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Theory of the spin Seebeck effect in antiferromagnets

S. M. Rezende,1,* R. L. Rodrı́guez-Suárez,1,2 and A. Azevedo1
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The spin Seebeck effect (SSE) consists in the generation of a spin current by a temperature gradient applied in
a magnetic film. The SSE is usually detected by an electric voltage generated in a metallic layer in contact with
the magnetic film resulting from the conversion of the spin current into charge current by means of the inverse
spin Hall effect. The SSE has been widely studied in bilayers made of the insulating ferrimagnet yttrium iron
garnet (YIG) and metals with large spin-orbit coupling such as platinum. Recently the SSE has been observed
in bilayers made of the antiferromagnet MnF2 and Pt, revealing dependences of the SSE voltage on temperature
and field very different from the ones observed in YIG/Pt. Here we present a theory for the SSE in structures
with an antiferromagnetic insulator (AFI) in contact with a normal metal (NM) that relies on the bulk magnon
spin current created by the temperature gradient across the thickness of the AFI/NM bilayer. The theory explains
quite well the measured dependences of the SSE voltage on the sample temperature and on the applied magnetic
field in MnF2/Pt.
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I. INTRODUCTION

The spin Seebeck effect (SSE), discovered in 2008 by
Uchida and co-workers [1], refers to the generation of spin
currents in magnetic materials by thermal gradients, and is
the analog of the long-known thermoelectric Seebeck effect
whereby a charge current is created by a temperature gradient
in a metal [2–5]. The effect has been widely studied in
structures containing metallic ferromagnets (FMs) such as
permalloy, or insulating ferrimagnets such as yttrium iron
garnet (YIG) [1–12]. The SSE is usually detected by the
voltage created in a metallic layer (ML) attached to the FM
layer as a result of the conversion of the spin current into
a charge current by means of the inverse spin Hall effect
(ISHE). The FM material can be a metal, a semiconductor, or
an insulator, while the ML is made of a paramagnetic metallic
material with strong spin-orbit coupling, such as Pt or Ta, or a
FM material such as permalloy [13], or an antiferromagnetic
metal such as IrMn [14,15]. Depending on the experimental
arrangement, the spin current generated by the SSE can be
perpendicular or parallel to the temperature gradient, charac-
terizing the so-called transverse or longitudinal configurations,
respectively. While the transverse SSE can be observed in both
metallic and insulating magnetic materials, the longitudinal
spin Seebeck effect (LSSE) is observed unambiguously only
in insulators because they are free from the anomalous Nernst
effect [16]. The longitudinal configuration has proved to be
more interesting for scientific research and for applications
such as in thermopower conversion devices [17]. There is
currently intense effort to understand in detail the origins of
the SSE and to find new materials and structures for possible
applications.

Antiferromagnetic (AF) materials have been gaining re-
newed attention due to the emergence of AF spintronics
[18–31]. Commonly employed passively to pin the mag-
netization of an adjacent ferromagnetic layer in spin-valve
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devices through the interfacial exchange bias [32–34], AF
materials have very unique dynamic features that might have
applications in novel devices [31]. They have been shown
to be efficient spin current detectors by means of the spin
Hall effect [14,15,25,28] and to be operative for dynamic spin
pumping similarly to ferromagnets [26]. Two important recent
developments have been the theoretical demonstration that the
thermal coupling between antiferromagnetic insulators (AFIs)
and normal metals (NMs) is relatively strong [29], and the
experimental observation of the SSE in bilayers made of the
antiferromagnet MnF2 and Pt with SSE voltages comparable
to those in ferromagnets [30]. Interestingly, the measured
dependences of the SSE voltage in MnF2/Pt on sample
temperature and applied magnetic field are very different from
the ones observed in YIG/Pt.

In this paper we present a theory for the SSE in AFI/NM
structures that relies on the bulk magnon spin current created
by the temperature gradient across the thickness of the
bilayer. We show that in a two-sublattice antiferromagnet the
spin currents carried by two magnon modes have opposite
directions, so that a relatively intense magnetic field is
necessary to produce a net magnon spin current. As in FMI/NM
structures, part of the spin current in the AFI flows into the
NM layer where it is converted to a charge current by the
ISHE, producing a voltage proportional to the temperature
gradient. The theory is applied to AFI/NM bilayers made with
two well-known AF materials, MnF2 and FeF2. The calculated
dependences of the SSE voltage on the sample temperature and
on the applied field are in good qualitative agreement with the
recent measurements of Wu et al. in MnF2/Pt [30].

