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Magnetic dipole interactions in crystals

David C. Johnston*

Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Received 3 May 2015; revised manuscript received 4 October 2015; published 13 January 2016)

The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg
spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors
μ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D)
of radius r surrounding a given moment �μi for given magnetic propagation vectors k for collinear and coplanar
noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear
ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé
non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ̂ values are compared with previously reported
results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked
triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form
to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the
predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets
(AFMs) are given. The calculations are extended to the cycloidal noncollinear 120◦ AFM ordering on the
triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular
orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked
3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental
observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D
and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated
using the Weiss molecular field theory for quantum spins, including the magnetic transition temperature Tm and
the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T .
The anisotropic Weiss temperature θp in the Curie-Weiss law for T > Tm is calculated. A quantitative study
of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor
in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and
of the MDIs to Tm and to θp are found to be additive, which simplifies analysis of experimental data. Some
properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic
heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The
anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature TN and the results are
illustrated for a simple tetragonal lattice with c/a > 1, c/a = 1 (cubic), and c/a < 1, where a change in sign of
the χ anisotropy is found at c/a = 1. Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952)],
the dipolar anisotropy of χ above TN = 69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal
compound MnF2 is calculated and found to be in excellent agreement with experimental single-crystal literature
data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling
from 130 K to TN is deduced to arise from dynamic short-range collinear c-axis AFM ordering in this temperature
range driven by the exchange interactions.
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I. INTRODUCTION

Local magnetic moments generate magnetic dipole fields
around them. In local-moment spin systems, the long-range
magnetic dipole interaction between the local magnetic mo-
ments (spins) is always present. However, its strength is
usually small compared to other interactions such as exchange
and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions
between the spins. The thermal-average magnitude of the
interaction energy is of order E ∼ μ2/r3, where μ is the
thermal-average value of the magnetic moment and r is
the distance between nearest-neighbor spins. Taking, e.g.,
μ = 7μB for Gd+3 or Eu+2 (μB is the Bohr magneton) and
r = 3 Å gives E/kB ∼ 0.02 K (kB is Boltzmann’s constant),
which is usually very small compared to the other interactions
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between the spins. However, even when the dipole interactions
are weak, these interactions can be decisive in determining the
orientations of the ordered moments in magnetic structures
of local-moment ferromagnets (FMs) or antiferromagnets
(AFMs).

If the distance between local moments is large enough,
the magnetic dipole interaction can dominate the exchange
interactions in local-moment insulators and result in either
FM or AFM dipolar ordering. Examples include FM ordering
between Mn+3

6 clusters with spin S = 12 at the Curie tem-
perature TC = 0.161(2) K in monoclinic Mn6O4Br4(Et2dbm)6

[1,2], and AFM ordering in the face-centered cubic (fcc)
diamond lattice of rare-earth R atoms (R = Gd, Dy, Er) in
RPO4(MoO3)12 · 30H2O with Néel temperatures TN = 0.01 K
to 0.04 K [3].

The theoretical study of magnetic dipole interactions and
associated magnetic structures in crystals has a long history.
In 1946 Luttinger and Tisza solved for the possible magnetic
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structures of simple cubic (sc), body-centered cubic (bcc),
and fcc Bravais spin lattices arising solely from classical
magnetic dipole interactions, where the ordered moments all
had the same magnitude (equal-moment magnetic structures)
[4]. They found that the ground state for the sc lattice is an
AFM state with propagation vector k = ( 1

2 , 1
2 ,0) r.l.u., whereas

a FM state with k = 0 is the ground state for the bcc and fcc
lattices if the samples are in the shape of long thin needles,
but AFM structures are the most stable structures otherwise,
with k = ( 1

2 , 1
2 ,0) r.l.u. and k = ( 1

2 , 1
2 , 1

2 ) r.l.u., respectively. The
abbreviation r.l.u. means reciprocal lattice unit, where 1 r.l.u. =
2π/a for cubic lattices and a is the cubic lattice parameter.
Cohen and Keffer confirmed using spin-wave theory that
FM cannot be the ground state at T = 0 for pure magnetic
dipole interactions in thin needles of a sc spin lattice but
can be the ground state for bcc and fcc lattices [5]. The
magnetic structures of two-dimensional (2D) Bravais spin
lattices induced by magnetic dipole interactions have also been
investigated [6–10].

Luttinger and Tisza also showed that in a classical cubic
dipolar AFM in the magnetically ordered state at temperature
T = 0 with a magnetic field Hz applied perpendicular to
the easy axis of ordering the component μz of the ordered
moment per spin in the direction of Hz is proportional to
Hz for 0 � Hz � Hc and is equal to the saturation moment
μsat for Hz > Hc, where Hc is termed the critical field [4].
An expression for the magnetic susceptibility χz = μz/Hz for
0 � Hz � Hc was given. The high-field state with H � Hc is
a field-induced paramagnetic (PM) state in which the magnetic
moments are ferromagnetically aligned in the direction of
Hz with μz = μsat. According to the Weiss molecular field
theory (MFT), precisely the same type of μz(Hz) behavior for
the perpendicular magnetization occurs for both collinear and
coplanar noncollinear AFMs with the spins interacting only
by Heisenberg exchange [11]. The susceptibility parallel to the
easy axis at T < TN for dipolar AFM ordering in a uniaxial
(tetragonal or hexagonal) crystal has not been calculated before
to our knowledge.

The so-called pyrochlore spin lattice has attracted much
attention over the past two decades in the context of spin-ice
compounds [12]. This non-Bravais fcc spin lattice with 16
spins per fcc unit cell consists of a 3D network of corner-
sharing tetrahedra formed by either the A or B sublattices
of a pyrochlore-structure compound A2B2X7 or by the B

sublattice of a spinel-structure compound AB2X4. An example
is the Ho sublattice in the pyrochlore compound Ho2Ti2O7,
where, due to crystalline electric field effects, the Ho cations
behave at low T like Ising spins that can only point along the
[111] and equivalent crystal directions (the Ti+4 cations are
nonmagnetic). The spin-ice arrangement of the Ho moments
at low T gives rise to a macroscopic degeneracy and a nonzero
spin entropy at T = 0, as occurs in water ice. Magnetic dipole
interactions between the Ho moments have been determined
to be important to this magnetic behavior [12], and hence these
compounds are sometimes referred to as dipolar spin ices.

On another front, dynamic magnetic fluctuations in long-
range ordered 3D AFMs mediated by magnetic dipole interac-
tions are stronger than for exchange interactions on the same
lattice [3,13], contrary to what might have been anticipated
from the classical origin of the magnetic dipole interaction.

In particular, in the cubic diamond lattice dipolar AFMs
RPO4(MoO3)12 · 30H2O (R = Gd, Dy, Er), White et al. found
that the suppression of the T → 0 susceptibility versus 1/S

(S is the effective spin quantum number) due to quantum
fluctuations was a factor of two stronger than predicted
for the nearest-neighbor Heisenberg model on the diamond
lattice [3]. Corruccini and White found that within spin-wave
theory, the 3D sc lattice exhibits quantum corrections to the
Néel state that are also a factor of two larger than those of
the nearest-neighbor Heisenberg AFM on the same lattice,
indicating that dipolar magnets are more quantum mechanical
than generally suspected, whereas the 2D dipolar square lattice
does not exhibit long-range order at finite temperature [13].
On the other hand, several authors have found that dipolar
interactions in conjunction with Heisenberg interactions can
induce long-range order at finite temperatures on 2D spin
lattices [14–16].

The influence of magnetic dipole interactions on the
magnetic properties of 3D Bravais spin lattices with unit
cell symmetries lower than cubic has been discussed for
particular cases. Rotter has discussed the predictions of
dipolar interactions for the easy axis of collinear AFMs with
AFM propagation vectors k that are determined by isotropic
Heisenberg exchange interactions in a variety of collinear
AFM compounds containing sc, fcc, hexagonal, and body-
centered tetragonal (bct) Gd sublattices [17]. He found that
in most cases the easy axis is consistent with that predicted
for magnetic dipole interactions. Several authors calculated
the local dipolar fields at a lattice site for general simple
tetragonal and bct Bravais spin lattices versus a parameter
not proportional to the c/a ratio [18–20]. Maurya et al.
calculated the influence of magnetic dipole interactions on the
magnetization versus field isotherms of three AFMs containing
Eu+2 spins-7/2 below their Néel temperatures of 12 K to 15
K [21,22].

Classical Monte Carlo (MC) simulations on Heisenberg
spin systems have been carried out on a variety of spin lattices
to examine the influence of magnetic dipole interactions on
the properties with either dipolar interactions only or in
combination with other spin interactions. For purely dipole
interactions, Bouchaud and Zérah studied FM on the fcc
lattice and determined the Curie temperature TC [23]. They
studied the critical exponents at TC and determined the an-
isotropy constants K1 and K2, where they found that the
ordered-moment direction in the collinear FM state at the
lowest T was along [100], with a crossover from [111] at
higher T . Tomita reported MC simulations on 2D triangular,
square, honeycomb, and kagomé spin lattices with only
dipolar interactions and studied the ground-state magnetic
structures and critical phenomena [24]. One result was that
the kagomé lattice has a FM ground state with 1/3 of the spins
disordered at T = 0 [an amplitude-modulated (AM) state]
with residual entropy (“missing entropy”) at T = 0 resulting
from macroscopic degeneracy of the ground state. [An AM
magnetic structure is one where the magnitude of the ordered
moment is not the same for all (identical) spins in the spin
lattice.] Very recent MC simulations on the kagomé lattice
by Holden et al. [25] and Maksymendo et al. [26] instead
found a noncollinear coplanar equal-moment ground-state
magnetic structure on the kagomé lattice. Thus, when an AM
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magnetic structure is obtained theoretically for a particular spin
lattice, this may indicate that a lower-energy equal-moment
magnetic structure exists in which the moments have their
maximum (saturation) value [26]. Other MC simulations
examined the influence of dipolar interactions on the properties
in combination with other interactions [26–28].

