 KHA with
nearest-neighbor interaction, which is in clear contrast with
the studies that predicted

√
3 × √

3 antiferromagnetic order in
its ground state [39,40]. The spin-1 kagome antiferromagnet
with spin anisotropies and biquadratic interaction have also
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been investigated [39,41], but the pure Heisenberg case is what
concerns us presently. Beyond the nearest-neighbor case, the
trimerized singlet ground state has also been discussed for a
spin-1 KHA with certain specific second- and third-neighbor
interactions [42].

Motivated by these recent studies on the ground state
of spin-1 KHA, we investigate in this paper a Heisenberg
model, described in Sec. II, on trimerized kagome lattice. Our
basic idea and the strategy are as follows. Since the kagome
lattice is a triangular lattice of corner-sharing triangles, we
construct an effective theory of spin-1 KHA in terms of the
eigenstates of its basic triangular units. This we do by deriving,
in Sec. III A, a bosonic representation for the spin-1 operators
of a triangular plaquette in terms of its singlet and triplet states.
It is like the bond-operator representation of the spins of a
dimer [43,44]. This effective theory, formulated in Sec. III B,
allows us to study the stability of the trimerized singlet (TS)
ground state with respect to the elementary triplon (dispersing
triplet) excitations, and to find if there is any antiferromagnetic
(AF) order. Unlike the spin-wave analysis, which is a small
fluctuation bosonic theory for a given classical magnetic order,
this plaquette-triplon theory is formulated with respect to the
nonmagnetic TS state which is “quantum disordered.” It can
describe classical order as well as quantum disorder in the
ground state.

From the triplon analysis performed in this paper, we
find a stable TS ground state for the nearest-neighbor spin-1
KHA, in agreement with recent numerical studies [34–36].
We also find this gapped TS phase over a range of second-
neighbor interaction. Eventually, for sufficiently negative
second-neighbor interaction, it undergoes a transition to the
gapless phase with coplanar 120◦-AF order with

√
3 × √

3
structure, in which the neighboring magnetic moments lie at
120◦ angle relative to each other, and the magnetic unit cell
consists of three triangles. This AF order has been known to
occur in the KHA model for large spins with second- and
third-neighbor interactions [40,45]. But here, we find it for
spin-1, emerging spontaneously from the quantum disordered
TS state. For positive second-neighbor interaction, we find
a different coplanar AF order with ordering wave vector
q = (0,0). In this phase, the magnetic moments in a triangular
unit cell are of unequal magnitudes (two short and one long),
and at a deviation of δ from the 120◦ orientation (with
120◦ − 2δ angle between the short moments, and 120◦ + δ

between the long and the short ones). This AF order has not
been discussed before in kagome antiferromagnets, but here it
emerges spontaneously. We discuss these findings in detail in
Sec. IV, and conclude this work with a summary in Sec. V.

II. MODEL

In this paper, we study the following quantum spin-1
Hamiltonian on trimerized kagome lattice:

Ĥ = J
∑
〈i,j〉

�Si · �Sj + J ′ ∑
(i,j )

�Si · �Sj + J ′′ ∑
〈〈i,j〉〉

�Si · �Sj . (1)

As depicted in Fig. 1, it is a problem of the coupled anti-
ferromagnetic triangles. In this explicitly trimerized kagome
problem, the exchange interaction J in the up (red) triangles
is taken to be stronger than that in the down (green) triangles

FIG. 1. The trimerized kagome lattice with intratriangle Heisen-
berg exchange interaction J (thick red line) and the intertriangle
exchange couplings J ′ (green) and J ′′ (dashed blue line). The a1 = 2x̂

and a2 = −x̂ + √
3ŷ are two primitive vectors of this lattice.

J ′. It resembles, for instance, the trimerized kagome layers of
one type of vanadium ions in NaV6O11 [32]. This similarity
is only partial, however, as the situation in NaV6O11 is a bit
more complex (and not to be dwelt upon here). We also include
second-neighbor interaction J ′′ for generality. In Eq. (1), 〈i,j 〉
denotes the spin pairs in the up triangles, (i,j ) denotes the
spin pairs in the down triangles, and the second-neighbor
spin pairs are denoted as 〈〈i,j 〉〉. We take J and J ′ to be
antiferromagnetic, and allow J ′′ to be positive as well as
negative. The Ĥ becomes the standard nearest-neighbor KHA
for (J ′,J ′′) = (J,0).

A simple limiting case of the Ĥ of Eq. (1) corresponds
to (J ′,J ′′) = (0,0), for which the exact ground state is given
by the direct product ⊗∏


 |s〉 of the singlet states |s〉 of
the up triangles. It also has an energy gap J to the triplet
excitations. Refer to Appendix A for the eigenstates of spin-1
Heisenberg model on a triangle. Since three spin-1’s uniquely
form a singlet, this ideal spin-gapped trimerized singlet ground
state is also unique. How the nonzero J ′ and J ′′ affect this non-
magnetic TS ground state is the question that we try to answer
here by studying its stability against the triplon excitations.

III. TRIPLON ANALYSIS

Just as in the case of dimerized quantum antiferromagnets,
where the bond-operator formalism provides a convenient
means to construct an effective low-energy theory [43,46],
here we do a low-energy theory of the trimerized KHA model
Ĥ in terms of the plaquette operators defined on the triangular
unit cells of the kagome lattice. Towards this goal, we first
derive a bosonic representation for the spin-1 operators of a
triangle, and then formulate a simple but useful theory of Ĥ in
terms of these plaquette operators. This theory will find for us
the region of stability of the TS state, and identify the magnetic
order, if any, in the J ′-J ′′ plane.
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A. Plaquette-operator representation of the
spin-1 operators on a triangle

The spin-1 Heisenberg model on a triangle, that is Ĥ
 =
J (S1 · S2 + S2 · S3 + S1 · S3), has a unique singlet eigenstate
|s〉 with eigenvalue −3J . It has three sets of triplets (that is,
nine degenerate states with total spin equal to 1), |tmν〉, given by
m = 1,0,1̄ (total Sz) and ν = 1,0,1̄. Here, −1 is denoted as 1̄,
and the quantum number ν comes from the threefold rotational
symmetry of Ĥ
. The energy of these triplets is −2J . It also
has two sets of quintets (10 states with total spin 2) and a
heptet (7 eigenstates with total spin 3) with energies 0 and 3J ,
respectively. The eigenvalue problem for Ĥ
 is worked out in
detail in Appendix A.

For J > 0, the singlet is the ground state of Ĥ
 and the
triplets form the elementary excitations with energy gap J . The
quintets, that cost an energy 3J from the ground state, are the
next higher excitations. Since they are safely above the triplets,
in the simplest approximation, we ignore the quintets and the
highest-energy heptets in writing a low-energy theory of the
trimerized KHA model Ĥ . Thus, we restrict the triangle’s
Hilbert space to have the singlet |s〉 and all the 9 triplets |tmν〉
only. This reduced problem would nevertheless be sufficient
to do a basic stability check of the TS ground state.