II. SPIN WAVES AND SPIN CURRENTS
IN ANTIFERROMAGNETS

In this section we review the quantum approach to the
properties of spin waves in a two-sublattice antiferromagnet
and derive an expression for the spin current in terms of the
two magnon modes of the spin excitations. We consider the
Hamiltonian of an antiferromagnet consisting of contributions
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from Zeeman, exchange, and magnetic anisotropy energies in
the form [35,36]

H = −γ �

∑
i

�Si · �H +
∑
i �=j

2Jij
�Si · �Sj − D

∑
i

(
Sz

i

)2
, (1)

where γ = gμB/� is the gyromagnetic ratio, g is the spec-
troscopic splitting factor, μB is the Bohr magneton, � is the
reduced Plank constant, �Si is the spin (in units of �) at a
generic lattice site i, �H is the magnetic field considered to be
uniform and lying in the z direction of a Cartesian coordinate
system, Jij is the exchange constant of the interaction between
spins �Si and �Sj , and D is the uniaxial anisotropy constant. We
treat the quantized excitations of the magnetic system with
the approach of Holstein-Primakoff [37,38], which consists
of transformations that express the spin operators in terms
of boson operators that create or destroy magnons. In the
first transformation the components of the local spin operators
are related to the creation and annihilation operators of spin
deviations at site i. Since there are two sublattices we introduce
different spin deviation operators for each sublattice. Denoting
the spins of the up and down sublattices by subscripts 1 and 2,
respectively, we have in the linear approximation [35,36]

S+
1i = (2S)1/2 ai, S−

1i = (2S)1/2 a
†
i , Sz

1i = S − a
†
i ai,

(2)

S+
2i = (2S)1/2 b

†
i , S−

2i = (2S)1/2 bi, Sz
2i = −S + b

†
i bi,

(3)

where a
†
i , ai , and b

†
i , bi , are the creation and destruction

operators for spin deviations at sites 1 and 2, which satisfy the
boson commutation rules [ai,a

†
j ] = δij , [ai,aj ] = 0, [bi,b

†
j ] =

δij , and [bi,bj ] = 0. The next step consists in introducing a
transformation from the localized field operators to collective
boson operators that satisfy the commutation rules [ak,a

†
k′ ] =

δkk [ak,ak′ ] = 0, [bk,b
†
k′ ] = δkk′ [bk,bk′ ] = 0,

ai = N−1/2
∑

k

ei�k·�ri ak, bi = N−1/2
∑

k

ei�k·�ri bk, (4)

where N is the number of spins in each sublattice and �k is a
wave vector. Using Eq. (4) in Eqs. (2) and (3) we obtain the
Hamiltonian

H =
∑

k

� (Aka
†
kak + Bkb

†
kbk + Ckakb−k + C∗

k a
†
kb

†
−k), (5)

where

Ak = γ (HE + HA + H ), Bk = γ (HE + HA − H ), (6)

Ck = γ HE γk, γk = (1/z)
∑

δ

exp(i �k · �δ), (7)

where we have assumed only nearest-neighbor intersublattice
exchange interaction with parameter J, HE = 2SzJ/γ � and
HA = (2S − 1) D/γ � are, respectively, the effective exchange
and anisotropy fields, z is the number, and �δ is the vector
connecting nearest neighbors. In order to diagonalize the
Hamiltonian in Eq. (5) we introduce a canonical transforma-
tion to new magnon operators obtained by linear combinations
of the operators associated with the up and down sublattices

[35,36],

ak = ukαk − vkβ
†
−k, (8)

b
†
−k = −vkαk + ukβ

†
−k, (9)

where α
†
k,αk , and β

†
k ,βk are the creation and destruction

operators for the two magnon modes which satisfy the boson
commutation rules. With the transformations (8) and (9) the
Hamiltonian (5) becomes diagonal in the form

H =
∑

k

� (ωαkα
†
kαk + ωβkβ

†
kβk), (10)

where ωαk and ωβk are the frequencies of the two magnon
modes, given by

ωαk = ωk + γ H, ωβk = ωk − γ H, (11)

ωk = γ
[
H 2

c + H 2
E

(
1 − γ 2

k

)]1/2
, (12a)

Hc = [HA (2HE + HA)]1/2, (12b)

and the coefficients in Eqs. (8) and (9) that diagonalize the
Hamiltonian are

uk =
(

ωZB + ωk

2ωk

)1/2

, vk =
(

ωZB − ωk

2ωk

)1/2

, (13)

where ωZB = γ (HE + HA) and u2
k − v2

k = 1. For a body-
centered tetragonal lattice the structure factor in Eq. (7)
becomes

γk = cos(kxa/2) cos(kya/2) cos(kzc/2), (14)

where a and c are the lattice parameters. The frequencies
of the two magnon modes are minimum at the center of the
Brillouin zone, k = 0, where γk = 1, ωα0 = γ (Hc + H ), and
ωβ0 = γ (Hc − H ). As k increases both frequencies increase
and reach the maximum values at the Brillouin zone boundary,
where γk = 0, ωα = ωZB + γ H , and ωβ = ωZB − γ H . Note
that, as the field increases, the frequency of the α mode
increases while the one of the β mode decreases. If the field
exceeds the critical value Hc the frequency ωβ0 becomes
negative and there is a transition to the spin-flop phase, with
the spin vectors pointing nearly in opposite directions and
approximately perpendicular to the field.