In this paper previous work on the effects of magnetic
dipolar interactions on the magnetic and thermal properties of
magnetic systems is significantly extended. Usually exchange
and/or RKKY interactions are stronger than dipole interactions
and determine the nature (FM or AFM) and k of the
magnetic structure. However, when the exchange interactions
are Heisenberglike (isotropic), some sort of anisotropy is
needed to determine the directions of the ordered moments
in the ordered state as discussed above, even if very weak
compared to the exchange interactions. The present work was
initially motivated by the lack of systematic studies of this topic
for uniaxial tetragonal and hexagonal Bravais spin lattices
versus the c/a ratio to compare with experimental results such
as for the Eu+2 spins S = 7/2 in EuCu2Sb2 on a bct sublattice
that exhibit collinear AFM ordering below TN = 5.1 K [29,30].

We study the influence of dipolar interactions on the
magnetic ordering temperature Tm, on the collinear ordered-
moment directions and the temperature T dependence of the
ordered moment and other properties at T � Tm, and on the
Weiss temperature in the Curie-Weiss law at T � Tm in a
systematic way for a variety of spin lattices including 1D,
2D, and 3D spin lattices using our recent formulation of the
Weiss MFT [11]. All spins in a given system are assumed to
be identical and crystallographically equivalent. The 3D spin
lattices studied here include sc, bcc, fcc, simple tetragonal,
bct, and simple hexagonal (triangular) Bravais lattices. Non-
Bravais spin lattices are also studied which include the
honeycomb (chicken-wire) lattice, the kagomé lattice, and the
Shastry-Sutherland lattice. For the uniaxial stacked lattices,
the eigenvalues and eigenvectors of the magnetic dipole
interaction (MDI) tensor are calculated for c/a ratios from 0.5
to 3. We utilize an appropriately modified theory to calculate
the properties of noncollinear AFM structures and compare the
results with calculations assuming collinear AFM structures
for the same k. Within MFT, the contributions of different
sources of molecular fields to the Weiss temperatures and the
magnetic ordering temperatures are additive. Therefore, for
example, when dipolar and exchange interactions are simulta-
neously present, one can calculate the dipole contributions to
good accuracy and then subtract them from the observed values
to obtain the contributions from the exchange interactions.
Then with a model for the exchange interactions one can
estimate their values. In addition to calculating the magnetic
and thermal properties of pure dipolar magnets, the anisotropy
in the susceptibility of Heisenberg AFMs in the PM regime
with T � Tm is also computed. We compare our predictions to
the magnetic properties measured for illustrative real materials.
In this paper we do not consider critical phenomena, domain
formation and similar effects in FMs, or other potential sources
of magnetic anisotropy in a spin system such as single-ion
effects.

Our theoretical framework allows easy extensions to calcu-
late the dipolar contributions to the magnetic properties of spin
lattices not discussed here such as collinear or noncollinear

ordering on orthorhombic, monoclinic, and triclinic Bravais
or other non-Bravais spin lattices.

In Sec. II we first write down the expressions relating the
macroscopic magnetic induction, applied magnetic field, and
magnetization including shape (demagnetizing) effects. The
expression for the local field seen by a spin is discussed in
Sec. II B. The part of that local field (the near field) due
to discrete moments inside a macroscopic Lorentz sphere
is discussed in Sec. II C, together with the energy of a spin
interacting with the near field. Applications of the general
theory in Sec. II C to magnetically ordered states in collinear
magnets, non-Bravais spin lattices, and coplanar noncollinear
helical or cycloidal AFMs are presented in Secs. II D–II F,
respectively. The expression for the near field due to moments
within a Lorentz line (1D), circle (2D), or sphere (3D) is
discussed in Sec. II G. Some details about calculations of
the MDI tensor are given in Sec. II H. In Appendix A some
information useful for implementing the theory in Sec. II is
discussed.

The calculations of the eigenvalues and eigenvectors of
the MDI tensor for collinear magnetic structures with specific
magnetic propagation vectors for 1D and 2D spin lattices are
given in Secs. III, where the 2D spin lattices include the
square, triangular, honeycomb, and kagomé lattices. Three-
dimensional spin lattices are considered in Sec. IV, where
results are given for the three cubic Bravais lattices, the two
tetragonal Bravais lattices, the simple hexagonal lattice, and
the honeycomb lattice. For the 3D tetragonal and hexagonal
lattices the eigenvalues and eigenvectors are obtained versus
the c/a ratio from c/a = 0.5 to 3 in 0.1 increments. For all spin
lattices, we carry out calculations of the MDI tensor of a central
spin with its neighbors by direct summation with increasing
radius away from the central moment until convergence is
achieved within at least 0.001%. The convergence of the
dipolar sums is discussed in the corresponding section, and
representative convergence plots are given in Appendix B.

The predictions of the easy axis for collinear AFM ordering
are compared with experimental results for the simple-
tetragonal Mn and Fe sublattices in BaMn2As2 and BaFe2As2,
and for the bct spin lattices in GdCu2Si2, EuCu2Sb2, and MnF2.
For these cases we compare the results of the eigenvalues and
eigenvectors versus the c/a ratio in graphical format with the
experimental data, and the graphical results for other cases are
placed in Appendix C. The treatment of noncollinear AFMs
is presented in Sec. V, with application to the 120◦ ordering
on the triangular lattice, to the 90◦ ordering on the distorted
Shastry-Sutherland GdB4 compound, and to the undistorted
2D and 3D Shastry-Sutherland lattices.

Section VI presents the calculation of the FM ordering
temperature TC and AFM ordering temperature TN arising from
dipolar interactions within our recent formulation of MFT
[11]. A quantitative discussion of the competition between
FM and AFM ordering on cubic Bravais lattices versus the
demagnetization factor of a sample in the absence of FM
domain formation is given in Sec. VII. The properties of
dipolar magnets in the magnetically ordered state are derived
in Sec. VIII. The ordered moment and heat capacity of
dipolar magnets in zero magnetic field versus temperature
are presented in Sec. VIII A, where the results are the same
within MFT for both FMs and AFMs. The dipolar anisotropy
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parameter K1 for uniaxial dipolar AFMs versus temperature
is derived in Sec. VIII B. Calculations of the perpendicular
susceptibility below TN and the associated critical field for
uniaxial AFMs are presented in Secs. VIII C and VIII D,
respectively.

The Curie-Weiss law for dipolar magnets in the PM state
is derived in Sec. IX, where the Weiss temperature is found
to be anisotropic in general. In Sec. X we specialize to
spherical samples of collinear AFMs, where the anisotropic
susceptibilities χ for temperatures above TN as well as both
the parallel and perpendicular susceptibilities below TN are
presented and discussed. Examples of these anisotropic χ (T )
behaviors are given in Sec. X D for simple tetragonal lattices
with c/a < 1, c/a = 1 (sc), and c/a > 1.

The anisotropic χ (T ) of a Heisenberg-exchange AFM at
T > TN due to MDIs is derived in Sec. XI and applied to
fit the experimental data for single-crystal MnF2. The paper
concludes with a short summary in Sec. XII.

Tables of values of the dipolar eigenvalues and eigenvectors
versus c/a plotted in the text and Appendix C are available in
the Supplemental Material [31].

II. THEORY

The magnetization per unit volume of magnetic materials
can be significant compared to the applied field and results
in a demagnetizing field and an internal field smaller than
the applied field. In the following the theory for this important
demagnetizing correction is discussed within the Gaussian cgs
system of units [32,33] that is used throughout this paper.

A. Macroscopic fields

We initially assume that a sample has the shape of an
ellipsoid of revolution and that the applied field is along one of
the three principal axes α. Then the volume magnetization (net
magnetic moment per unit volume) M (units: G) is uniform
in the sample and the magnetic induction B (units: G), the
magnetic field H (units: Oe = G), and M are collinear with
components Mα , Hα , and Bα for the external field Hα applied
along the α axis. For each point in space one has

Bα = Hα + 4πMα. (1a)

Thus, internal to the sample one has

Bint α = Hint α + 4πMα. (1b)

The demagnetizing field internal to the sample due to Mα is

Hdα = −4πNdαMα, (1c)

where here the demagnetizing factor Ndα is defined as in the
Système International system of units for which 0 � Ndα � 1
and

∑3
α=1 Ndα = 1. Thus, the internal magnetic field Hint α

and the magnetic induction B
shape
int α due to sample shape effects

and including the applied field Hα are

Hint α = Hα − 4πNdαMα, (2a)

B
shape
int α = Hint α + 4πMα

= Hα + (1 − Ndα)4πMα. (2b)

For a given Mα , the internal field is Hint α in Eq. (2a).
Thus, in descriptions of the magnetic behavior of a sample in
terms of Mα and Hα , one can correct for the demagnetizing
field by retaining the measured value of Mα but replacing Hα

by Hα − 4πNdαMα , where Ndα is estimated from the sample
shape and the field orientation with respect to the sample (see
below).

The magnetic susceptibility of a material is often defined
as χ = M(H )/H , which, in general, is field-dependent. In the
present discussion, M is the volume magnetization, so χ is
the susceptibility per unit volume and is dimensionless. The
observed susceptibility is then χobs

α = Mα/Hα and the intrinsic
susceptibility is χα = Mα/Hint α . Utilizing Eq. (2a) one obtains
χα from χobs

α according to

χα = Mα

Hint α
= Mα

Hα − 4πNdαMα

= Mα/Hα

1 − 4πNdαMα/Hα

= χobs
α

1 − 4πNdαχobs
α

. (3)

At each temperature one can correct the observed susceptibility
for the demagnetizing field using Eq. (3).

Alternatively, using Eq. (3) one can write the observed
susceptibility in terms of the intrinsic one as

χobs
α = χα

1 + 4πNdαχα

. (4)

Thus, when 4πNdαχα � 1, one obtains the field-independent
susceptibility and linear Mα(Hα) behavior

χobs
α = 1

4πNdα

, Mα = 1

4πNdα

Hα. (5)

The latter behavior holds until Mα reaches it saturation
(maximum) value Msat α; at higher fields Mα is, of course,
equal to its constant saturation value. In practice, the
limiting behaviors in Eqs. (5) are realized only when a
material is approaching its FM transition temperature from
above.

An expression for the demagnetizing factors Ndα for the
general ellipsoid of revolution was calculated long ago [34].
For sample shapes other than ellipsoids, M is not uniform
within the sample except for limiting cases. What is then
relevant in the present context is the demagnetizing field
averaged over the sample volume as expressed in the asso-
ciated “magnetometric” demagnetizing factor. Such sample
shapes include the cylinder and the rectangular parallelepiped
(rectangular prism) for which the magnetometric Ndα values
have been calculated for arbitrary sample dimensions in
Refs. [35,36], respectively.