Like the bond-operator representation, that is known to
be so useful to the studies of dimer phases [43,44,46], we
derive here a plaquette-operator representation for the spin-1
operators on a triangular plaquette in the reduced basis
{|s〉,|tmν〉}. For this, let us first introduce the singlet and triplet
plaquette operators ŝ† and t̂

†
mν , that are defined as follows:

|s〉 := ŝ†|ø〉, (2a)

|tmν〉 := t̂†mν |ø〉. (2b)

Here, ŝ† are t
†
mν are the bosonic creation operators in a

Fock space with vacuum |ø〉. The projection of the infinite-
dimensional Fock space onto the 10-dimensional Hilbert space
spanned by |s〉 and |tmν〉 is done by the following constraint
on the number of these bosons:

ŝ†ŝ +
∑
m,ν

t̂†mν t̂mν = 1. (3)

In terms of the singlet and triplet plaquette operators intro-
duced above, the Hamiltonian of a triangle in the reduced
basis can be written as follows:

Ĥ
 ≈ −3J ŝ†ŝ − 2J
∑
m,ν

t̂†mν t̂mν. (4)

Next, we represent the spin-1 operators of a triangle in terms
of the plaquette operators. Following, they are written in an
approximate form that is simple and useful. For more details,
please refer to Appendix B:

Sj,z ≈ s̄√
3
{cj Q̂z1̄ − sj Q̂z1}, (5a)

Sj,α ≈ 2s̄√
3
{cj−1Q̂α1̄ − sj−1Q̂α1} for α = x,y. (5b)

Here, j = 1,2,3 denote the spins of a triangle (see Fig. 1 for
spin labels), and α = x, y, and z their components. Moreover,

cj = cos ( 2πj

3 ) and sj = sin ( 2πj

3 ). The “coordinate” operators
Q̂αν for ν = 1,1̄ and α = x, y, and z are defined as Q̂αν =
(t̂†αν + t̂αν)/

√
2, where the operators t̂αν are given as follows:

t̂zν = (−i)
1−ν

2 t̂0ν, (6a)

t̂xν = (−i)
1−ν

2 (t̂1̄ν − t̂1ν)/
√

2, (6b)

t̂yν = i
1+ν

2 (t̂1̄ν + t̂1ν)/
√

2. (6c)

Likewise, we define the conjugate “momentum” operators
P̂αν = i(t̂†αν − t̂αν)/

√
2, such that [Q̂αν,P̂α′ν ′] = iδαα′δνν ′ and

P̂ 2
αν + Q̂2

αν = 2t̂†αν t̂αν + 1. This canonical change of variables
(from t̂ , t̂† to P̂ ,Q̂) is found to be convenient for further
analysis. Since the ν = 0 triplet operators t̂m0 do not appear in
Eqs. (5), we keep them as they are.

Apart from neglecting the quintets and heptets, we have
made two other simplifying approximations in writing Eqs. (5).
One, we have treated the singlet operator ŝ as mean field
s̄. Through s̄, which is a measure of the singlet amplitude
per triangle, we describe in mean-field approximation the TS
phase on the kagome lattice. Two, we have ignored the terms
bilinear in triplet operators (see Appendix B), which amounts
to neglecting the interaction between triplets in the effective
theory. These are two basic approximations of the mean-field
triplon analysis. For a general discussion on triplon mean-field
theory, please take a look at Refs. [43,44,46].

B. Plaquette-triplon mean-field theory

Now, we turn to the model Ĥ of Sec. II, and work
out an effective theory for it in terms of the plaquette
operators introduced in the previous subsection. We rewrite
the intratriangle interactions (J terms) in Ĥ as Eq. (4), with
ŝ replaced by the uniform TS mean field s̄. We also add to it
the local constraint s̄2 + ∑

αν t̂†αν t̂αν = 1, through an average
Lagrange multiplier λ. The intertriangle interactions (J ′ and
J ′′ terms) in Ĥ are rewritten using Eqs. (5). These steps lead
to an effective bilinear problem of triplons that, after Fourier
transformation, takes the following form in the momentum
space:

Ĥt = e0N +
∑

k

∑
α=x,y,z

{
λ

[
t̂
†
α0(k)t̂α0(k) + 1

2

]

+ 1

2

[
λP̂†

α(k)P̂α(k) + Q̂†
α(k)Vα,k Q̂α(k)

]}
. (7)

Here, N is the total number of triangular unit cells in the
kagome lattice, and e0 = −s̄2J + λs̄2 − 2J − 11

2 λ. Moreover,
the operators

Q̂α(k) =
[
Q̂α1(k)
Q̂α1̄(k)

]
and P̂α(k) =

[
P̂α1(k)
P̂α1̄(k)

]
, (8)

where Q̂α1(k) and Q̂α1̄(k) are the Fourier components
of Q̂α1(r) and Q̂α1̄(r), respectively. That is, Q̂αν(r) =

1√
N

∑
k eik·rQ̂αν(k) for ν = 1,1̄. Here, r denotes the position

vector of the triangular units of kagome lattice (see Fig. 1),
and k is the wave vector in the first Brillouin zone of the
corresponding reciprocal lattice (see Figs. 3 and 9). Like-
wise, P̂αν(r) = 1√

N

∑
k eik·rP̂αν(k). Since Q̂αν(r) and P̂αν(r)
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are Hermitian, therefore, Q̂†
αν(k) = Q̂αν(−k) and P̂ †

αν(k) =
P̂αν(−k). Moreover, [Q̂αν(k),P̂α′ν ′ (k′)] = iδαα′δνν ′δk+k′=0,
while the Q̂αν(k)’s commute among themselves and the same
for P̂αν(k)’s.

Since the ν = 0 triplon modes, denoted here by
t̂α0(k) = 1√

N

∑
r e−ik·r t̂α0(r), stay decoupled and local, the

effective triplon model Ĥt is essentially a problem of two
coupled “oscillators,” described by Q̂α1(k) and Q̂α1̄(k) that
are coupled in Eq. (7) via

Vα,k =
[
λ − 2s̄2εα1,k s̄2ηα,k

s̄2η∗
α,k λ − 2s̄2εα1̄,k

]
. (9)

The Vα,k is a Hermitian matrix, with η∗
α,k as the complex

conjugate of ηα,k. The εαν,k and ηα,k are given as

εx1̄,k = εy1̄,k

= 1
3

[
J ′(2 cos k · a3 + 2 cos k · a1 − cos k · a2)

+ J ′′(4 cos k · a2 + cos k · a3 + cos k · a1)
]
, (10a)

εz1̄,k = 1
12

[
J ′(2 cos k · a2 + 2 cos k · a3 − cos k · a1)

+ J ′′(4 cos k · a1 + cos k · a2 + cos k · a3)
]
, (10b)

εx1,k = εy1,k

= J ′ cos k · a2 + J ′′(cos k · a3 + cos k · a1), (11a)

εz1,k = 1
4 [J ′ cos k · a1 + J ′′(cos k · a2 + cos k · a3)], (11b)

ηx,k = ηy,k

= 2√
3
{J ′[eik·a3 − eik·a1 − i sin k · a2]

+ J ′′[i(sin k · a1 + 2 sin k · a2 − sin k · a3)

+ eik·a1 − eik·a3 ]}, (12a)

ηz,k = 1

2
√

3
{J ′[e−ik·a2 − e−ik·a3 − i sin k · a1]

+ J ′′[i(2 sin k · a1 + sin k · a2 − sin k · a3)

− e−ik·a2 + e−ik·a3 ]}. (12b)

Here, a1 and a2 are the primitive vectors of the trimerized
kagome lattice (as shown in Fig. 1), and a3 = a1 + a2.