The eigenstates of the Hamiltonian in Eq. (10) are denoted
by |nαk〉 and |nβk〉 and are generated by the successive
application of the creation operators α

†
k and β

†
k to the vaccum

state |0〉. These states have a precisely defined number
of magnons and uncertain phase, and they have vanishing
transverse components of the spin, as can be seen by the
relations 〈nαk|αk |nαk〉 = 0 and 〈nβk|βk |nβk〉 = 0. In order
to establish a correspondence between classical and quantum
spin waves one should use the concept of coherent magnon
states [39], defined in analogy to the coherent photon states
introduced by Glauber [40]. In an antiferromagnet the coherent
states corresponding to the two magnon modes are defined as
the eigenstates of the annihilation operators,

αk |ck〉 = ck |ck〉, βk |dk〉 = dk |dk〉, (15)

where the eigenvalues ck and dk are complex numbers.
Although the coherent states are not eigenstates of the
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Hamiltonian and as such do not have a well-defined number of
magnons, they have nonzero expectation values for the spins
S+

1 and S+
2 with a well defined phase. It can be shown that

the numbers of magnons in the coherent states |ck〉 and |dk〉
are, respectively, |ck|2 and |dk|2. Using Eqs. (2)–(9) and (15)
one can obtain the expectation values of the spins in the two
sublattices in the coherent magnon state |ck〉,

〈ck|S+
1 |ck〉 = (2S/N )1/2ukcke

−iωαk t ,
(16)

〈ck|Sz
1|ck〉 = S − (1/N ) u2

k |ck|2,

〈ck|S+
2 |ck〉 = −(2S/N )1/2vkcke

−iωαk t ,
(17)

〈ck|Sz
2|ck〉 = −S + (1/N ) v2

k |ck|2,
where, for simplicity, we have omitted the exponential spatial
dependence. This result is consistent with the semiclassical
picture [26,41], whereby in the αk mode both up and down
spins undergo a circular clockwise precession with frequency
ωαk and tilted with angles that are proportional to the square
root of the magnon number and with ratio uk/vk . Similarly,
for the βk mode the spins are in counterclockwise precession
with frequency ωβk and with angles with the ratio vk/uk .

Finally, we derive an expression for the spin current carried
by magnons in the antiferromagnet with simple arguments. The
total z component of the spin angular momentum carried by
magnons is given by Sz = ∑

i (Sz
1i + Sz

2i). With Eqs. (2)–(4)
and (15) one can show that the operator that has nonzero
expectation value in magnon states is given by

Sz =
∑

k

�[−α
†
kαk + β

†
kβk]. (18)

The opposite signs in the angular momenta of the two
modes is consistent with the semiclassical picture of the spins
precessing in opposite directions. Since the two magnon modes
have the same group velocity

⇀

vmk = k̂ ∂ωk/∂k, the spin current
density operator is

�J z
S = �

V

∑
k

�vmk[−α
†
kαk + β

†
kβk]. (19)

In the Appendix we present a more formal derivation of
this equation. Note that the spin current in an antiferromagnet
vanishes when the magnon numbers in the two modes are the
same, as previously pointed out in Ref. [42].

III. THEORY FOR THE SPIN SEEBECK EFFECT
IN ANTIFERROMAGNETS

The bulk magnon spin current model has been developed
for the LSSE in ferromagnets and successfully applied to
explain quantitatively a variety of experimental data in YIG/Pt
[43,44]. Here we extend the model to a bilayer structure made
of an antiferromagnetic insulator, such as MnF2 and FeF2,
and a normal metal with strong spin-orbit coupling, such as
Pt. The AFI/NM is subject to a temperature gradient across
the thickness of the bilayer, as illustrated in Fig. 1. While in
the FMI/NM bilayer the spin current created by the thermal
gradient is carried by one magnon mode, here the spin current
has contributions from the two magnon modes. A fraction

AFI NM

y

x
H

z
SJ

sp
SJ

0y

T

CJ

FIG. 1. Illustration of the antiferromagnetic insulator
(AFI)/normal metal (NM) bilayer structure employed to investigate
the spin Seebeck effect showing the coordinate axes, the magnon
spin current produced by the temperature gradient, and the charge
current generated by the ISHE in the NM.