B. Local magnetic induction from magnetic
dipole interactions

Theoretical predictions of magnetic properties for local
magnetic moments are often cast in terms of the local magnetic
induction Blocal

int i seen by a local moment �μi at position ri . This
local magnetic induction along a given principal axis α is
traditionally written for a 3D spin lattice in terms of the four
contributions [37]

B local
int α i = Bα + B

shape
int α + BLorentz

int α + Bnear
int α i, (6)
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where Bα = Hα is the applied magnetic induction arising from
currents outside the sample and B

shape
int α is the contribution in

Eq. (1b) due to the sample shape. The contribution

BLorentz
int α = 4π

3
Mα (7)

is the Lorentz cavity field inside a spherical cavity of radius R

surrounding the point at its center at position ri at which B local
int α i

is to be calculated. The fourth contribution Bnear
int α i is the sum of

the dipolar fields at position ri arising from the other magnetic
dipoles inside the Lorentz cavity at positions rj . This is the
only term that depends on the crystal structure of the material.
The Lorentz cavity radius R is much larger than the distance
between magnetic moments in a sample and is large enough so
that the calculated Bnear

int α i becomes independent of R to within
some specified precision. Substituting Eqs. (2b) and (7) into
(6) gives

B local
int α i = Hα + (

1
3 − Ndα

)
4πMα + Bnear

int α i . (8a)

This is an important fundamental equation for calculating the
local field.

Two special cases of Eq. (8a) are of use. In the first,
one corrects the applied field for the demagnetizing field in
the measurements as described above which is equivalent to
removing Ndα from Eq. (8a), yielding

B local
int α i = Hα + 4π

3
Mα + Bnear

int α i . (8b)

This equation is sometimes favored for comparison of the-
oretical predictions of the dipolar magnetic properties with
experimental data because it is independent of sample shape.
Here Mα is the total magnetic moment per unit volume. If
all spins are identical and crystallographically equivalent as
assumed throughout this paper, one can write Mα = μα/Vspin,
where μα is the net average ordered and/or induced moment
per spin in the α direction and Vspin is the volume per spin, so
an equivalent form of Eq. (8b) is

B local
int α i = Hα + 4π

3Vspin
μα + Bnear

int α i . (8c)

Note that Mα = μα = 0 for an AFM in H = 0.
Alternatively, one can shape a sample into a sphere, giving

Ndα = 1/3 for all three principal directions α, and then Eq. (8a)
becomes

B local
int α i = Hα + Bnear

int α i, (8d)

which eliminates the effect of the Lorentz field but only applies
to a spherical sample. This formulation is desirable if one
wishes to ameliorate the tendency of the Lorentz field to
enhance dipolar FM ordering with respect to AFM ordering,
as illustrated in Fig. 13 below, where FM is favored for small
values of Ndα for bcc and fcc Bravais lattices.

C. Magnetic induction due to collinear alignment of magnetic
dipoles inside Lorentz cavity

The magnetic induction Bij seen by a central moment �μi

at a position ri due to a point magnetic dipole moment �μj at

position rj is

Bij = 1

r5
ji

[
3( �μj · rji)rji − r2

ji �μj

]
, (9a)

where

rji = rj − ri , rji = |rji |. (9b)

The energy of interaction Ei of �μi at position ri due to the
magnetic induction Bij is

Ei = −1

2
�μi · Bij = − 1

2r5
ji

[
3( �μi · rji)( �μj · rji)−r2

ji �μi · �μj

]
,

(10)
where the factor of 1/2 in the first equality recognizes that the
interaction energy of the �μi with Bij from �μj is equally shared
between �μi and �μj . Expanding the first term on the right side
of Eq. (10) in Cartesian coordinates, one can write the term in
matrix form as

( �μi · rji)( �μj · rji)

= (μix μjy μjz)

⎛
⎝ r2

jix rjixrjiy rjixrjiz

rjixrjiy r2
jiy rjiyrjiz

rjixrjiz rjiyrjiz r2
jiz

⎞
⎠

⎛
⎝μjx

μjy

μjz

⎞
⎠

= �μT
i rjirji �μj , (11)

where �μT
i is the transpose of the column vector �μi , �μj is a

column vector, and rjirji is a 3 × 3 dyadic. Similarly, the
scalar product in the second term on the right side of Eq. (10)
can be written in matrix form as

�μi · �μj = �μT
i 1 �μj , (12)

where 1 is the 3 × 3 identity matrix. Using Eqs. (11) and (12),
Eq. (10) can be summed over all neighbors �μj within a length
of chain (1D), a circle of specified radius (2D), or Lorentz
sphere (3D), all centered on �μi , and then can be succinctly
written in matrix form as

Ei = − 1
2 �μT

i Gi �μj , (13a)

where the 3 × 3 symmetric tensor Gi is

Gi =
∑
j �=i

1

r5
ji

(
3rjirji − r2

ji1
)
. (13b)

In order to solve Eq. (13a) for the eigenenergies Ei and
eigenvectors μ̂i of the tensor Gi , one must first express each �μj

in terms of �μi . In the following three sections we discuss our
methods for doing so for collinear magnetic structures on Bra-
vais and non-Bravais spin lattices and coplanar noncollinear
AFM structures, respectively.

D. Collinear magnetic structures

In this section we consider collinear magnetic structures
with magnetic wave vector k, where

�μj = cos(k · rji) �μi. (14)

Since the cosine function is a scalar with a value between ±1,
Eq. (14) expresses that �μj can be either parallel or antiparallel
to �μi . For cos(k · rji) = ±1 for each �μj the magnetic structure
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is an “equal-moment” (EM) structure where the ordered
moments all have the same magnitude μ (which depends on
T ). For cos(k · rji) �= ±1 for some �μj , μ depends on j and the
structure is a collinear AM AFM structure. Collinear magnetic
structures include both FM (k = 0) and AFM structures below
the magnetic ordering temperature Tm and the FM-aligned
magnetic structure induced above Tm by an external magnetic
field applied along one of the three principal axes of the MDI
in Eq. (16c) below. From Eq. (14) one obtains the “extinction
condition”

�μj = 0 if k · rji = odd multiple of
π

2
rad, (15)

as in Eq. (A6) for AM AFM structures associated with specific
k values and spin lattices. A general k corresponds to either
an EM or AM collinear AFM structure.

All simple Bravais lattices have EM magnetic structures.
Amplitude-modulated AFM structures occur when the simple
Bravais lattices have more than one spin in the unit cell such
as for bcc, bct, and fcc spin lattices. With the cos(k · rji) term
as given in Eq. (14), EM structures occur for bcc and bct
lattices with k = ( 1

2 , 1
2 ,0), ( 1

2 ,0, 1
2 ), and (001) r.l.u. and AM

structures for k = ( 1
2 ,0,0) and ( 1

2 , 1
2 , 1

2 ) r.l.u. For the fcc lattice,
EM structures occur for k = ( 1

2 , 1
2 , 1

2 ) and (0,0,1) r.l.u, whereas
AM structures occur for k = ( 1

2 ,0,0), ( 1
2 , 1

2 ,0), ( 1
2 ,0,1), and

( 1
3 , 1

3 , 1
3 ). With the exception of the last one, all AM structures

considered can be converted into EM structures by inserting
an additive phase in the cosine term: cos(k · rji) → cos(k ·
rji + φ), where φ = π/4 rad. In that case, all eigenvalues are
reduced in magnitude by the factor cos(π/4) = 1/

√
2, which

corresponds to a reduction in the ordered moment by a factor
of 1/21/4. All eigenvalues plotted or listed in this paper were
obtained for φ = 0.

In pure magnetic dipole AFMs, the above discussion shows
that the AFM ground state can be an AM state, depending on
the AFM wave vector. However, even in systems in which the
MDI is not expected to play an important role, this interaction
can still cause a small modulation of the ordered moment
versus position in the magnetic unit cell. Furthermore, large-
amplitude AM AFM structures are observed in geometrically
frustrated systems such as in Gd2Ti2O7 [38]. Because AM
structures contain at least some fraction of spins with ordered
moments less than the saturation moment and hence show
strong quantum fluctuations in the ground state, the entropy
increase on heating from low temperatures would be less than
the value R ln(2S + 1) per mole of spins. This can be checked
by calorimetry.

The discussion throughout this paper applies to identical
crystallographically equivalent spins with identical saturation
moments μsat and with thermal-average (ordered) magnetic
moments �μi = μμ̂i , where μ can be different for different
spins in AM structures. We express rji in units of the
lattice parameter a of the respective crystal structure. The
crystallographic unit cell often contains more than one spin
per unit cell in the examples described. Then using Eq. (14),
Eqs. (13) become [39]

Ei = −ε μ̂T
i Ĝi(k)μ̂i , (16a)

where

ε = μ2

2a3
(16b)

has dimensions of energy and the dimensionless symmetric
MDI tensor is

Ĝi =
∑
j �=i

1

(rji/a)5

(
3

rjirji

a2
− r2

ji

a2
1
)

cos(k · rji). (16c)

Labeling the eigenvalues of Ĝi(k) as λkα , Eq. (16a) gives the
eigenenergies as

Eiα = −ε λkα, (16d)

where the subscript α refers to a Cartesian principal ordering
axis eigenvector of the collinear magnetic structure, where
the three principal axes are orthogonal to each other. Thus,
the ground-state energy and ordering axis for a given k due
to the MDI corresponds to the largest of the three λkα

eigenvalues. The MDI energy scale is set by the value of ε

in Eq. (16b), which is system dependent. The value of ε/kB is
typically of order 0.01 K–0.1 K.

The magnetic propagation vector k must be specified in
terms of the reciprocal lattice translation vectors in Cartesian
coordinates in advance of computing Ĝia(k). One can calculate
the λkα eigenvalues and corresponding eigenvectors (ordered
moment axes μ̂i) for various k vectors, including k = 0 for
FM-aligned moments which may occur due to FM ordering
in applied field H = 0 or to H > 0 in the PM state. Usually
the magnetic k vector observed by, e.g., neutron diffraction
measurements, is determined by exchange or RKKY interac-
tions rather than dipole interactions. In that case one can still
test whether the easy axis predicted by the MDI is consistent
with the observed one. A negative answer would indicate
that the MDI does not contribute to determining the easy
axis, and hence some stronger source of magnetocrystalline
anisotropy must be present that overcomes the preference of
MDIs. A positive answer would mean that the MDI at least
contributes to ordering along the observed easy axis; however,
this does not rule out other sources of anisotropy that may also
contribute.