The coupled oscillator problem of Ĥt can be diagonalized
by making a unitary rotation of Q̂α1(k) and Q̂α1̄(k) to the new
“coordinates” Q̂α+(k) and Q̂α−(k), given by[

Q̂α+(k)
Q̂α−(k)

]
= U†

α,k

[
Q̂α1(k)
Q̂α1̄(k)

]
. (13)

The unitary matrix Uα,k that diagonalizes Ĥt is given as

Uα,k =
[

cos θα,k

2 −e−iφα,k sin θα,k

2

eiφα,k sin θα,k

2 cos θα,k

2

]
, (14)

where θα,k = tan−1 {|ηα,k|/(εα1̄,k − εα1,k)}, and ηα,k =
|ηα,k|e−iφα,k with |ηα,−k| = |ηα,k| and φα,−k = −φα,k.

In the diagonal form, the Ĥt can be written as follows:

Ĥt = e0N +
∑

k

∑
α=x,y,z

{
λ

[
t̂
†
α0(k)t̂α0(k) + 1

2

]

+
∑
μ=±

Eαμ,k

[
t̂†αμ(k)t̂αμ(k) + 1

2

]}
. (15)

Here, t̂αμ(k) =
√

Eαμ,k

2λ
Q̂αμ(k) + i

√
λ

2Eαμ,k
P̂αμ(k) are the

renormalized triplon operators, and

Eαμ,k =
√

λ(λ − 2s̄2ξαμ,k) (16)

are the triplon energy dispersions with ξαμ,k = [(εα1̄,k +
εα1,k) − μ

√
(εα1̄,k − εα1,k)2 + |ηα,k|2]/2. The label μ = ± for

new operators defined in Eqs. (13) is analogous to but different
from the old label ν. For a stable problem of triplons with
positive energy dispersions, the ground state is given by the
vacuum of the triplon excitations. Thus, for the Ĥt of Eq. (15),
we get the following ground-state energy per unit cell:

eg = e0 + 3λ

2
+ 1

2N

∑
k

∑
α=x,y,z

∑
μ=±

Eαμ,k. (17)

This eg is a function of two unknown mean-field parameters λ

and s̄2. We determine them by minimizing eg . That is, ∂λeg =
0 and ∂s̄2eg = 0, which gives us the following mean-field
equations:

s̄2 = 4 − 1

2N

∑
k

∑
α=x,y,z

∑
μ=±

λ − s̄2ξαμ,k

Eαμ,k
, (18a)

λ = J + λ

2N

∑
k

∑
α=x,y,z

∑
μ=±

ξαμ,k

Eαμ,k
. (18b)

The self-consistent solution of the above mean-field equations
gives the physical values of λ and s̄2.

This formulation offers two distinct physical solutions
based on whether the triplon dispersions are gapped or gapless.
The Ĥt has nine triplon dispersions. The three t̂α0,k’s have flat
dispersions at λ. Then, there are six nontrivial Eαμ,k. Note
that Exμ,k is exactly same as Eyμ,k, but they are different from
Ezμ,k. When the minimum of the lowest of these dispersions in
the Brillouin zone is strictly greater than zero, it means there is
an energy gap that protects the TS ground state against triplon
excitations. We surely expect this to happen when J ′ and J ′′
are near about zero. In this “gapped” TS phase, Eqs. (18) are
applicable in the given form.

However, as the intertriangle couplings grow stronger, the
triplon gap may close at some point q in the Brillouin zone
for strong enough J ′ or J ′′. That is, Eαμ,q = 0, for some
lower triplon branches. If it happens, then the corresponding
k = q terms in Eqs. (18) will become singular, giving rise
to triplon condensation described by the condensate density
nc, a third unknown in the problem. But, now we also have
a third equation, which is the condition of gaplessness, in
addition to Eqs. (18) that also need to be revised for a nonzero
nc. From our calculations described in the next section, we
either get Eαμ,q = 0 at q = (0,0) for α = x,y and μ = ±
in a region for J ′′ > 0, or we get Eα−,q = 0 for α = x,y at
q = π (x̂ + √

3ŷ)/3 ≡ (π
3 , π√

3
) in another region for J ′′ < 0.

014427-4



PLAQUETTE-TRIPLON ANALYSIS OF MAGNETIC . . . PHYSICAL REVIEW B 93, 014427 (2016)

The other dispersions are found to be always gapped (see
Figs. 3, 6, and 11).

The revised equations applicable to the gapless case of
q = (0,0) can be written as follows:

λ = 2s̄2ξαμ,q (same for α = x,y and μ = ±)

= 2s̄2(J ′ + 2J ′′), (19a)

s̄2 = 4 − nc − 1

2N

∑
k �=q

∑
α=x,y

∑
μ=±

λ − s̄2ξαμ,k

Eαμ,k

− 1

2N

∑
k

∑
μ=±

λ − s̄2ξzμ,k

Ezμ,k
, (19b)

nc = s̄2

(
1 − J

λ

)
− s̄2

2N

∑
k �=q

∑
α=x,y

∑
μ=±

ξαμ,k

Eαμ,k

− s̄2

2N

∑
k

∑
μ=±

ξzμ,k

Ezμ,k
. (19c)

The equation for λ here follows directly from the zero gap
condition Eαμ,q = 0. The other two equations are derived
from Eqs. (18) by defining the condensate density, nc as the
contribution of the singular terms in Eq. (18a). That is, nc ≡

1
2N

∑
α=x,y

∑
μ=±(λ − s̄2ξαμ,q)/Eαμ,q in the present case. For

the related discussion on triplon analysis, one may look at
Refs. [44,46] (which similarly study the dimer problems).

Likewise, in the other gapless phase with q = (π
3 , π√

3
), the

following equations would apply:

λ = 2s̄2ξα−,q (same for α = x,y) = 2s̄2(J ′ − 4J ′′), (20a)

s̄2 = 4 − nc − 1

2N

∑
k �=q

∑
α=x,y

λ − s̄2ξα−,k

Eα−,k

− 1

2N

∑
k

[ ∑
α=x,y

λ − s̄2ξα+,k

Eα+,k
+

∑
μ=±

λ − s̄2ξzμ,k

Ezμ,k

]
,

(20b)

nc = s̄2

(
1 − J

λ

)
− s̄2

2N

∑
k �=q

∑
α=x,y

ξα−,k

Eα−,k

− s̄2

2N

∑
k

[ ∑
α=x,y

ξα+,k

Eα+,k
+

∑
μ=±

ξzμ,k

Ezμ,k

]
. (20c)

Here, nc ≡ 1
2N

∑
α=x,y(λ − s̄2ξα−,q)/Eα−,q. Physically, a

nonzero nc and a q account for the AF order with ordering
wave vector q in the ground state. Equations (22) and (23) in
Sec. IV B describe the magnetic moments in terms of nc and
q in the two ordered phases.

IV. RESULTS AND DISCUSSION

To determine the ground-state properties of Ĥ within the
triplon mean-field theory, we numerically solve the self-
consistent equations derived in the previous section. In our
calculations, we put J = 1 and take 0 � J ′ � 1. We keep the
second-neighbor coupling J ′′ small, but allow it to take both
positive and negative values (|J ′′| � 0.6).

A. Gapped trimerized singlet phase

According to the theory presented in the last section, the
energy gap to triplon excitations decides if the ground state is
nonmagnetic (TS) or magnetically ordered. As the trivial case
of independent triangles is surely gapped and nonmagnetic,
a region around (J ′,J ′′) = (0,0) is also expected to be so.
We identify this region of gapped TS phase by following
the change in the triplon gap �t by gradually increasing the
intertriangle couplings J ′ and J ′′. If and when the gap closes,
that is �t becomes zero, it marks the quantum phase transition
to an AF ordered phase. In the following, we discuss this first
in the nearest-neighbor interaction model for J ′′ = 0, and then
in the full model including J ′′.