of the spin current in the AFI flows into the NM layer and
is converted into a transverse charge current by the ISHE
[45–47] producing the dc voltage at the ends. The magnon
spin current due to the thermal gradient across the thickness
can be calculated with the Boltzmann equation imposing the
appropriate boundary conditions. We choose a coordinate
system with the z axis parallel to the magnetic field H applied
in the plane along the easy axis of the AFI, and the y axis
perpendicular to the plane, as shown in Fig. 1. Denote by
nμk the number of magnons in the μ = α,β mode with wave
number k in the whole volume V of the AFI layer, by n0

μk the
number in thermal equilibrium, given by the Bose-Einstein
distribution,

n0
μk = 1

e�ωμk/kBT − 1
, (20)

and by δnμk(�r) = nμk(�r) − n0
μk the number in excess of

equilibrium. Since the contributions of the two modes to
the spin current have opposite signs, we define the magnon
accumulation δnm(�r) as

δnm(�r) = 1

(2π )3

∫
d3k

[(
nαk − n0

αk

) − (
nβk − n0

βk

)]
, (21)

and the bulk magnon spin current density with polarization z

is [43,44,48,49]

�J z
S = �

(2π )3

∫
d3k �vmk

[(
nαk(�r) − n0

αk

) − (
nβk(�r) − n0

βk

)]
,

(22)
where �vmk is the k magnon velocity. The distribution of the
magnon number under the influence of a thermal gradient
can be calculated with the Boltzmann transport equation
[50]. In the absence of external forces and in the relaxation
approximation, in steady state the Boltzmann equation gives
for each magnon mode

nμk(�r) − n0
μk = −τμk �vmk · �∇n0

μk−τμk �vmk · �∇[
nμk(�r) − n0

μk

]
,

(23)
where τμk is the μk magnon relaxation time. Using Eq. (23) in
Eq. (22) one can show that the spin current is the sum of two
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parts, �J z
S =

⇀

J z

S �∇T
+

⇀

J z
Sδn, where

�J z

S �∇T
= − �

(2π )3

∫
d3k

[
ταk

∂n0
αk

∂T
−τβk

∂n0
βk

∂T

]
�vmk(�vmk · �∇T )

(24)
is the contribution of the flow (convection) of magnons due to
the temperature gradient and

�J z
Sδn = − �

(2π )3

∫
d3k[ταk �vmk �vmk · �∇δnαk

− τβk �vmk �vmk · �∇δnβk] (25)

is due to the spatial variation of the magnon accumulation.
With the temperature gradient normal to the plane, Eq. (24)
gives the spin current in the y direction

J z
S = Sz

S
�∇T , (26)

Sz
S = �

2

6π2kBT 2

∫
dk k2v2

mk

[
e�ωβk/kBT ωβk

ηβk(e�ωβk/kBT − 1)2

− e�ωαk/kBT ωαk

ηαk(e�ωαk/kBT − 1)2

]
, (27)

where T is the average temperature and ημk = 1/τμk is the μk

magnon relaxation rate. We consider the magnon and phonon
systems to have the same temperature T [51]. Equation (27)
contains the most relevant dependences of the SSE on the
sample temperature and applied field. It shows, for instance,
that the spin current, and hence the SSE, vanishes for H = 0,
at any temperature, because the two modes have the same
occupancy, as previously predicted theoretically [42] and
confirmed by experiments [30]. In order to calculate the full
expression for the spin current in the NM layer it is necessary to
consider the contribution from the magnon diffusion given by
Eq. (25), the spin pumping process resulting from the magnon
accumulation at the AFI/NM interface, and the boundary
conditions at the surface and interfaces, as it has been done
for FMI/NM bilayers [43,44]. Here we aim at describing the
dependences of the SSE in AFI/NM structures on temperature
and field, so we simply consider that the spin current in the
NM layer is proportional to the term in Eq. (26),

J z
S (0) = C g

↑↓
eff Sz

S
�∇T , (28)

where C is a factor that involves the thickness of the AFI layer,
the magnon diffusion length, and other material parameters
[43,44], and g

↑↓
eff is the real part of the effective spin mixing

conductance at the interface that takes into account the
spin-pumped and backflow spin currents [52]. Due to the
inverse spin Hall effect, the spin current density �J z

S flowing
into the NM generates a charge current density given by
�JC = θSH (2e/�) �J z

S × �σ , where θSH is the spin-Hall angle
and �σ is the spin polarization [45–47], and produces a SSE
voltage at the ends of the NM layer. Since the spin current at
the AFI/NM interface diffuses into the NM [52] with diffusion
length λN , in order to calculate the voltage at the ends of the
NM layer one has to integrate the charge current density along

x and y so that the SSE voltage becomes [46,47,53]