A general feature of the eigenvalues λkα of the MDI tensor
Ĝi for a given k and spin lattice is that their sum over the
three eigenvectors α is identically zero when no a priori
constraint is placed on the ordering axis of �μi . This sum
rule is violated when such a constraint is imposed such as
for coplanar noncollinear helical or cycloidal AFM order as
discussed in Secs. II F and V A. In those cases, one of the λkα

is the eigenvalue for FM ordering (k = 0) along the helix or
cycloid axis. The other two eigenvalues and corresponding
eigenvectors are the ones associated with the actual AFM
components of the helix or cycloid.

E. Non-Bravais spin lattices

A crystal structure consists of a Bravais lattice plus a basis
of atoms attached to each Bravais lattice point. Non-Bravais
spin lattices are Bravais lattices with more than one spin in the
basis. These include, e.g., the fcc diamond lattice and the 2D
hexagonal honeycomb (or chicken-wire) lattice, each with two
spins in the basis, and the kagomé lattice with three spins in the
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basis. In such cases one must modify Eq. (16c) to include a sum
over the atoms in the basis, in addition to the sum over Bravais
lattice points already included in Eq. (16c) via, e.g., Eqs. (A1).
AFM structures in such non-Bravais spin lattices include those
with AFM propagation vector k = 0 for Néel-type ordering
on the 2D honeycomb lattice, which is the same propagation
vector as for FM ordering. In such AFM structures where the
magnetic and crystallographic unit cells are the same, in order
to calculate Ĝi one must specify the orientations of the ordered
moments within a unit cell with respect to the orientation
of a central moment �μi . Thus, Eq. (16c) is modified to
read

Ĝi =
∑

j

∑
k

1

(rjki/a)5

(
3

rjkirjki

a2
− r2

jki

a2
1
)

Rki , (17a)

where the sum over j again refers to the sum over the Bravais
lattice positions, the sum over k sums over all atoms in the
basis, the position ri of the central moment �μi is not necessarily
at the origin of of a central unit cell, and the vector from �μi to
a moment �μk is

rjki = rj + rk − ri , (17b)

where rk is the position of moment �μk in the basis with respect
to the position of the associated Bravais lattice point rj . The
term with rjki = 0 is omitted from the sum because that term
corresponds the difference in position of moment �μi with itself.
The Cartesian rotation matrix Rki in Eq. (17a) expresses the
moment direction of �μk in the basis with respect to that of the
central moment �μi via

�μk = Rki �μi, (17c)

similar to Eq. (14) for collinear ordering associated with a
magnetic propagation vector k. Prior to calculating Ĝi , the
3 × 3 Rki rotation matrix must be specified for each spin in the
basis via a model for the AFM structure. For example, for
the Néel AFM structure in Fig. 1 below, if �μi were at a
red position ri/a = 1

3 â + 2
3 b̂, then R1i for a spin at another

red position would be Rki = 1 and that for a black position
would be −1, where again 1 is the 3 × 3 identity matrix.
This procedure is easily generalized to more than two spins
per Bravais lattice point, as illustrated in Sec. V B below for
calculating Ĝi for the known coplanar noncollinear AFM
structure of tetragonal GdB4 in Fig. 12 containing four
moments in the basis, each pointing in different directions,
and for the related Shastry-Sutherland spin lattice.

F. Coplanar noncollinear helical or cycloidal antiferromagnets

Here we extend the above discussion to coplanar non-
collinear helical or cycloidal AFM ordering on tetragonal or
hexagonal Bravais lattices. For both types of AFM order, the
ordered moments are defined to lie in the crystallographic
ab plane. For helical AFM ordering, the ordered moments
are ferromagnetically aligned in the ab plane and the helix
wave-vector k axis is the c axis. For cycloidal AFM ordering,
k lies in the ab plane and the moments in planes perpendicular
to both k and the ab plane are aligned ferromagnetically. The
Cartesian x axis is parallel to a, the y axis is perpendicular to a
in the ab plane, and the z axis is perpendicular to the ab plane

along the c axis. Pictures of the helical and cycloidal structures
are given in Refs. [40,41], respectively. In either structure, the
azimuthal angle φji = φj − φi with respect to the positive a
axis between moments �μj and �μi in the ab plane is given by

φji = k · rji . (18a)

The relationship between the central moment direction μ̂i at
position ri and that of another moment at position rj in either
AFM structure is

μ̂j =
⎛
⎝cos φji 0 0

0 sin φji 0
0 0 1

⎞
⎠μ̂i , (18b)

which can be written

μ̂j = (x̂x̂ cos φji + ŷŷ sin φji + ẑẑ)μ̂i , (18c)

where the Cartesian coordinate system is used throughout.
Then Ĝi in Eq. (16c) becomes

Ĝi =
∑
j �=i

1

(rji/a)5

(
3

rjirji

a2
− r2

ji

a2
1
)

× (x̂x̂ cos φji + ŷŷ sin φji + ẑẑ). (19)

As with collinear AFM ordering, one must specify k in
terms of the reciprocal lattice translation vectors in Cartesian
coordinates in advance of computing Ĝi(k). Note that when
Ĝi(k) is diagonalized, one eigenvalue and corresponding
eigenvector are for FM ordering along the z axis and are not
relevant to those for the helix, whereas the other two sets of
eigenvalues and eigenvectors are for the helix. As a result, the
sum of the three eigenvalues do not add to zero as they do for
all other AFM structures discussed above.

G. Near field

The value of Bnear
int α i in Eq. (6) that is seen by a given moment

�μi at position ri in a given magnetic structure with a given
ordered-moment configuration, due to the sum of the magnetic
fields from the magnetic moments around it within the Lorentz
cavity of radius R, is simply given as

Bnear
int α i = −2Ei

μα

= μλkα

a3
, (20)

where the factor of 2 arises because the energy per pair is split
evenly between each pair of moments, whereas the magnetic
field arises only from the neighbor of each pair, the second
equality was obtained using Eqs. (16b) and (16d) and Bnear

int α i

can be either positive or negative, depending on the sign of
λkα . If the MDI is the only source of anisotropy present, this
field must be positive because then the ordered moment is
parallel to the local magnetic induction, which minimizes the
free energy of the moment. The quantity Bnear

int α i is needed to
calculate the total local magnetic induction at the site of a local
moment according to Eq. (8a). If Ei is expressed in cgs units
of erg and those of μ in cgs units of erg/G (= G cm3), then
Bnear

int α i has the correct cgs units of G.
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Using Eq. (20), the total local field in Eq. (8b) seen by
central moment �μi becomes

B local
int α i = Hα +

(
4πμα/μ

3Vspin/a3
+ λkα

)
μ

a3
, (21)

where the first term in parentheses is the Lorentz field, where
we distinguish the moment component μα in the α direction
per spin averaged over the sample and the magnitude μ of the
average moment per spin. A nonzero value of μα only occurs
in a FM or in an AFM in the presence of an external magnetic
field. The second term in parentheses arises from the near
field.

H. Calculation and diagonalization of the magnetic
dipole interaction tensor

We chose to carry out the sums in the expressions for the
dipole interaction tensor Ĝi in Eqs. (16c), (17a), and (19)
directly instead of by using the Ewald-Kornfeld technique [42],
because we wanted to study the convergence properties of the
eigenvalues λkα versus the radius R of the circle or Lorentz
sphere for 2D and 3D lattices, respectively. The calculations
and diagonalizations of Ĝi were carried out using standard
Macintosh laptop and desktop computers and Mathematica
software. For the 1D chain with FM and Néel AFM states, the
eigenvalues and eigenvectors of Ĝi are trivially determined
exactly for the infinite chain as shown in Sec. III A. For 2D
lattices the sums were carried out within circles of radius
up to R/a = 1000 containing up to 1 × 107 spins (for the
kagomé lattice containing three spins per unit cell). For the
3D lattices the sums were carried out within a Lorentz sphere,
usually up to a radius R/a = 50 containing up to 6 × 106

spins. Calculations were also done for two AFM structures out
to a sphere radius of R/a = 100 containing 1.7 × 107 spins to
check convergence.

For the FM spin structures in 2D, the values of Ĝi

versus 1/(R/a) were extrapolated to 1/(R/a) = 0. As shown
in Appendix B, the calculations of Ĝi for AFM structures
generally converge more rapidly with increasing R/a than for
FM structures. These procedures determined λkα to accuracies
of �±10−6 for 2D lattices and �±0.001 for 3D lattices, more
than sufficient for our purposes. The eigenvectors μ̂i usually
converged very quickly with increasing R/a. For the various
3D tetragonal and hexagonal lattices, Ĝi was calculated for
c/a ratios from 0.5 to 3 in 0.1 increments.

Figures 17 and 18 in Appendix B show the convergence
of λkα with increasing R/a for FM and Néel AFM moment
alignments along the c axis in the 2D simple square lattice,
respectively. Figures 19(a) and 19(b) show plots for a simple
tetragonal lattice with FM alignment of the moments along
the c axis for c/a = 1.5 and 3, respectively. Figures 20(a)
and 20(b) show analogous plots for the simple tetragonal
lattice with Néel-type AFM ordering, where k = ( 1

2 , 1
2 , 1

2 ) and
alignment of the moments along the c axis for c/a = 1.5 and
3, respectively.

For the 3D FM and AFM structures, the values of λkα were
typically obtained for R/a = 1 to 50 in increments of 1 and
the last 10 or 20 values were averaged to obtain the data in
the figures in the text and Appendix C and in the tables in the
Supplemental Material [31].

III. EIGENVALUES AND EIGENVECTORS FOR
MAGNETIC ORDERING ON ONE- AND
TWO-DIMENSIONAL SPIN LATTICES

A. Spin chain

We assume that the spin chain lattice is oriented along an
axis designated as the a axis (x axis) with spacing a between
adjacent spins, so

rji

a
= na. (22)

Ferromagnetic alignment corresponds to k = 0. This alignment
can occur either in the ferromagnetically ordered state or in
the PM state in the presence of an applied magnetic field. The
central spin is positioned at na = 0, so na of the neighbors runs
from −∞ to ∞, excluding na = 0. Numerical diagonalization
of Ĝi in Eq. (16c) with k = 0 and |nmax

x | = 1000 (2000
neighbors of the central moment) shows that the principal
axes of the interaction tensor are parallel and perpendicular to
the a axis. The lowest energy configuration with a calculated
λ(0,0,0)[100] = 4.808 23 is with the ordered moments aligned
along the a (chain) axis. This makes sense because the lowest
energy configuration of a moment is when each moment points
along the local field seen by the moment, which is along
the axis of the chain. The eigenvalues for the two higher-
energy orthogonal directions are λ(0,0,0)[010] = λ(0,0,0)[001] =
−λ(0,0,0)[100]/2.