1. J ′′ = 0

In this case, J ′ is the only interaction variable. We calculate
the triplon gap �t by solving Eqs. (18) for λ and s̄2 for
different values of J ′ between 0 and 1. Figure 2 presents
the calculated values of λ, s̄2, and �t as a function of J ′. At
J ′ = 0, it gives s̄2 = 1 and �t = 1, which is exact for the
independent triangles. A notable feature of these data is the
nonzero triplon gap in the entire range of J ′ between 0 and 1.
Although �t first decreases as J ′ increases from 0, but then
it turns upwards and keeps growing. It is an interesting result
which states that, for J ′′ = 0, the nonmagnetic TS ground
state is stable against triplon excitations, and it adiabatically
extends all the way upto J ′ = 1, starting from the exact case at
J ′ = 0. This result clearly favors the recent claims of a gapped
trimerized singlet ground state for the nearest-neighbor spin-1
KHA model [34–36].

To see where the gap �t comes from in the Brillouin zone,
we plot the dispersions in Fig. 3. Of the nine triplon dispersions
given in Eq. (15), the two flat dispersions Ex−,k = Ey−,k =√

λ(λ − 2s̄2J ′) are the lowest. Hence, the triplon gap in this
case is �t =

√
λ(λ − 2s̄2J ′). Two other dispersions Eα+,k (for

α = x,y) also become degenerate with the lowest ones at k =
(0,0), the � point. Moreover, Ez−,k and λ (for three ν = 0

FIG. 2. The singlet weight s̄2, the Lagrange multiplier λ, and the
triplon gap �t calculated from the self-consistent Eqs. (18) for J ′′ = 0
(the nearest-neighbor case of Ĥ ).
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FIG. 3. The triplon dispersions [as in Eq. (15)] for the spin-1
trimerized kagome Heisenberg antiferromagnet with J ′′ = 0. Also
shown here is the first Brillouin zone of this lattice.

branches) are also flat. But they are not important for the
discussion here, as they are not the lowest in energy.

2. J ′′ �= 0

While the nonmagnetic TS phase is stable for the nearest-
neighbor case of Ĥ , it would be nice to know how the
second-neighbor interaction J ′′ affects it, or if it generates
any magnetic order in the ground state. For the classical KHA
problem, it is well known that even an infinitesimal amount of
J ′′ causes ordering [45].

For different fixed values of J ′, we solve Eqs. (18) with J ′′
varying from 0 to ±0.6, and follow the triplon gap. We find that
a nonzero J ′′ makes the flat modes Eαμ−,k dispersive, which
reduces the gap, and can even close it altogether. For J ′′ < 0,
the triplon gap always closes at some nonzero critical value
of J ′′. The gap also closes for J ′′ > 0, but only when J ′ >

0.144. That is, if J ′ is too small, then the ground state stays
gapped for any positive J ′′. By scanning the J ′-J ′′ plane for
the critical points where the triplon gap vanishes, we compute
the boundaries of the TS phase. It is found to be stable in an
extended region of the J ′-J ′′ plane. For instance, we find the
TS phase for J ′ = 1 to occur in the range of −0.245 < J ′′ <

0.186, beyond which the triplon gap closes and the AF orders
set in. The quantum phase diagram thus generated is shown in
Fig. 4. Clearly, the case of positive J ′′ is more frustrated, as it
favors the nonmagnetic TS phase more than the negative J ′′.

We identify the gapless phase for positive J ′′ with wave
vector q = (0,0), the � point, at which the triplon gap vanishes.
In the other gapless phase, for negative J ′′, the gap closes
at the K point in Brillouin zone, that is, q = (π/3,π/

√
3).

See Figs. 6 and 11 for the dispersions in the two phases. As
mentioned before, these gapless phases exhibit magnetic order
through Bose condensation of triplons with their respective q’s
as the ordering wave vectors. The precise forms of the magnetic
orders in the two gapless phases are described in the following.

B. Antiferromagnetically ordered phases

We now calculate the properties of the gapless phases from
Eqs. (19) and (20). These equations enable the computation

FIG. 4. The quantum phase diagram of the spin-1 trimerized
kagome Heisenberg model Ĥ of Eq. (1), from triplon analysis. The
gapped trimerized singlet phase, which is exact at (J ′,J ′′) = (0,0),
extends adiabatically up to J ′ = 1, and over a range of J ′′. For
negative J ′′, it undergoes a transition to the gapless phase with
coplanar 120◦-antiferromagnetic order having

√
3 × √

3 structure.
It makes another transition, for positive J ′′, to a gapless coplanar
antiferromagnetic phase with ordering wave vector q = (0,0). In this
phase, the magnetic moments deviate from 120◦ orientations by δ,
which changes with J ′ and J ′′, and becomes zero only when J ′′ = J ′.

of triplon condensate density nc in addition to giving us the
quasiparticle dispersions (and s̄2).

The knowledge of nc is of great physical significance.
Together with q, it determines the magnetic order in a
gapless phase. A nonzero nc implies spontaneous triplon “dis-
placements” 〈Q̂αν(r)〉, which through the plaquette-operator
representation given in Eqs. (5), determine the local magnetic
moments 〈Sj (r)〉 on the kagome lattice. Since the triplons
with dispersions Ezμ,k do not condense (as they are gapped;
see Figs. 6 and 11), we get 〈Q̂zν(r)〉 = 0. However, the
condensation for α = x,y at q gives the following nonzero
displacements:

〈Q̂x1̄〉=
√

2nc1̄ sin (q · r), 〈Q̂x1〉=
√

2nc1 cos (q · r), (21a)

〈Q̂y1̄〉=
√

2nc1̄ cos (q · r), 〈Q̂y1〉=−
√

2nc1 sin (q · r). (21b)

Here, nc1 and nc1̄ are the condensate densities for ν = 1,1̄
(that are same for α = x,y). Hence, nc = 2(nc1̄ + nc1). Since
nc1 and nc1̄ can in general be different, we define a parameter
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ζ = nc1/nc1̄. In terms of nc and ζ , we can write nc1̄ = nc

2(1+ζ )

and nc1 = ζnc

2(1+ζ ) .
By putting these triplon displacements into the plaquette-

operator representation for spins, we get the following general
form of the magnetic moments:

mj (r) = mj (cos [ϕj − q · r], sin [ϕj − q · r],0). (22)

Here, mj (r) = 〈Sj (r)〉 is the magnetic moment due to
j th spin in the triangular unit cell at position r, with
three components mj,x(r) = mj cos [ϕj − q · r], mj,y(r) =
mj sin [ϕj − q · r], and mj,z(r) = 0. These moments are ob-
viously coplanar. Their amplitudes mj and the angles ϕj are
given below for j = 1, 2, and 3:

(m1,ϕ1) =
(

2s̄

√
nc

3(1 + ζ )
,
π

2

)
, (23a)

(m2,ϕ2) =
(

m1

√
1 + 3ζ

2
,ϕ1 + 2π

3
+ δ

)
, (23b)

(m3,ϕ3) =
(

m2,ϕ1 − 2π

3
− δ

)
. (23c)

Here, δ = tan−1 [
√

3(1 − √
ζ )/(1 + 3

√
ζ )]. The mj (r)’s on

every triangle exactly add up to zero, as it should be in an
antiferromagnetic phase. From these general considerations,
now we turn to the specific cases.