V = RNwλN

2e

�
θSH tanh

(
tN

2λN

)
J z

S (0), (29)

where RN , tN , and w are, respectively, the resistance, thick-
ness, and width of the NM layer. Thus, with Eqs. (28) and (29)
we have for the spin Seebeck effect voltage

VSSE = RN wλN

2e

�
θSH tanh

(
tN

2λN

)
C g

↑↓
eff Sz

S
�∇T . (30)

As in FMI/NM bilayers, the SSE voltage is proportional
to the temperature gradient across the magnetic layer, to the
spin mixing conductance of the interface, and to the spin-Hall
angle of the NM. The dependences of the voltage on the sample
temperature and on the applied field are contained mainly in
the spin Seebeck coefficient Sz

S .

IV. SPIN SEEBECK EFFECT IN MnF2 AND FeF2

In this section we apply the SSE theory for two anti-
ferromagnetic insulators that attracted considerable attention
in the past, namely, the fluorides FeF2 and MnF2. Both
crystallize in the tetragonal rutile structure exhibiting simple
three-dimensional (3D) antiferromagnetic ordering with two
sublattices at temperatures below the Néel temperature TN and
have had their magnetic, thermodynamic, and dynamic prop-
erties extensively studied [54]. Their magnetic interactions
are dominated by nearest-neighbor exchange, having effective
intersublattice exchange fields on the same order of magnitude,
HE ≈ 550 kOe, and consequently similar Néel temperatures,
TN ≈ 67 and 78 K, respectively, for MnF2 and FeF2 [54]. In
FeF2 the ground state configuration of its magnetic Fe2+ ions
is 3d5(5D4), which has a finite orbital angular momentum and
consequently a large effective anisotropy field HA = 190 kOe,
arising from the single-ion spin-orbit coupling [55,56]. The
large uniaxial anisotropy of FeF2 makes it a prototype 3D
Ising system with its characteristic critical behavior at the
AF-paramagnetic transition at TN [57,58]. On the other hand,
in MnF2 the ground state configuration of the magnetic Mn2+
ions is 3d5(6S5/2), with no orbital angular momentum and thus
very small single-ion anisotropy. The origin of the magnetic
anisotropy of MnF2 lies mainly in the dipolar interaction,
which is sizable in the tetragonal arrangement of the magnetic
ions HA ≈ 8 kOe [59,60], but much smaller than in FeF2. The
representation of the magnetic anisotropy of MnF2 in the form
of Eq. (1) is an approximation that holds very well for most
applications.

For the numerical evaluation of the integral in Eq. (27)
we assume a spherical Brillouin zone with radius km ∼
π/a and use an approximate expression for the struc-
ture factor in Eq. (14), γk = cos(π k/2km), so that the
magnon dispersion relation in Eq. (12) becomes ωk =
γ [ H 2

c + H 2
E sin2(π k/2km)]1/2. Figure 2(a) shows the fre-

quency versus wave number measured in MnF2 by inelastic
neutron scattering at T = 3 K in zero field [61]. The frequency
increases from 0.27 THz at the zone center to 1.63 THz at the
zone boundary due to the effect of exchange. The thick curve
in Fig. 2(a) is the fit of Eq. (12) to data obtained with g = 2.0,
H = 0, HA = 8.02 kOe, and HE = 575 kOe, demonstrating
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FIG. 2. Magnon frequencies in MnF2 and FeF2 at low tempera-
tures. In (a) and (c) the symbols represent inelastic neutron scattering
data of Refs. [61,63] at H = 0 and the solid curves are the dispersion
relations calculated with Eqs. (11) and (12). In (a) the two thin curves
correspond to H = 50 kOe. (b) and (d) show the variation of the
k = 0 frequencies with magnetic field intensity.

that it represents quite well the actual dispersion. This value
of HE is larger than the actual intersublattice exchange field
because Eq. (12) does not take into account the intrasublattice
exchange that exists in MnF2. The thin curves are the disper-
sion relations for the two magnon modes with H = 50 kOe.
In Fig. 2(b) we show the behavior with field of the zone-center
magnon frequencies. The frequency of the down mode (β) goes
to zero at H = Hc where there is the transition from the AF
to the spin-flop (SF) phase. The stability limit of the AF phase
has been accurately measured in MnF2 by antiferromagnetic
resonance (AFMR) techniques [62]. The value Hc = 92.9
kOe measured at T = 4.2 K is a little smaller than the one
calculated with Eq. (12b) and the fields obtained from the fit
because the intrasublattice exchange does not contribute to the
zone-center frequency.