For the present case of the 1D spin chain one can
also evaluate λ(0,0,0)[1,0,0] exactly. Equation (16c) yields the
eigenvalue

λ(0,0,0)[1,0,0] = 4
∞∑

na=1

1

n3
a

. (23)

The sum is
∑∞

nx=1 = ζ (3) [43], yielding

λ(0,0,0)[1,0,0] = 4ζ (3) ≈ 4.808 228, (24)

as shown in Table I, where ζ (z) is the Riemann zeta function
with ζ (3) ≈ 1.202 06. The above numerical value of 4.808 23
obtained for λ(0,0,0)[1,0,0] agrees with this exact value to
six-place accuracy. This shows that the value of |nmax

a | = 1000
and a spin chain containing 2000 neighbors of the central
moment used in the numerical calculation is sufficient to obtain
this accuracy.

It is of interest to examine the approach to the infinite-chain
limit of λ(0,0,0)[1,0,0] on increasing |na|. For large |na| one can
replace the sum in Eq. (23) in the region where na is large by
an integral

∫
n−3

a dna ∝ −1/n2
a . Thus, we expect for na � 1

that

λ(0,0,0)[1,0,0] = 4ζ (3) − A

n2
a

= 4ζ (3)

[
1 − A

4ζ (3)n2
a

]
, (25)

where A is a positive constant. An exact series expansion of
the sum in Eq. (23) about na = ∞ indeed gives λ(0,0,0)[1,0,0] =
4ζ (3) − 2/n2

a + O(n−3
a ), yielding A = 2. Equation (25) then

predicts six-place accuracy for λ(0,0,0)[1,0,0] for |na| = 1000,
consistent with the above comparison.
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TABLE I. One- and two-dimensional spin lattices. Eigenvalues λkα and eigenvectors μ̂ = [μx,μy,μz] in Cartesian coordinates of the MDI
tensor Ĝi(k) in Eq. (16c) for various values of the magnetic wave vector k in reciprocal lattice units with collinear magnetic moment alignments.
The most positive λkα value(s) corresponds to the lowest energy value according to Eq. (16d). The Cartesian x, y, and z axes are along the a,
b, and c axes of orthogonal-axis lattices, respectively. For the hexagonal lattice, the x axis is parallel to the hexagonal a axis and the y axis is
perpendicular the a axis, rather than along the b axis. The linear chain is aligned along the a axis and the square and hexagonal lattices are
aligned in the ab plane.

k λkμ̂ μ̂ μ̂ · k̂

1D linear chain
(0, 0, 0) (FM) 4ζ (3) ≈ 4.808 228 [100]

−2ζ (3) ≈ −2.404 114 [010], [001]
( 1

2 ,0,0) (Néel AFM) 3
2 ζ (3) ≈ 1.803 085 [010], [001] 0

−3ζ (3) ≈ −3.606 171 [100] 1
2D square lattice
( 1

2 ,0,0) (stripe AFM) 5.098 873 [010] 0
0.935 462 [001] 0

−6.034 335 [100] 1
(0, 0, 0) (FM) 4.516 811 [100], [010]

−9.033 622 [001]
( 1

2 , 1
2 ,0) (Néel AFM) 2.645 887 [001] 0

−1.322 943 [100], [010] 1/
√

2 ≈ 0.7071
2D simple hexagonal (triangular) lattice
(0, 0, 0) (FM) 5.517 088 [100], [010]

−11.034 176 [001]
(1,0,0) 5.517 088 [100], [010] 1

−11.034 176 [001] 0
( 1

2 ,0,0) 4.094 909 [ 1
2 ,−

√
3

2 ,0] 1/2
1.839 029 [001] 0

−5.933 939 [−
√

3
2 , 1

2 ,0] −√
3/2 ≈ −0.8660

( 1
2 , 1

2 ,0) 4.094 909 [− 1
2 ,−

√
3

2 ,0] −(
√

3 + 1)/23/2 ≈ −0.9659
1.839 029 [001] 0

−5.933 939 [−
√

3
2 , 1

2 ,0] 1/
√

2 ≈ 0.7071
( 1

3 , 1
3 ,0) 2.331 796 [001] 0

−1.165 898 [100], [010] 1/
√

2 ≈ 0.7071
2D hexagonal honeycomb lattice
(0, 0, 0) (FM) 17.092 359 [100], [010]

−34.184 718 [001]
( 1

2 ,0,0) 12.827 051 [− 1
2 ,

√
3

2 ,0] −1/2
−0.090 183 [001] 0

−12.736 868 [
√

3
2 , 1

2 ,0]
√

3/2 ≈ 0.8660
(0,0,0) (Néel-type) 12.116 366 [001]

−6.058 183 [100], [010]
2D hexagonal kagomé lattice
(0, 0, 0) (FM) 51.321 197 [010]

11.205 800 [100]
−62.526 996 [001]

(0,1,0) (ferrimagnet) 40.458 644 [001] 0
−0.171 624 [100] 0

−40.287 021 [010] 1
( 2

3 , 2
3 ,0) 13.213 509 [001] 0

9.212 253 [100] 1/
√

2 ≈ 0.7071
−22.425 762 [010] 1/

√
2 ≈ 0.7071

(0, 1
2 ,0) 4.094 910 [100] 0

1.839 029 [001] 0
−5.933 939 [010] 1

Here we also examine the Néel-type AFM wave vector
k = (1/2,0,0) r.l.u., where 1 r.l.u. = 2π/a is the reciprocal
lattice unit for this spin lattice. A numerical calculation using

Eq. (16c) shows that the eigenvalues of Eq. (16d) converge to
six significant figures even with a small |na|max = 70. These
calculations also show that the most stable ordered-moment
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direction is perpendicular to the chain with

λ(1/2,0,0)[0,1,0] = λ(1/2,0,0)[0,0,1] = 1.803 09 (26)

and the unstable x-axis direction has

λ(1/2,0,0)[1,0,0] = −2λ(1/2,0,0)[0,1,0] = −3.606 17. (27)

An exact calculation for the a-axis eigenvalue is obtained using
the AFM version of Eq. (23), yielding

λ(1/2,0,0)[1,0,0] = 4
∞∑

na=1

(−1)na

n3
a

= −3ζ (3) ≈ −3.606 17,

(28a)

as listed in Table I. This value is identical to within six places
with the numerical result for λ(1/2,0,0)[1,0,0] obtained above
using only a 141-spin chain (including the central spin). Thus,
the dipole fields seen by a central moment converge much
faster with increasing nmax

a for the AFM structure than for
FM one for the spin chain. The two lower-energy eigenvalues
are

λ(1/2,0,0)[0,1,0] = λ(1/2,0,0)[0,0,1] = − 1
2λ(1/2,0,0)[1,0,0]

= 3
2ζ (3) ≈ 1.803 09. (28b)

Comparing Eqs. (24) and (28b) shows that the eigenvalue
for the FM-aligned state with the ordered/induced moments
aligned along the a axis is larger than the maximum AFM one,
and hence the energy per spin is smaller according to Eq. (16d)
for the FM state than for the AFM state. The FM state is thus
expected to be the magnetic ground state of the linear spin
chain for purely dipolar interactions provided the ordering is
not destroyed by quantum fluctuations.

B. Two-dimensional spin lattices

For the simple square lattice, one has a = b and the spin
positions given by the first two terms in Eq. (A1a). The nor-
malized wave vectors are the first two terms in Eq. (A4). The
largest (positive) eigenvector λkα of Ĝia(k) in Eq. (16c) with
k = 0 for FM alignment occurs for the a or b easy axes, with
λ(0,0,0)[1,0,0] = λ(0,0,0)[0,1,0] and λ(0,0,0)[0,0,1] = −2λ(0,0,0)[1,0,0].
Shown in Fig. 17(a) in Appendix B is the dependence of
λ(0,0,0)[0,0,1] on the inverse radius R−1 for the c-axis eigenvalue
λ(0,0,0)[0,0,1]. According to the discussion in Sec. III A, in 2D
one should have λ(0,0,0)[0,0,1](R/a � 1) = λ(0,0,0)[0,0,1](a/R =
0) + A/R, in agreement with the calculations in Fig. 17(a).
Fitting the data for 0.001 � a/R � 0.002 gives

λ(0,0,0)[0,0,1](a/R = 0) = −9.033 622 0(1),
(29)

A = 6.283 56(9).

The deviations of the data from the fit are shown in Fig. 17(b),
where it is seen that the deviations are of the order of 1 part in
107 for 0.001 � a/R � 0.0026. The graininess of the lattice
becomes more apparent at larger values of a/R.

The eigenvalues and eigenvectors for square-lattice AFM
propagation vectors k = ( 1

2 ,0,0) (stripe AFM) and ( 1
2 , 1

2 ,0)
(Néel-type AFM) were also computed as shown in Table I. One
sees that of these and the FM propagation vector, the stripe
AFM propagation vector with the ordered moments aligned
along the b axis (perpendicular to k as shown in the last column

of Table I) has the lowest energy. Our eigenvalues λ(0,0,0)[100]

and λ( 1
2 ,0,0)[100] are in agreement with, but are more precise

than, those previously reported in Ref. [44], and our λ(0,0,0)[001]

and λ(1/2,1/2,0)[001] values are in precise agreement with the
results in Ref. [45].

For the 2D simple-hexagonal (triangular) lattice the eigen-
values and eigenvectors were calculated for the FM state and
four AFM states. From Table I, the lowest-energy states are
the FM state and the AFM state with k = (1,0,0) (stripe type),
with the moments aligned within the ab plane in both cases.
Data for the AM AFM state with k = ( 1

3 , 1
3 ,0) are included

in Table I because the classical ground state of a triangular
lattice of spins with Heisenberg interactions is the well-known
coplanar noncollinear 120◦ state that can be described by
k = ( 1

3 , 1
3 ,0), which we consider further in Sec. V A. Our eigen-

values λ(0,0,0)[100] and λ( 1
2 , 1

2 ,0)[−1/2,−√
3/2,0] are in agreement

to seven significant figures with those previously reported in
Ref. [46].