1. Coplanar AF order with q = (0,0)

From Eqs. (19), applicable to the phase with Goldstone
mode at q = (0,0), we calculate λ, s̄2, and nc. In Fig. 5, we
plot nc as a function of J ′′ for fixed values of J ′, alongside
�t of the gapped phase. It shows a quantum phase transition
characterized by the triplon gap that goes to zero continuously
at the critical point, and nc that grows continuously on the
other side of the critical point starting from zero at the critical
point. The s̄2 and λ also exhibit a kinklike behavior across
the transition. In Fig. 6, we show the triplon dispersions, of

FIG. 5. The triplon gap �t and the condensate density nc vs J ′′.
Together, they characterize the quantum phase transition from the
gapped TS phase to the q = (0,0) AF ordered phase for Ĥ of Eq. (1).
Inset: λ and s̄2 vs J ′′.

FIG. 6. The triplon dispersions [as given in Eq. (15)] in the
gapless AF phase with Goldstone mode at q = (0,0). In this phase,
the four dispersions Eαμ,k for α = x,y and μ = ± go to zero linearly
in |k|, at the � point.

which the four dispersions with α = x,y and μ = ± go to zero
linearly in |k| at q = (0,0), the � point.

We infer the magnetic order in this phase from Eqs. (22)
and (23). Its salient features are as follows. First, the magnetic
moments are independent of r, obviously because q = (0,0).
That is, the mj (r)’s in all the triangular unit cells look identical,
as shown in Fig. 7.

FIG. 7. The coplanar antiferromagnetic order with q = (0,0).
Here, the magnetic moments, denoted as Ã, B̃, and C̃, are arranged
identically in all the unit cells (red triangles). The angle between Ã

and B̃ is 120◦ + δ, which is same as the angle between Ã and C̃. The
magnitude of B̃ is equal to that of C̃, but shorter than that of Ã. Refer
to Eqs. (23) for details.
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FIG. 8. The deviation δ (in degrees) from the 120◦ orientation
and the magnitudes of the magnetic moments (m1 � m2 = m3) in
the q = (0,0) phase. Note that δ = 0 and m1 = m2 = m3 only when
J ′ = J ′′.

Second, the angles between the magnetic moments in each
unit cell are ϕ{2,3} − ϕ1 = 120◦ + δ and ϕ3 − ϕ2 = 120◦ − 2δ,
where δ is nonzero except when ζ = 1. Their magnitudes are
related as m1 � m2 = m3, which become equal only when
ζ = 1. See Fig. 8 for typical values of δ and mj ’s which depend
upon J ′ and J ′′. These features are clearly at variance with the
perfect 120◦-AF order known from the semiclassical analysis
of the KHA problem for large spins [40,45]. But then, quite
unlike the semiclassical analysis, ours is a calculation with
reference to the nonmagnetic TS state, with no presumptions
of any magnetic order whatsoever. Here, the magnetic order
with a deviation δ from the 120◦-AF order has emerged
spontaneously through the triplon dynamics present in Ĥt .
For instance, in the other gapless phase for negative J ′′ (to
be discussed next), the same triplon analysis gives us the
perfect 120◦-AF order with

√
3 × √

3 structure that is same
as known from semiclassical analysis. Hence, the AF order
that we have got here for q = (0,0) phase looks like a genuine
finding. In fact, the semiclassical analysis would miss this
order completely because there the local moments in the
reference state are given to be of same magnitudes, which
leave their relative-angles with no choice but to be 120◦ on AF
triangles. In our triplon analysis, all of this is decided for itself
by the triplon dynamics. We neither fix their magnitudes nor
the angles from outside.

This brings us to the third point of note that is about ζ , which
effects the deviation of the moments from 120◦ orientation
through δ, and makes their magnitudes unequal. The ζ in this
phase arises as the ratio of the slopes (triplon velocities) v+ and
v− of Eα+,k and Eα−,k with respect to |k| at the � point. More

precisely, ζ = v−
v+

=
√

J ′+2J ′′−|J ′−J ′′ |
J ′+2J ′′+|J ′−J ′′ | . As we see in Fig. 6, these

slopes are visibly different. Therefore, in general, ζ < 1 and
δ �= 0. However, when J ′′ = J ′, then ζ = 1 and δ = 0◦. Only
in this case, the q = (0,0) phase has perfect 120◦-AF order
of the moments of equal magnitudes. In the quantum phase
diagram shown in Fig. 4, this special case is highlighted by
the dashed J ′′ = J ′ line. On either side of this line, ζ < 1 and
δ �= 0. For example, close to the critical point for J ′ = 1, δ

FIG. 9. The static structure factor S(k) for the coplanar magnetic
order (as in Fig. 7) in the q = (0,0) phase. Here, b1 and b2 are
the reciprocal vectors corresponding to a1 and a2 of the kagome
lattice (see Fig. 1), the points on whose reciprocal lattice are given
by G = ν1b1 + ν2b2, where ν1 and ν2 are integers. The four filled red
circles at (ν1,ν2) = (0, ±1) and ±(1, −1) denote the Bragg peaks of
equal intensity that is different from the intensity of two other equal-
intensity Bragg peaks denoted as the hollow red circles at (±1,0).
The hollow and the filled circles would all have the same intensity if
δ = 0. Note that the Bragg peaks occur at some corners of the higher
Brillouin zones (BZ2, BZ3, BZ4), but not in the first Brillouin zone
(BZ1).

is about 9◦. The typical change in δ and the magnitudes as a
function of positive J ′′ for a fixed J ′ are shown in Fig. 8.

Lastly, we discuss an experimental signature of this interest-
ing q = (0,0) AF order on the kagome lattice. To this end, we
calculate the static structure factor of the magnetic moments in
this ordered state, which has the translational symmetry of the
underlying kagome lattice, but has the triangular unit cells of
reduced (isosceles as opposed to equilateral) rotational sym-
metry (due to nonzero δ). We define the static structure factor
as S(k) ∝ |m(k)|2, where m(k) = ∑

j,r e−ik.(r+ρj )mj (r), with
r = l1a1 + l2a2 running over the Bravais lattice of the kagome
lattice (l1 and l2 are integers) and j = 1,2,3. Moreover,
ρ1 = 0, ρ2 = a1/2 and ρ3 = (a1 + a2)/2 are the positions of
the moments within a triangle. For the moments mj (r), given
by Eqs. (22) and (23) for q = (0,0), we get S(k) ∼ fG δk=G,
where G = ν1b1 + ν2b2 are the points of the reciprocal lattice,
and the form factor fG is given in the following:

fG = m2
1

[
(1 + 3ζ )δν2=odd + 4δν1=odd δν2=even

]
. (24)

Here, ν1 and ν2 are integers, and b1 = π (x̂ + 1√
3
ŷ) and b2 =

2π√
3
ŷ are the primitive vectors reciprocal to the a1 and a2 of the

kagome lattice (see Figs. 1 and 9).
The notable features of this S(k), that would show up in a

neutron diffraction experiment, are as follows. One, the Bragg
peaks do not occur when both ν1 and ν2 are even integers. That
means, no peak at the � point in the first Brillouin zone (BZ1 of
Fig. 9). This condition also implies that the Bragg peaks form
a kagome lattice in the reciprocal space. Two, there are two
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FIG. 10. The triplon gap �t and the condensate density nc

describing the quantum phase transition from the gapped TS phase to
the gapless phase with Goldstone mode at q = ( π