FeF2 has much larger anisotropy than MnF2 so that the
magnon frequencies over the whole Brillouin zone lie in the
few terahertz range, as shown in Fig. 2(c). The inelastic neutron
scattering data of Ref. [63], shown in the figure, can be fitted
with Eq. (12) with g = 2.2, H = 0, HA = 192 kOe and HE =
620 kOe. As in MnF2, the value of HE is larger than the
actual intersublattice exchange field because of the effect of the
intrasublattice exchange. In FeF2 the k = 0 magnon (AFMR)
frequency in zero field is 1.6 THz and its properties have
been studied in detail with far-infrared lasers [64]. The field
dependence of the AFMR frequency in Fig. 2(d) shows that
even with a field as high as H = 200 kOe the frequency of
the down mode is 1 THz. The spin-flop transition (HSF ≈
500 kOe) has been investigated only with very high pulsed
magnetic fields [65] existing in few facilities in the world.
Note that, as recently shown [66], the high magnon frequencies
in AFIs might also be used to operate spin-transfer-torque

nano-oscillators with terahertz frequency driven by dc electric
currents.

In order to evaluate the integral in Eq. (27) one needs the
magnon group velocity vmk = ∂ωk/∂k, which is the same for
both modes. From Eq. (12) with the approximate structure
factor for the tetragonal lattice one obtains

vmk = γ 2H 2
E π

4 km

sin(π q)

ωk

, (31)

where q = k/km is the normalized wave number. With this
expression the coefficient in Eq. (27) becomes

Sz
S = km γ 4H 4

E �
3

24 k2
B

Bs, (32a)

Bs = 1

T 3

∫
dq q2 1

x2
sin2(π q)

×
[

exβ xβ

ηβk(exβ − 1)2 − exα xα

ηαk(exα − 1)2

]
, (32b)

where x = �ωk/kBT and xμ = �ωμk/kBT are normalized
energies.

Initially we apply the theory for the SSE to MnF2, for
which there are recent experimental results by Wu et al. [30].
The integral in Eq. (32b) can be evaluated numerically using
the magnon dispersion in Eqs. (11) and (12) with g = 2.0,
HA = 8.02 kOe, and HE = 575 kOe, and magnon relaxation
rates with dependences on q, T, and H. These dependences,
which have decisive roles in determining the behavior of the
SSE with varying temperature and field, can be obtained with
a combination of experimental and theoretical inputs. The
magnon damping in MnF2, measured with high-resolution
inelastic neutron scattering at T = 30 K in zero field [67], can
be represented very well by ηk = (0.06 + 7.5 q2 − 6.0 q3) ×
1011 s−1 . We have calculated the magnon relaxation rate due
to four-magnon processes, as in Refs. [35,36], and used the
data to determine the adjustable parameters in the theory. The
result agrees quite well with the q-dependent terms of the
measured damping, so we use the four-magnon relaxation
calculation to obtain the temperature and field dependences
of ημk for the two modes. The calculated T dependence for
q in the range 0.10–0.40, from where most contribution to
the integral in Eq. (32) comes, is ηk ≈ aT 3, which is also in
agreement with experiments [67]. Thus we use ημk(q,H,T ) =
η0 + aHμ(7.5 q2 − 6.0 q3) (T/30)3 × 1011 s−1, where η0 is the
residual damping, considered an adjustable parameter, and
aHμ is a factor that expresses the field dependence for each
mode. This has been calculated numerically for q = 0.2 and
fixed T and fitted with the following expressions:

T = 5 K : aHα = 1 + 0.04H + 0.014 (e0.09H − 1),
(33)

aHβ = 1 + 0.0005H + 0.095 (e0.047H − 1),

T = 10 K : aHα = 1 + 0.01H + 0.008 (e0.068H − 1),
(34)

aHβ = 1 + 0.0005H + 0.074(e0.034H − 1),

and for T > 20 K, aHα ≈ aHβ ≈ 1, where H is in kOe.
Figure 3(a) shows the calculated dependence of the SSE

voltage in MnF2/Pt on the magnetic field intensity for four
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FIG. 3. Dependences of the SSE voltage in MnF2/Pt on the
magnetic field H (a) and on the temperature (b), calculated with
Eq. (29).