The 2D hexagonal honeycomb lattice is a non-Bravais
spin lattice containing two spins per unit cell, as shown in
Fig. 1. The eigenvalues and eigenvectors of Ĝi for collinear
magnetic ordering were calculated for this lattice according
to the method of Sec. II E and the results are listed in
Table I for the FM and Néel-type (Fig. 1) AFM states,
where the magnetic propagation vector for both states is k =
(0,0,0).

Rozenbaum found that the ground state of the 2D honey-
comb lattice is noncollinear with all spins aligned in the ab

plane [46], in contrast to the collinear FM and AFM structures
assumed in the above calculations. He gave the ground-state
energy per spin as E/N = − μ2

2a3
nn

(4.453 809), where ann =
a/

√
3 is the nearest-neighbor spin-spin distance. Converting to

our notation for N = 2 spins per unit cell according to Eqs. (16)
gives the eigenvalue λ = 33/22(4.453 809) = 46.2853. This
eigenvalue is more than a factor of two larger (more stable)
than the most stable collinear magnetic structure in Table I for
the 2D honeycomb lattice.

a

b

FIG. 1. Honeycomb lattice. Each honeycomb cell (not a unit
cell) is bounded by solid blue lines. The hexagonal unit cells with
translation vectors a and b are outlined by dashed black lines. The
2D space group is p6m (No. 17) with two spins in Wyckoff positions
2b( 1

3 , 2
3 ), ( 2

3 , 1
3 ). Bipartite Néel ordering of the two spins per unit cell

is shown. The solid red circles represent half the magnetic moments
pointing in one direction and the open black circles correspond to
half the moments pointing in the opposite direction.
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k

λ = 31/2a

λ

(c)

a

b

FIG. 2. Two-dimensional hexagonal kagomé lattices. The hexag-
onal unit cell is shown at the lower left of each panel outlined in
heavy black lines and contains three spins. The unit cell edges a and
b are twice the length of the triangular-lattice unit cell edge. Three
magnetic structures are shown. (a) The red, blue, and open circles
represent moments that are mutually at an angle of 120◦ to each other
within the ab plane, so a given moment has no nearest neighbors
with the same orientation. The cycloid spin configuration shown has
a wave vector k = ( 2

3 , 2
3 ,0) r.l.u. (b) Collinear magnetic structure for

k = (0,1,0) r.l.u. The red circles represent moments in one direction
and the blue circles represent moments in the opposite direction.
Because there are twice as many red as blue circles, this magnetic
structure is a ferrimagnet (a net FM). (c) Collinear AFM structure for
k = (0, 1

2 ,0) r.l.u. The red and blue circles have the same meanings as
in (b). There are equal numbers of red and blue circles, but the open
circles represent spins with zero ordered moment, so the magnetic
structure is an AM AFM.

The 2D hexagonal kagomé lattice is very popular for
studying the effects of geometric frustration on the properties
for AFM interactions. This lattice is shown in Fig. 2. The lattice
is generated from a doubled triangular lattice by removing the
spin at the origin of the unit cell, which shows that a kagomé
spin lattice is a 1

4 -depleted triangular lattice containing three
spins per hexagonal unit cell. The 2D hexagonal space group
of the kagomé lattice is p6m (No. 17), with three spins in
Wyckoff positions 3c( 1

2 ,0), (0, 1
2 ), ( 1

2 , 1
2 ). For the kagomé

lattice the cycloid wave vector in Fig. 2(a) is k = ( 2
3 , 2

3 ,0)
r.l.u. instead of k = ( 1

3 , 1
3 ,0) r.l.u. for the triangular lattice,

due to the factor of two increase in the a- and b-axis lattice
parameters compared to the triangular lattice. The magnetic
structure shown in the figure is the well-known classical 120◦

structure for nearest-neighbor AFM Heisenberg interactions.
However, the ground state for collinear magnetic ordering
arising from only dipole interactions is seen from Table I to
be a FM structure with the moments pointing perpendicular
to the plane of the lattice. Also shown in the table are
results for two AFM wave vectors directed along the b̂∗ (y)
direction discussed next.

A net FM (ferrimagnetic) collinear structure is shown
in Fig. 2(b) with magnetic wave vector k = (0,1,0) r.l.u.
There are twice as many moments pointing one way com-
pared to the other way, so the net ordered FM moment is
μsat/3, where μsat is the saturation moment of each spin.
An AM collinear AFM structure is shown in Fig. 2(c)
with AFM propagation vector k = (0, 1

2 ,0) r.l.u. The red
and blue circles have the same meaning as in (b), but the
black open circles represent spins with no ordered moment.
Therefore, the average AFM-ordered moment per spin is
2μsat/3.

According to Table I, the lowest-energy (largest eigenvalue)
collinear magnetic structure for the 2D kagomé lattice is the
FM structure with moments directed along the y direction
(vertically upwards in Fig. 2) within the ab plane. The
collinear structures shown in Figs. 2(a)–2(c) are signifi-
cantly less stable. Classical MC simulations determined that
the ground-state magnetic structure is an EM noncollinear
ferrimagnetic structure with all ordered moments lying in
the ab plane [25,26]. The ground-state energy per spin
is quoted as E/spin = −2.388 95μ2/a3

nn, where ann = a/2
and ann is the nearest-neighbor spin-spin distance [25]. In
terms of our notation, E/spin = − μ2

6a3 λ, which takes into
account the three spins per unit cell. Then also taking into
account the relation a = 2ann, one obtains the ground-state
eigenvalue λ = 48(2.388 95) = 114.670, more than a factor
of two larger (more stable) than the value of ≈51.3 listed for
λ(0,0,0)[010] for collinear FM in Table I. Thus, the classical
MC simulations reveal a noncollinear ground state that is
much more stable than the most stable classical collinear FM
state.

The results for the 2D spin lattices in Table I provide very
useful reference points for 3D lattices, where the 2D results
correspond to the limit c/a → ∞. Indeed, in plots of λkα

versus c/a for uniaxial 3D spin lattices below, we include
horizontal dashed lines in the plots to observe the rate at which
the 2D limits are approached with increasing c/a ratio within
the calculated range 0.5 � c/a � 3.
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TABLE II. Simple cubic spin lattice. Eigenvalues λkα and
eigenvectors �μ = [μx,μy,μz] in Cartesian coordinates of the MDI
tensor Ĝi(k) in Eq. (16c) are listed for various values of the magnetic
wave vector k in reciprocal lattice units with collinear magnetic
moment alignments. The most positive λkα value(s) corresponds to
the lowest energy value according to Eq. (16d). Also shown are the
differences between the eigenvalues for the different eigenvectors for
a given k and spin lattice, which are proportional to the respective
magnetic anisotropy energies and fields. The Cartesian x, y, and z

axes are along the a, b, and c axes of the cubic unit cell, respectively.
The labels A-, B-, C-, and G-type for the different wave vectors are
from Ref. [47]. The λkα values agree with the f2–f7 eigenvalues in
Table II of Ref. [4].

(kx,ky,kz) [μx,μy,μz] λkα

(0,0,0) (FM, B-type) [100], [010], [001] 0
( 1

2 ,0,0) (A-type) [100] −9.6874
[010], [001] 4.8437

[001] − [100] 14.5311
( 1

2 , 1
2 ,0) (C-type) [100], [010] −2.6767

[001] 5.3535
[001] − [100] 8.0302

( 1
2 , 1

2 , 1
2 ) (Néel- or G-type) [100], [010], [001] 0

IV. EIGENVALUES AND EIGENVECTORS FOR
THREE-DIMENSIONAL SPIN LATTICES

A. Cubic spin lattices

The eigenvalues and eigenvectors of the dipolar interaction
tensor for the cubic Bravais lattices are well known but are
presented here in modern notation for completeness and as a
check on our calculation methods. Our parameters for sc, bcc,
and fcc lattices are found to agree with previous results [4]
and are listed in Tables II–IV, respectively, for various values
of k along with the common magnetic-structure designations
[47]. Belobrov et al. carried out an exact calculation of the
ground-state spin configuration and energy of the sc lattice
and found degenerate noncollinear and noncoplanar AFM
ground states with energy per spin corresponding to eigenvalue
λ = 5.344 [48], which is essentially the same as our value
λ(1/2,1/2,0)[001] = 5.3535 for collinear AFM ordering with wave

TABLE III. Body-centered cubic spin lattice. Symbol definitions
are the same as in Table II. The λkα values agree with the eigenvalues
in Table IV of Ref. [4].

(kx,ky,kz) [μx,μy,μz] λkα

(0,0,0) (FM) [100], [010], [001] 0
( 1

2 ,0,0) [100] −9.6874
[010], [001] 4.8437

[001] − [100] 14.5311
( 1

2 , 1
2 ,0) [001] 5.3534

[11̄0] 7.9437
[110] −13.2971

[001] − [110] 18.6505
[001] − [11̄0] −2.5903

( 1
2 , 1

2 , 1
2 ) [100], [010], [001] 0

(1,0,0) [100], [010], [001] 0

TABLE IV. Face-centered cubic spin lattice. Symbol definitions
are the same as in Table II. The designations of the AFM type are
from Ref. [49]. The λkα values agree with the eigenvalues in Table V
of Ref. [4].

(kx,ky,kz) [μx,μy,μz] λkα

(0,0,0) (FM) [100], [010], [001] 0
( 1

2 ,0,0) (Type-IA AFM) [100] −25.679
[010], [001] 12.8393

[001] − [100] 38.518
( 1

2 , 1
2 ,0) (Type-IV AFM) [11̄0] 14.383

[1̄1̄0] −19.736
[001] 5.3535

[11̄0] − [1̄1̄0] 34.119
[11̄0] − [001] 9.029

(0,0,1) (Type-I AFM) [100], [010] 8.6687
[001] −17.3374

[100] − [001] 26.0061
( 1

2 , 1
2 , 1

2 ) (Type-II AFM) [1̄1̄1̄] −28.9204
[21̄1̄], [01̄1] 14.4602

[21̄1̄] − [1̄1̄1̄] 43.381
( 1

3 , 1
3 , 1

3 ) [1̄1̄1̄] −30.0587
[21̄1̄], [01̄1] 15.0293

[21̄1̄] − [1̄1̄1̄] 45.0881
( 1

2 ,0,1) (Type-III AFM) [100] 6.3040
[010], [001] −3.1520

[100] − [010] 9.4560

vector k = ( 1
2 , 1

2 ,0) in Table II. The designations of the AFM
type for fcc lattices in Table IV are from Ref. [49].