3 , π√
3
). Inset: λ and

s̄2 vs J ′′.

sets of Bragg peaks distinguished by their intensities I(ν1,ν2).
While the intensities of all the peaks for odd integer values of ν2

(regardless of ν1) are same and proportional to (1 + 3ζ )m2
1, for

an odd ν1 and even ν2, the intensity is proportional to 4m2
1. For

instance, the Bragg peaks at the four points (ν1,ν2) = (0, ±1)
and ±(1, −1) have the same intensity, which is different from
the intensity of two other peaks at (±1,0). In Fig. 9, these two
sets of Braggs peaks are shown, respectively, by the fllled and
the hollow red circles. From the ratio of these intensities, one
can experimentally measure ζ , and hence δ, the deviation from
the 120◦-AF order. One can use the formula

I(1,0)

I(0,1)
= 4

1 + 3ζ
= 4 sin2

(
π

6
+ δ

)
(25)

to find ζ and δ. (The ζ , which is the ratio of the triplon velocities
at � point, can also be measured alternatively by measuring
triplon dispersions from inelastic neutron scattering.) Note
that, for ζ = 1, we get the same intensity for all the Bragg
peaks, as it should be for the perfect 120◦-AF order with q =
(0,0) on the kagome lattice [47].

2. Coplanar 120◦-AF order with
√

3 × √
3 structure

The solutions of Eqs. (20) determine the nature of the
gapless phase for negative J ′′. The condensate density nc

and other quantities, calculated as a function of J ′′ for fixed
J ′, are plotted in Fig. 10. Here again, we see a continuous
rise of nc starting from zero at the critical point. Moreover,
the dispersions Eα−,k (for α = x,y) go to zero linearly at
q = (π/3,π/

√
3) = (b1 + b2)/3, the K point, as shown in

Fig. 11.
Interestingly, ζ is always equal to 1 in this gapless phase.

This is so because the condensation of the triplons with
dispersion Eα−,k contributes equally to nc1 and nc1̄, as Q̂α−(q)
is an equal weight linear combination of Q̂α1(q) and Q̂α1̄(q).
Thus, in this phase, we have δ = 0, and m1 = m2 = m3 =
s̄
√

2nc/3. That is, the magnetic moments in every triangle are

FIG. 11. The energy dispersions of the triplon excitations in the
gapless AF phase with Goldstone mode at q = ( π

3 , π√
3
). Here, two

degenerate dispersions Ex−,k and Ey−,k go to zero linearly at q, that
is, K point in the Brillouin zone (see Fig. 3).

equal in magnitude, and orientated at 120◦ angle relative to
each other. But now they have r-dependent angles ϕj − q · r,
as given in Eq. (22). It means that the magnetic moments will
rotate from one triangle to another, while keeping their internal
relative angles fixed at 120◦.

To understand the r dependence of the magnetic moments,
let us write r as r = l1a1 + l2a2, where l1 and l2 are integers. In
the present case, q = (b1 + b2)/3, therefore, q · r = 2π

3 (l1 +
l2). It immediately implies that the moments will rotate by
2π
3 , if l1 + l2 changes by −1 or 2. Or, they will rotate by

− 2π
3 , if l1 + l2 changes by 1 or −2. The moments will not

rotate, however, if the change in l1 + l2 occurs in integer
multiples of 3. The magnetic structure that results from
these considerations is shown in Fig. 12. It consists of three
interpenetrating sublattices of the triangles shown in red, blue,
and purple colors. The magnetic moments in the triangles of
one sublattice have the same 120◦ orientation, which differs
from the orientations on the other two sublattices by ±2π/3.
This is the familiar coplanar 120◦-AF order with

√
3 × √

3
structure. In a diffraction measurement, this magnetic structure
would express through the Bragg peaks at K points in the first
Brillouin zone, and also at other suitable points in the extended
Brillouin zone, as shown in Ref. [47].

We end this section with a brief comparative note on
other studies of KHA model of quantum spins with first- and
second-neighbor interactions. As it appears, there are hardly
any studies on spin-1 KHA with first- and second-neighbor
interactions, except for a few Schwinger boson calculations
which broadly agree on the occurrence of two ordered phases
[q = (0,0) and

√
3 × √

3; both with 120◦-AF order] for
different signs of J ′′ (and J ′ = J > 0 in our notation), but
undermine the quantum-disordered phase between the two
for spin-1 [48,49]. They do not find any deviation from
the 120◦-AF order in the q = (0,0) phase. The studies on
the corresponding spin- 1

2 model, that has been investigated
more actively by different methods, also claim to find the
same (120◦-AF) ordered phases, separated by a nonmagnetic
phase [50–52]. However, in Ref. [50] for spin- 1

2 J1-J2

KHA, the 120◦-AF order for q = (0,0) is noted to be most
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FIG. 12. The coplanar 120◦-antiferromagnetic order with order-
ing wave vector q = ( π

3 , π√
3
) = (b1 + b2)/3. The magnetic moments,

denoted as A, B, and C, in every triangle are of equal magnitude
s̄
√

2nc/3, and form 120◦ angle relative to each. The moments in the
triangles of same color are oriented identically, but rotated by ±2π/3
between the triangles of different colors. The “

√
3 × √

3” magnetic
lattice, formed of three interpenetrating sublattices of triangles, has a
unit cell consisting of three differently colored triangles.

conspicuous when J2(=J ′′) ≈ J1(=J ′ = J ), and to have
enhanced numerical uncertainty away from J2/J1 ≈ 1. While
the first of these observations conforms to having δ = 0 on
J ′′ = J ′ line in our Fig. 4, the second one possibly hints at the
ordered phase with a nonzero δ. In the light of our Fig. 9 and
Eq. (25), a careful relook at the spin structure factor of the
spin- 1

2 J1-J2 problem would be able to decide if the q = (0,0)
phase there is of the same type as we have found here. In fact,
the structure factor calculated in Ref. [52] for J2/J1 = 0.4
looks (with naked eyes) very much like our Fig. 9, with a
slight difference in the intensities at (1,0) and (0,1), and the
like points, suggesting a nonzero δ in the q = (0,0) phase.

V. SUMMARY

We now conclude by summarizing the main points. Mo-
tivated by the current research on spin-1 kagome quantum
antiferromagnets, we have studied a spin-1 Heisenberg model,
the Ĥ of Eq. (1), on trimerized kagome lattice (see Fig. 1).
The Ĥ is a problem of coupled antiferromagnetic triangles
(with intratriangle interaction J = 1), which in the absence of
intertriangle couplings J ′ and J ′′ trivially realizes the exact
TS (trimerized singlet) ground state with zero local magnetic
moments and a finite-energy gap to triplet excitations. Here,
we have studied the stability of this TS ground state, and
its transition to ordered phases, as a function of J ′ and J ′′.
This we have done by deriving a bosonic plaquette-operator

representation for spin-1 operators in terms of the singlet
and triplet eigenstates of a triangle [see Eqs. (5) and the
Appendixes], and then writing an effective triplon model Ĥt

of Eq. (7) for the Ĥ with reference to the TS state. The notable
outcomes of this triplon analysis are as follows.