temperature values. We have used in the calculation η0 =
1.2 × 108 s−1 for the residual damping, which is the value
that best reproduces the initial slope of the experimental data at
T = 5 K. The other adjustable parameter is the factor relating
the voltage with the integral in the spin-Seebeck coefficient,
VSSE = FBS . We used F = 1.5 × 1015 μVK3 s−1 so as to
obtain a value for the plateau similar to the experimental data
at T = 5 K [30]. At any temperature the voltage vanishes
for zero field, because the two modes have the same thermal
occupation and the same relaxation rate, so their spin currents
cancel out. The voltage increases continuously with field up
to close to the spin-flop transition where the slope changes
abruptly. Note that at low T, as the field increases the thermal
number of the down-going (β) mode increases while the
number of the up-going (α) mode decreases. At the same
time, the relaxation rate of the α mode increases faster than
that in the β mode, so that the difference between the two
terms in Eq. (32b) increases faster. This explains why the
initial slope is larger at lower temperatures. In Fig. 3(b) we
show the variation of the SSE voltage with temperature for
several field values, calculated with the same expression for the
relaxation rate and voltage factor but with aHα = aHβ = 1. The
qualitative agreement of the curves in Figs. 3(a) and 3(b) with
the experimental data of Wu et al. [30] is quite good. Of course,
the quantitative comparison of theory with experiments would
require the full treatment of the problem including magnon
diffusion and spin pumping.

One might be surprised that the SSE voltages measured
in MnF2/Pt at T = 5 K are comparable to those in YIG/Pt
at T = 300 K, since MnF2 besides being an antiferromagnet
has a magnon energy gap two orders of magnitude larger
than that in YIG and thus relatively smaller thermal number.
The reason for this is twofold and is based on the fact that
in the bulk magnon SSE model the spin current is determined
by the thermal numbers and the relaxation rate. First, the
density of states of gap magnons with q ≈ 0 is negligible,
and in YIG at T = 300 K the magnons that contribute most
to the SSE have q ≈ 0.3−0.5. Since the frequency of the
zone-boundary magnons in YIG is on the order of 7 THz,
the modes with q ≈ 0.3−0.5 have frequency in the range 1–3
THz, which is larger than in MnF2. The second reason is
that in MnF2 at T = 5 K the magnon relaxation rate in the
important wave number range is ηk ≈ 2 × 108 s−1, while in
YIG at T = 300 K it is two orders of magnitude larger [43].
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FIG. 4. Dependences of the SSE voltage in FeF2/Pt on the
magnetic field H (a) and on the temperature (b), calculated with
Eq. (29).

The calculation of the SSE for FeF2/Pt was done fol-
lowing the same route used for MnF2/Pt. The integral in
Eq. (32b) was evaluated numerically using the magnon
dispersion in Eqs. (11) and (12) with g = 2.2, HA = 192 kOe,
HE = 620 kOe, and the magnon relaxation rates. These
were calculated numerically with four-magnon scattering
processes, as in Refs. [35,36], and fitted with ημk = η0 +
7.5 aHμ q3 (T/20)3 × 1010 s−1, where η0 is the residual damp-
ing, and aHμ is a factor that expresses the field dependence for
each mode. The factors were calculated numerically for fixed
T and q = 0.4, where the integrand in Eq. (32b) peaks, and
fitted with the following expressions:

T = 5 K : aHα = 1 + 0.477 (e0.03H − 1),
(35)

aHβ = 1 + 0.505 (e0.032H − 1),

T = 10 K : aHα ≈ aHβ = 1 + 0.23 (e0.0195H − 1),
(36)

T > 20 K : . aHα ≈ aHβ ≈ 1,

where the field H is in kOe. We use for the residual damping
the value η0 = 2 × 109 s−1 obtained from the extrapolation
to T = 0 of the data in Ref. [55] and for the voltage factor
the same value used for MnF2/Pt, F = 1.5 × 1015 μVK3 s−1,
to allow a comparison. Figures 4(a) and 4(b) show the
results for the SSE voltage dependences, respectively on the
magnetic field intensity for four temperature values and on
the temperature for several values of H. Figure 4(b) shows
the voltage only up to 200 kOe because this is the maximum
field that is available in most laboratories. The first obvious
difference from MnF2/Pt is that the voltage is two orders of
magnitude smaller. This is due to three facts: (1) The higher
magnon frequencies in FeF2 that result in smaller thermal
magnon numbers compared to MnF2; (2) the smaller group
velocity in FeF2, as clearly seen in Fig. 2(c); and (3) the larger
magnon relaxation. For the same reasons, the dependence of
the voltage on H in Fig. 4(a) is quite different from the one
in Fig. 3(a), especially at low T. The voltage is negligible at
T = 5 K, increases with increasing T, and only for T > 20 K
does it decrease as in MnF2/Pt. However, the dependence of
the voltage on T with fixed field shown in Fig. 4(b) is similar
to that for MnF2/Pt in Fig. 3(b). Although the SSE voltage in
FeF2/Pt is in the nanovolt range, it might be experimentally
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detected, as in recent observations of the SSE in paramagnets
[68].