B. Simple tetragonal spin lattices

The eigenvalues and eigenvectors for FM moment align-
ments [k = (0,0,0)] for simple tetragonal lattices with c/a =
0.5–3 are shown in Fig. 21 in Appendix C and in a table
in the Supplemental Material [31]. For c/a < 1, moment
alignment along the c axis is energetically favorable, whereas
for c/a > 1, ab-plane moment alignment is preferred.

The eigenvalues and eigenvectors for a number of 3D AFM
structures for simple tetragonal spin lattices were determined
versus c/a. The 2D limits corresponding to c/a → ∞ are
shown as black horizontal dashed lines in the figures. The
data for k = (1/2,0,0) are plotted in Fig. 22 in Appendix C.
In this case there are three distinct λkα values for the three
eigenvectors [100], [010], and [001] because this k breaks the
fourfold rotational symmetry about the c axis, with the easy
axis switching from [001] for c/a < 1 to [010] for c/a > 1.
One sees that the respective 2D limits in Table I are reached
for c/a � 2. Similarly, data for k = (1/2,1/2,0) and (0,0,1/2)
are plotted in Fig. 23 in Appendix C and the data are listed in
the Supplemental Material [31].

The eigenvalues for AFM wave vectors k = (1/2,0,1/2)
and (1/2,1/2,1/2) are plotted for the respective eigenvectors
versus the c/a ratio for a simple tetragonal lattice in Figs. 3(a)
and 3(b), respectively, with the numerical values listed in the
Supplemental Material [31]. Here again, the respective 2D
limits in Table I are reached rather quickly with increasing
c/a in Fig. 3 at c/a ∼ 2.
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FIG. 3. Eigenvalues (a) λ(1/2,0,1/2) for AFM wave vector k =
(1/2,0,1/2) r.l.u. and (b) λ(1/2,1/2,1/2) for AFM wave vector k =
(1/2,1/2,1/2) r.l.u. versus the c/a ratio for a simple tetragonal lattice
with the moments aligned along [010] (b axis, solid red circles), [001]
(c axis, solid green diamonds), and [100] (a axis, solid blue squares).

Shown in Fig. 4 is the bct ThCr2Si2-type crystal struc-
ture (space group I4/mmm) of BaMn2As2 and BaFe2As2

[33]. In both compounds the transition-metal atoms Mn
and Fe form a simple tetragonal sublattice with lattice
parameters aMn/Fe = abct/

√
2 and cMn/Fe = cbct/2, yielding

cMn/Fe/aMn/Fe = (cbct/abct)/
√

2 = 2.285 for BaMn2As2 and
2.32 for BaFe2As2. BaMn2As2 has a G-type (Néel-type) AFM
structure with k = ( 1

2 , 1
2 , 1

2 ) in the tetragonal lattice notation
below TN = 625 K with the Mn ordered local moments aligned
along the c axis, whereas BaFe2As2 has a stripe-type itinerant
AFM structure with k = ( 1

2 ,0,0) below TN = 137 K with the
Fe ordered moments aligned along the a axis of the simple-
tetragonal sublattice in Fig. 4. The ordered-moment axis for
BaMn2As2 agrees with the prediction for the wave vector
k = ( 1

2 , 1
2 , 1

2 ) in Fig. 3(b). However, as shown in Fig. 3(a), for
BaFe2As2 MDIs favor the b = [010] easy axis for k = ( 1

2 ,0, 1
2 )

and c/a = 2.32, perpendicular to the in-plane component
kab = ( 1

2 ,0) of the AFM propagation vector, whereas the easy
axis is found to be the a axis, parallel to kab (see Fig. 40
of Ref. [33]). Therefore, there must be another source of
anisotropy in BaFe2As2 that overcomes that due to MDIs to
determine the easy axis.

c

a

b

Ba

Mn
As

c

a

b

Ba

 Fe
As

BaMn2As2 BaFe2As2

FIG. 4. Crystallographic structures of bct ThCr2Si2-type
BaMn2As2 and BaFe2As2 [33]. The magnetic atoms Mn and Fe form
simple-tetragonal sublattices. The AFM structure of BaMn2As2 is
Néel type (G type) with AFM propagation vector k = ( 1

2 , 1
2 , 1

2 ) and
with the ordered moments aligned along the c axis, whereas the AFM
structure of BaFe2As2 is stripe type with AFM propagation vector
k = ( 1

2 ,0, 1
2 ) and with the ordered moments aligned along the a axis of

the simple-tetragonal Fe sublattice structure (due to an orthorhombic
distortion, the a and b axes have slightly different lengths at T � TN

in BaFe2As2).

C. Body-centered tetragonal spin lattices

The behavior of the eigenvalue λ(0,0,0)[001] of the MDI tensor
for FM ordering with k = (0,0,0) and the ordered-moment
direction along the c axis is shown versus c/a in Fig. 5(a). A
list of the numerical data is given in the Supplemental Material
[31]. An expanded plot of the data for 0.85 � c/a � 1.5 is
shown in Fig. 5(b). One sees an S-shaped oscillation in the
latter range that was apparently first noticed by Lo et al. [19].
The first zero crossing occurs at c/a = 1, corresponding to a
bcc lattice, and the third zero crossing occurs at c/a = √

2.
This latter c/a value for the bct lattice corresponds to an
fcc lattice within the bct lattice that is rotated by 45◦ with
respect to the bct lattice as shown in Fig. 15 of Ref. [33].
The lattice parameters are related by afcc = √

2abct = cbct,
yielding cbct/abct = √

2. Hence, both values c/a = 0 and
√

2
correspond to cubic Bravais lattices, for which it is well known
that λ(0,0,0) = 0 for all μ̂. We verified that our λ(0,0,0)[001]

versus c/a data in Fig. 5(b) calculated by direct summation
quantitatively agree with the corresponding eigenvalue data in
Refs. [18–20] that were calculated using the Ewald-Kornfeld
method.

The eigenvectors and eigenvalues of Ĝi were calculated for
several AFM propagation vectors. The λ(1/2,1/2,0)[001] data for
k = ( 1

2 , 1
2 ,0) are plotted versus c/a in Fig. 24 in Appendix C

and a listing of the numerical data is given in the Supplemental
Material [31]. The eigenvalues for wave k = ( 1

2 ,0, 1
2 ) versus

the c/a ratio with the moments aligned in the [0, −1, 0],
[−√

1 − x2,0,x] or [x,0,
√

1 − x2] directions are plotted in
Fig. 6(a), and x versus c/a is plotted in Fig. 6(b). The numerical
data in Fig. 6 are listed in the Supplemental Material [31].
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FIG. 5. (a) Dependence of the eigenvalue λ(0,0,0)[0,0,1] on the c/a

ratio for a bct lattice with a FM alignment of the magnetic moments
along the c axis. (b) Expanded plot of the data in (a) for 0.95 � c/a �
1.5. One sees that FM alignment along the c axis is the most stable for
c/a < 1, which from Fig. 21 is also the case for the simple tetragonal
lattice. For 1 < c/a � 1.3 the easy axis for FM alignment is the a or
b axis, for 1.3 � c/a �

√
2 the c axis is favored, then for c/a >

√
2

the a or b axis is again favored. For this magnetic structure, one has
λ(0,0,0)[100] = λ(0,0,0)[010] = −λ(0,0,0)[001]/2.

The compound GdCu2Si2 has the bct ThCr2Si2-type struc-
ture with space group I4/mmm as shown in Fig. 7 and lattice
parameters and z-axis Si positions a = 3.922 Å, c = 9.993 Å,
c/a = 2.548, and zSi = 0.368 at 24 K [50]. The magnetic
structure of GdCu2Si2 is collinear, with the Gd ordered
moments oriented along the tetragonal b axis with an AFM
propagation vector k = ( 1

2 ,0, 1
2 ) r.l.u. [50], as shown in Fig. 7.

The ordered moment at 2 K is 7.2(4)μB/Gd [50], in agreement
with the value of 7 μB/Gd obtained from the usual relation
μsat = gSμB, where here S = 7/2 and g = 2. Thus, the Gd
moments in (101) planes are ferromagnetically aligned and are
oriented perpendicular to k. From Fig. 6, dipolar interactions
for k = ( 1

2 ,0, 1
2 ) and c/a = 2.548 predict that the moment

alignment should be along the b axis, in agreement with the
experimental AFM structure in Fig. 7.

The eigenvalues for AFM propagation vector k = (0,0,1)
in the bct spin lattice versus the c/a ratio with the moments
aligned along the c axis or in the ab plane are plotted in Fig. 8
and listed in the Supplemental Material [31].
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FIG. 6. Eigenvalues for wave vector k = ( 1
2 , 1

2 ,0) r.l.u. versus the
c/a ratio for a bct spin lattice with the moments aligned along (a) [0,
1̄, 0] (solid red circles), [−√

1 − x2,0,x] (solid green diamonds), or
[x,0,

√
1 − x2] (solid blue squares), where x versus c/a is shown in

(b).