For J ′′ = 0, that is, in the nearest-neighbor case of Ĥ ,
the TS ground state is found to be always gapped and hence
stable against triplon excitations. It smoothly extends right
up to J ′ = 1 (the untrimerized model), in agreement with the
recent numerical findings of the same in the nearest-neighbor
spin-1 kagome Heisenberg antiferromagnetic model [34–36].
The TS phase is also found to be stable over a range of
J ′′, before undergoing transition to two gapless ordered AF
(antiferromagnetic) phases, one with ordering wave vector
q = (0,0) for positive J ′′, and the other with q = (π/3,π/

√
3)

for negative J ′′. The quantum phase diagram obtained from
these calculations is presented in Fig. 4. The magnetic order
in the phase with Goldstone modes at q = (π/3,π/

√
3) is the

familiar coplanar 120◦-AF order with
√

3 × √
3 structure (see

Fig. 12). In the other AF phase with q = (0,0), the magnetic
moments are coplanar, but of different magnitudes (two short
and one long in every triangle) and deviate from 120◦ angle rel-
ative to each other. These deviations, characterized by an angle
δ, are found to arise from the difference in the triplon velocities
at q = (0,0) [see Figs. 6 and 7, and Eqs. (21)–(23)], and depend
on J ′ and J ′′. Only when J ′′ = J ′, the moments become equal
in magnitude and form a perfect 120◦-AF order (with δ = 0).
This interesting coplanar AF order with a deviation δ, for
positive J ′′, is a new find with a scope for further investigations
in the kagome antiferromagnets of low quantum spins.
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APPENDIX A: EIGENSTATES OF THE SPIN-1
HEISENBERG PROBLEM ON A TRIANGLE

Here, we compute the eigenstates of the Heisenberg model,
given in the following, of three quantum spin-1’s:

Ĥ
 = J (�S1 · �S2 + �S2 · �S3 + �S3 · �S1). (A1)

The Ĥ
 has spin-rotation symmetry due to which the total
spin S = S1 + S2 + S3 is conserved. Therefore, its eigenstates
are the total-spin eigenstates given by the total-spin quantum
number S = 0,1,2,3, and the total-Sz with values m = ±3, ±
2, ±1,0. It also has a discrete threefold rotational symmetry
that leads to an additional conserved quantum number ν =
±1,0, describing three discrete rotations ων of the triangle.
Here, ω = ei2π/3 is a cube root of unity. Together, these
two symmetries make it possible to exactly determine the
eigenstates and eigenvalues of Ĥ
.

We denote the product states of three spin-1’s as |m1m2m3〉
in the Sz basis, where mj = 1,0,1̄ are the eigenvalues of the
spin operators Sj,z for j = 1,2,3. Here, m̄ denotes “−m.”
We use this notation for writing negative m’s. First, we
sectorize these states according to their total-Sz quantum
number m = m1 + m2 + m3, as given in Table I. Then, we
reorganize the states within each m sector according to the
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TABLE I. The basis states of Ĥ
 according to their total-Sz

quantum number m. The states for negative values of m can be
obtained from the positive-m states by doing Sz inversion operation,
that is, 1 ↔ 1̄ and 0 ↔ 0.

m |m1m2m3〉
3 |111〉
2 |110〉, |101〉, |011〉
1 |100〉, |010〉, |001〉, |111̄〉, |11̄1〉, |1̄11〉
0 |000〉, |11̄0〉, |101̄〉, |011̄〉, |1̄10〉, |1̄01〉, |01̄1〉

quantum number ν of the discrete threefold rotation. The basis
states in terms of m and ν are given in Table II. Since m and
ν are conserved with respect to Ĥ
, the states from different
m-ν subspaces do not mix under Ĥ
. This greatly reduces
the eigenvalue problem. We finally write the Ĥ
 as matrix in
each m-ν subspace independently, and solve the corresponding
eigenvalue problem. The eigenstates |S,m; ν〉 of Ĥ
 thus found
are given in the following:

Heptets. These are unique S = 3 and ν = 0 eigenstates of
Ĥ
 with eigenvalue 3J :

|3,3; 0〉 = |111〉, (A2a)

|3,2; 0〉 = 1√
3

(|110〉 + |101〉 + |011〉), (A2b)

|3,1; 0〉 = 1√
15

[2(|100〉 + |010〉 + |001〉)

+ |111̄〉 + |11̄1〉 + |1̄11〉], (A2c)

|3,0; 0〉 = 1√
10

[
2|000〉 + |11̄0〉 + |1̄01〉 + |011̄〉

+ |1̄10〉 + |101̄〉 + |01̄1〉]. (A2d)

TABLE II. The basis states of Ĥ
 in terms of the quantum number
ν of threefold rotation. To obtain negative-m states, do the Sz inversion
operation on the positive-m states.

m ν Basis states

3 0 |111〉
0 1√

3
(|110〉 + |101〉 + |011〉)

2 1 1√
3
(|110〉 + ω|101〉 + ω2|011〉)

−1 1√
3
(|110〉 + ω2|101〉 + ω|011〉)

0 1√
3
(|100〉 + |010〉 + |001〉),

1√
3
(|111̄〉 + |11̄1〉 + |1̄11〉)

1 1 1√
3
(|100〉 + ω|010〉 + ω2|001〉),

1√
3
(|111̄〉 + ω|11̄1〉 + ω2|1̄11〉)

−1 1√
3
(|100〉 + ω2|010〉 + ω|001〉),

1√
3
(|111̄〉 + ω2|11̄1〉 + ω|1̄11〉)

0 |000〉, 1√
3
(|101̄〉 + |01̄1〉 + |1̄10〉),

1√
3
(|11̄0〉 + |1̄01〉 + |011̄〉)

0 1 1√
3
(|101̄〉 + ω2|01̄1〉 + ω|1̄10〉),

1√
3
(|11̄0〉 + ω2|1̄01〉 + ω|011̄〉)

−1 1√
3
(|101̄〉 + ω|01̄1〉 + ω2|1̄10〉),

1√
3
(|11̄0〉 + ω|1̄01〉 + ω2|011̄〉)

The negative-m eigenstates |S,m̄; ν〉 can be obtained
by changing |m1m2m3〉 to |m̄1m̄2m̄3〉 in the corresponding
positive-m eigenstates |S,m; ν〉. For example, |3,3̄〉 = |1̄1̄1̄〉,
and likewise for other negative-m eigenstates.

Quintets. These are S = 2 eigenstates with eigenvalue equal
to 0. Here, we get two different sets of quintets, one each for
ν = 1 and 1̄, as written in the following:

|2,2; ν〉 = 1√
3

(|110〉 + ων̄ |011〉 + ων |101〉), (A3a)

|2,1; ν〉 = 1√
6

[|100〉 + ων |010〉 + ων̄ |001〉

− (|1̄11〉 + ων |11̄1〉 + ων̄ |111̄〉)], (A3b)

|2,0; ν〉 = 1√
6

[|01̄1〉 + ων |101̄〉 + ων̄ |1̄10〉

− (|11̄0〉 + ων |011̄〉 + ων̄ |1̄01〉)]. (A3c)

Here, ν̄ = −ν, and the negative-m states can be obtained by
doing the Sz inversion (1 ↔ 1̄) of the above states.