In summary, we have presented a model for the spin
Seebeck effect in bilayers made of an antiferromagnetic
insulator and a normal metal, based on the bulk magnon
spin current created by the temperature gradient across the
thickness of the AFI/NM. As in FMI/NM structures, the spin
current generated in the AFI flows into the NM layer where
it is converted to a charge current by the inverse spin-Hall
effect, producing a voltage proportional to the temperature
gradient. The theory is applied to AFI/NM bilayers made with
two well-known AF materials, MnF2 and FeF2. The calculated
dependences of the SSE voltage on the sample temperature and
on the applied field are in good qualitative agreement with the
recent measurements of Wu et al. in MnF2/Pt [30].
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APPENDIX: DERIVATION OF THE SPIN
CURRENT DENSITY IN AN AFI

Consider the exchange interaction between the spins �S1i

and �S2j of the two sublattices 1 and 2 described by the second
term in Eq. (1),

E1i = 2J
∑

j

�S1i · �S2j , (A1)

where we have considered only the intersublattice exchange
interaction. To find the expression for the exchange spin current
in the antiferromagnet we apply the continuum approximation
to �S1i and �S2j . In Eq. (A1) we write �S1i as �S1(�r) and
its neighboring spin �S2j as �S2(�r + �a), where �r represents
a position vector and �a is the displacement vector of the
j site in sublattice 2, relative to the i site in sublattice 1.
�S2j = �S2(�r + �a) is expanded as

�S2(�r + �a) = �S2(�r) + ∂ �S2

∂�r · �a + 1

2

∂2 �S2

∂�r2
a2. (A2)

Due to symmetry the second term in the expansion vanishes
in the sum in Eq. (A1) so that the the dominant term in the
expansion is the third one and higher-order terms are neglected.
Thus, the exchange effective field is

�Hexch = − 1

γ �

δE1i(�S)

δ �S1i

= −2Ja2z

γ �

∂2 �S2

∂�r2
= − A

M2
∇2 �M2,

(A3)
where z is the number of nearest neighbors, �M1,2 represents
the sublattice magnetizations, and A = 2Ja2zS/γ � is the
stiffness parameter. Using this exchange field in the Landau-

Lifshitz equation of motion for �M1 we obtain

∂ �M1

∂t
= −γ

A

M2

�M1 × ∇2 �M2 = −�∇ ·
(

γ
A

M2

�M1 × ∇ν
�M2

)
.

(A4)
Equation (A4) has the form of the conservation of angular

momentum ∂ �M/∂t = − �∇ · �JMν , so that one can write
for the magnetization current density in the y direction
[48,69]

�JMy = γ
A

M2

(
�M1 × ∂

∂y
�M2

)
. (A5)

From this equation, we can show that the z-polarized spin
current density in the y direction, related to the magnetization
current by J z

S = J z
M/γ , is given by

J z
S = −i

A

2M2

[
−m+

1

dm−
2

dy
+ m−

1

dm+
2

dy

]
, (A6)

where m±
i = mix ± imiy . Using the linear transformations

given by Eqs. (2) and (3), we can write the circular components
of the magnetization in terms of the local creation and
annihilation operators of spin deviations,

m+
1 =

(
γ �

V

)√
2S

∑
i

ai, m−
1 =

(
γ �

V

)√
2S

∑
i

a
†
i ,

(A7)

m+
2 =

(
γ �

V

)√
2S

∑
i

b
†
i , m−

2 =
(

γ �

V

)√
2S

∑
i

bi,

(A8)

Using the transformations given by Eqs. (4) we can express
the spin current (A6) in terms of the collective boson operators
ak and bk ,

J z
S = γ �A

V

[∑
k

k (akb−k + a
†
kb

†
−k)

]
. (A9)

Finally, with the transformations (8) and (9) to the magnon
operators we have in the normal order

J z
S = −γ �A

V

∑
k

2ukvkk(α†
kαk − β

†
kβk), (A10)

where the coefficients uk and vk are given by Eq. (13)
and we have disregarded products of operators for different
modes because they give vanishing expectation values for
any magnon state. From Eqs. (11)–(13) we can show that
2ukvk = γHEγk/ωk . Considering the simple geometrical fac-
tor γk = cos ka and ka � 1, consistent with the continuum
approximation, the group velocity obtained from Eq. (12) is

vmk = ∂ωk

∂k
= 2γ 2H 2

Eγka
2k

2ωk

= γ HEa2k(2ukvk), (A11)

so that with HE = 2SzJ/γ � the spin current density in terms
of the two magnon mode operators becomes

J z
S = − �

V

∑
k

vmk(α†
kαk − β

†
kβk), (A12)

which is the same as Eq. (19) obtained with heuristic
arguments.
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