Triplets. Next, we have three sets of triplets, one each
for ν = 0, 1, and 1̄, with eigenvalue, −2J . Thus, Ĥ
 has 9
degenerate S = 1 eigenstates. Here, we denote the triplet states
|1,m; ν〉 as |tmν〉. This slight change in notation is introduced
to facilitate a convenient notation for the plaquette-operator
representation (in the reduced space of the triplets and the
singlet), as used in the main text (see Sec. III A). These triplets
are written as follows:

(for m = 0 and ν = 0)

|t00〉 = 1√
15

[−3|000〉 + |101̄〉 + |01̄1〉 + |1̄10〉

+ |11̄0〉 + |1̄01〉 + |011̄〉], (A4a)

(for m = 0 and ν = 1,1̄)

|t0ν〉 = 1√
6

[|101̄〉 + ων |1̄10〉 + ων̄ |01̄1〉

+ |011̄〉 + ων |1̄01〉 + ων̄ |11̄0〉], (A4b)

(for m = 1,1̄ and ν = 0)

|tm0〉 = 1√
15

[|m00〉 + |0m0〉 + |00m〉

− 2(|m̄mm〉 + |mm̄m〉 + |mmm̄〉)], (A4c)

(for m = 1,1̄ and ν = 1,1̄)

|tmν〉 = 1√
6

[|m00〉 + ων |0m0〉 + ων̄ |00m〉

+ |m̄mm〉 + ων |mm̄m〉 + ων̄ |mmm̄〉]. (A4d)

Singlet. Finally, we write the only singlet eigenstate, that
is, |0,0; 0〉, of Ĥ
. It has has an eigenvalue of −3J . Here, we
denote it as |s〉:

|s〉 = 1√
6

[|11̄0〉 − |1̄10〉 + |1̄01〉 − |101̄〉 + |011̄〉 − |01̄1〉].
(A5)
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For an antiferromagnetic Ĥ
, that is J > 0, the singlet at
−3J is the lowest-energy eigenstate. The triplets at −2J are
the lowest excited states, while the quintets and the heptet sit
further up at the higher energies.

APPENDIX B: PLAQUETTE-OPERATOR
REPRESENTATION OF THE SPIN-1

OPERATORS OF A TRIANGLE

We now derive the plaquette-operator representation for the
spin-1 operators of an antiferromagnetic triangle in its reduced
10-dimensional basis {|s〉,|tmν〉}. Here, |s〉 is the singlet state
and |tmν〉’s are nine degenerate triplets given in Eqs. (A5)
and (A4), respectively. This is the minimal basis that can be
used to describe the low-energy dynamics of the trimerized
kagome model Ĥ of Eq. (1).

The operators Sj,z and Sj,+ are the z component and the
raising operator, respectively, of the j th spin on a triangle,
where j = 1,2,3 (see Fig. 1 for spin labels). Let us, for
convenience, denote the 10 basis states as |bl〉, where the
integer l runs from 0 to 9. More precisely,

|b0〉 = |s〉, (B1a)

|bl〉 = |tmν〉 for l = 3m + ν + 5, (B1b)

where both m and ν = 1̄,0,1. In this notation, we can write
the spin operators as Sj,z = ∑

l,l′ Mll′
j,z|bl〉〈bl′ | and Sj,+ =∑

l,l′ Mll′
j,+|bl〉〈bl′ |, where the matrix elements are defined

as Mll′
j,z = 〈bl |Sj,z|bl′ 〉 and Mll′

j,+ = 〈bl|Sj,+|bl′ 〉. Next, we

define the bosonic operators b̂
†
l such that

|bl〉 := b̂
†
l |ø〉. (B2)

These plaquette operators (corresponding to the eigenstates of
a triangular plaquette) live in a Fock space with vacuum |ø〉
and satisfy the constraint

∑
l b̂

†
l b̂l = 1. We finally write the

plaquette-operator representation of the spin-1 operators on a
triangle as

Sj,z =
∑
l,l′

Mll′
j,z b̂

†
l b̂l′ and Sj,+ =

∑
l,l′

Mll′
j,+ b̂

†
l b̂l′ , (B3)

where the matrices Mj,z and Mj,+ are given in Eqs. (B4)–
(B9), with l going from 0 for the first row to 9 for the last row,
and likewise for the column index l′.

The general representation in Eq. (B3) is the basis of a more simplified plaquette-operator representation in Eqs. (5) that we
have used for doing triplon analysis in the main text. There, we have approximated ŝ, that is b̂0, by a mean-field s̄ and kept
only those triplet terms that are coupled with s̄, neglecting the triplet-only terms of Eq. (B3). This latter approximation amounts
to ignoring triplon-triplon interactions in the effective theory, akin to ignoring the interaction between magnons in the linear
spin-wave analysis:

Mz
1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ω−1
6 0 ω2−1

6 0 0 0

0 − 1
3 −

√
5

18
1
6 0 0 0 0 0 0

0 −
√

5
18 − 1

3 −
√

5
18 0 0 0 0 0 0

0 1
6 −

√
5

18 − 1
3 0 0 0 0 0 0

ω2−1
6 0 0 0 0 ω2+1√

10
ω+1

2 0 0 0

0 0 0 0 ω+1√
10

0 ω2+1√
10

0 0 0
ω−1

6 0 0 0 ω2+1
2

ω+1√
10

0 0 0 0

0 0 0 0 0 0 0 1
3

√
5

18 − 1
6

0 0 0 0 0 0 0
√

5
18

1
3

√
5

18

0 0 0 0 0 0 0 − 1
6

√
5

18
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

M+
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i

√
2
3 0 i

√
2
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 ω

3
√

2
ω

3
√

5
ω

3
√

2
0 0 0 0 0 0

0 −
√

5
3 −

√
2

3 −
√

5
3 0 0 0 0 0 0

0 ω2

3
√

2
ω2

3
√

5
ω2

3
√

2
0 0 0 0 0 0

−i

√
2
3 0 0 0 ω2

3
√

2
−

√
5

3 −
√

2ω
3 0 0 0

0 0 0 0 4ω2

3
√

5
−

√
2

3
4ω

3
√

5
0 0 0

i

√
2
3 0 0 0 −

√
2ω2

3 −
√

5
3

ω

3
√

2
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

014427-12



PLAQUETTE-TRIPLON ANALYSIS OF MAGNETIC . . . PHYSICAL REVIEW B 93, 014427 (2016)

M2,z=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1−ω2

6 0 1−ω
6 0 0 0

0 − 1
3 −

√
5ω

3
√

2
ω2

6 0 0 0 0 0 0

0 −
√

5ω2

3
√

2
− 1

3 −
√

5ω

3
√

2
0 0 0 0 0 0

0 ω
6 −

√
5ω2

3
√

2
− 1

3 0 0 0 0 0
1−ω

6 0 0 0 0 − ω2√
10

−ω
2 0 0 0

0 0 0 0 − ω√
10

0 − ω2√
10

0 0 0
1−ω2

6 0 0 0 −ω2

2 − ω√
10

0 0 0 0

0 0 0 0 0 0 0 1
3

√
5ω

3
√

2
−ω2

6

0 0 0 0 0 0 0
√

5ω2

3
√

2
1
3

√
5ω

3
√

2

0 0 0 0 0 0 0 −ω
6

√
5ω2

3
√

2
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

M2,+=

⎛
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0
√

2(ω−1)
3 0

√
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0 1
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2
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3
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5
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2
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2
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5ω
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2

3 0 0 0

0 0 0 0 4ω

3
√

5
−
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2

3
4ω2

3
√

5
0 0 0

√
2(1−ω)

3 0 0 0 −
√

2
3 −

√
5ω2

3
ω

3
√

2
0 0 0

⎞
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, (B7)

M3,z=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − i

2
√

3
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2
√

3
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5ω2

3
√
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2
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2
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

M3,+=

⎛
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