The compound EuCu2Sb2 has a primitive-tetragonal
CaBe2Ge2-type crystal structure (space group P 4/nmm)
containing Eu+2 ions in crystallographically-equivalent sites
forming a bct sublattice as shown in one panel of Fig. 9
[29]. Like Gd+3, the Eu+2 ions have spin S = 7/2, g = 2,
angular momentum L = 0, and a saturation moment μsat =
gSμB = 7μB. The compound orders antiferromagnetically
below TN = 5.1 K with an A-type structure, k = (0,0,1), and
with the Eu+2 moments oriented in the ab plane as shown in
Fig. 9 [29,30]. The powder neutron diffraction measurements
[30] can only determine that the ordered moments lie in
the ab plane and not their direction within this plane [55].
EuCu2Sb2 has lattice parameters a = 4.488 Å, c = 10.778 Å,
and c/a = 2.401. From Fig. 8, for this c/a value the ordering
direction for k = (0,0,1) is predicted for MDIs to be in the ab

plane, in agreement with the experimental data.
The compound MnF2 has the primitive-tetragonal rutile

crystal structure with space group P 42/mnm and is widely
considered to be the prototype for collinear AFM ordering.
The crystal and magnetic structures of MnF2 are shown in
Fig. 9. At T = 298 K, the lattice parameters are a = 4.8734(2)
and c = 3.3099(5) Å with c/a = 0.6792 and the general F
position parameter is u = 0.310(3) [51]. The Mn+2 d5 ions
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c
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Gd

Cu
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(101) plane

FIG. 7. Crystal and magnetic structures of bct GdCu2Si2 with
the ThCr2Si2-type crystal structure. One crystallographic unit cell
is shown. The magnetic unit cell has dimensions 2a × b × 2c and
contains four crystallographic unit cells. The collinear magnetic
structure has an AFM propagation vector ( 1

2 ,0, 1
2 ) r.l.u. perpendicular

to the (101) plane shown, with the magnetic moments oriented along
the b axis [50]. Within each such (101) plane, the Gd magnetic
moments are ferromagnetically aligned.

with expected high-spin S = 5/2 form a bct sublattice. The
Mn+2 spins order in an A-type AFM structure [52] below
the Néel temperature TN = 67 K (Ref. [53]) with an ordered
moment at 5 K of 5.12(9)μB/Mn [54]. The ordered moment
is in good agreement with the expected value μsat = gSμB =
5 μB/Mn for g = 2. A fit to χ (T ) measurements from 200 to
300 K by the Curie-Weiss law gave a molar Curie constant of
4.47 cm3 K/mol and a Weiss temperature θ = −97.0 K [56].
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FIG. 8. Eigenvalues for wave vector k = (0,0,1) r.l.u. versus the
c/a ratio for a bct spin lattice with the moments aligned along [001]
(c axis, solid green diamonds) or [100] or [010] (a or b axis, solid
blue squares). The 2D limits for the square lattice for c/a → ∞ are
shown as horizontal black dashed lines.

EuCu2Sb2

ab

c

MnFMnF2

Mn
F

FIG. 9. Crystallographic and AFM A-type structure with k =
(0,0,1) and μ̂ = [100] of EuCu2Sb2 with c/a = 2.401 (Refs. [29,30])
and MnF2 with c/a = 0.6793 and μ̂ = [001] [51–54]. Each com-
pound contains a bct sublattice of magnetic ions, but with c/a < 1
and c/a > 1, respectively, which is the crossover point between [001]
and [100]- or [010]-axis ordering, respectively.

The Curie constant is close to the value of 4.38 cm3 K/mol
expected for S = 5/2 and g = 2. From the c/a ratio and Fig. 8,
the MDI favors ordered-moment alignment along the c axis, in
agreement with the easy axis observed in Fig. 9. This ordering
axis is perpendicular to the ordering axis for EuCu2Sb2 with
c/a > 1 discussed above, as expected from MDIs.

D. Simple hexagonal (triangular) and honeycomb spin lattices

The eigenvalues and eigenvectors of the MDI tensor Ĝi

for stacked simple hexagonal lattices were calculated versus
c/a from 0.5 to 3 for FM alignment (k = 0) and AFM wave
vectors k = (1,0,0), ( 1

2 , 1
2 ,0), ( 1

3 , 1
3 , 1

3 ), ( 1
3 , 1

3 ,0), and ( 1
3 , 1

3 , 1
2 ) and

are plotted in Figs. 25–27 in Appendix C and the numerical
data are listed in the Supplemental Material [31]. In contrast
to the AFM cases, for the FM alignment the approach of the
eigenvalues to the asymptotic 2D ones with increasing c/a

is very slow, as seen from comparison of the plots for FM
alignments in Fig. 25(a) with the AFM ones, which reach their
2D values by c/a ∼ 2.

The eigenvalues and eigenvectors of Ĝi for the honeycomb
spin lattice in Fig. 1 calculated versus c/a from 0.5 to
3 for k = (0,0,0) (FM alignment) and AFM propagation
vectors k = ( 1

2 ,0,0), (0,0, 1
2 ) (Néel-type in all directions),

(0,0,0) r.l.u. (Néel-type in ab plane and FM alignment along
c axis), and (0,0, 1

2 ) (FM alignment intraplane and AFM
alignment interplane) are plotted in Figs. 28–30 in Appendix C,
respectively, and are listed in the Supplemental Material [31].
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Similar to the behavior of the eigenvalues for the simple
hexagonal spin lattice, for FM alignment in the honeycomb
lattice the approach of the eigenvalues to their 2D limits with
increasing c/a is very slow compared to behaviors for the
AFM moment alignments. For the Néel AFM alignments both
just in the ab plane and also along the c axis, the approach
with increasing c/a to the infinite c/a limits is very fast, being
essentially complete by c/a ∼ 1.5.

V. EIGENVALUES AND EIGENVECTORS FOR
NONCOLLINEAR ANTIFERROMAGNETS

The relationship between the ordered/induced central mo-
ment �μi and another moment �μj at position rji with respect to
�μi in a collinear magnetic structure was given in Eq. (14).
In noncollinear AFMs one must specify the directions of
each of the moments in a crystal in order to calculate the
net dipolar interaction of a given central moment �μi with its
neighbors inside the Lorentz sphere. There are two generic
cases. In the first, one can define a nonzero AFM propagation
vector k such that moments in a plane perpendicular to k are
ferromagnetically aligned and all change their directions from
plane to plane along k. In the second, the spin lattice is a
non-Bravais lattice and the magnetic and chemical unit cells
are the same, where the AFM propagation vector is k = (0,0,0)
for such cases. We consider the first type of AFM ordering in
the 2D triangular lattice in the following section and then the
second type of ordering in GdB4 and the Shastry-Sutherland
lattice.

A. 2D triangular lattice antiferromagnets

It is well known that the classical ground state of a triangular
lattice AFM interacting by isotropic Heisenberg exchange is
the coplanar noncollinear 120◦ structure, where each of the
six neighbors of a given moment is at a 120◦ angle with the
given moment, as in the cycloidal AFM structure shown in
Fig. 10, where the 2D AFM propagation vector is k = ( 1

3 , 1
3 )

r.l.u. In the absence of anisotropy, the energy of the spin lattice
in Fig. 10 is invariant on rotating each spin by the same angle,
thus retaining the 120◦ angles between adjacent moments.
Here we examine whether the MDI can determine how the
moments are oriented with respect to the hexagonal unit cell
axes for the AFM structure in Fig. 10 or indeed whether the
MDI alone can stabilize this magnetic structure.

The approach we use is to first calculate the eigenvalues of
the MDI tensor Ĝi for noncollinear moments and variable
k = (x,x) r.l.u. and see whether the maximum eigenvalue
is obtained for x = 1/3. If so, then we are done. If not,
we conclude that exchange interactions alone determine k =
( 1

3 , 1
3 ) r.l.u. and then calculate for this k what the moment

orientations should be with respect to the crystal axes as
predicted by the MDI.

The MDI tensor Ĝi was calculated using Eq. (19). Shown
in Fig. 11 are plots of the two eigenvalues λ(x,x) versus x

with k = (x,x) r.l.u. for the two eigenvectors μ̂i1 and μ̂i2

shown in the figure for the orientation of central moment �μi

at the origin of the Cartesian coordinate system (the third
eigenvalue is for FM ordering along the c axis as discussed
in Sec. II F and is not relevant here). From Fig. 11, there is

a

b

k̂

d

120˚ Cycloidal Ordering

kd = 2π/3

FIG. 10. Coplanar noncollinear magnetic unit cell of classical
120◦ ordering on the 2D simple hexagonal (triangular) spin lattice
for cycloidal AFM ordering with a commensurate wavelength of
3a/2. The hexagonal lattice translation vectors a and b (a = b) and
the direction k̂ of the cycloid wave vector k are indicated. The long-
dashed line is the outline of the hexagonal unit cell containing one spin
and the solid line is the outline of the magnetic unit cell containing
nine spins (nine unit cells). The AFM propagation vector is k = ( 1

3 , 1
3 )

r.l.u. The quantity d is the distance between lines of ferromagnetically
aligned magnetic moments along the cycloid axis (k̂) direction. The
rotation angle of the magnetic moments between adjacent lattice lines
in the k̂ direction is φji = kd = 2π

3 rad.

no maximum in λ(x,x) at x = 1/3 corresponding to the 120◦
noncollinear structure. Instead, the MDI favors k = (1/2, 1/2)
r.l.u. Setting x = 1/3, we obtain λ(1/3,1/3) = −1.1659 for the
two degenerate eigenvectors μ̂i = [100] or [010]. The AFM
structure in Fig. 11 corresponds to μ̂i = [010].

Interestingly, the eigenvalue λ(1/3,1/3) = −1.1659 is iden-
tical to the value in Table I obtained for collinear AM AFM
ordering on the triangular lattice with k = ( 1

3 , 1
3 ) r.l.u. with

-8

-4

0

4

8

0.0 0.2 0.4 0.6 0.8 1.0
x

μ
i2
 = [1/2, 31/2/2]μ

i1
 = [31/2/2, −1/2]

k = (x,x) r.l.u.
2D triangular lattice

(X
, X

)
λ

FIG. 11. Variation in the eigenvalues λ(x,x) versus x in the AFM
propagation vector k = (x,x) r.l.u. for the two eigenvectors �μi1 and
�μi2 of the MDI tensor for the orientation of a representative moment
�μi . The first eigenvector is in the hexagonal b direction and the second
is in the b∗ direction, which is rotated clockwise by 90◦ from the first
(see Fig. 16 in Appendix A). The two curves cross at x = 1/3 and
x = 2/3. For x = 1/3 the eigenvectors are calculated as [100] (along
the a axis) and [010] (perpendicular to the a axis).
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J2

J1

GdB4

Gd

a

b 1
2

3
4

FIG. 12. Four crystallographic and magnetic unit cells of the
Gd sublattice of the tetragonal GdB4 compound in the ab plane
[40]. The Gd ordered moments all lie in the ab plane in [110]
and equivalent directions [57]. Also shown are the 2D in-plane
Shastry-Sutherland [58] exchange interactions J1 and J2 between
nearest- and next-nearest-neighbor Gd spins, respectively. The four
Gd spins in the lower-left unit cell are numbered counter clockwise
as shown. The spin interactions are topologically the same as in
the undistorted Shastry-Sutherland square lattice model in which the
GdB4 squares are not tilted with respect to the a and b axes. Adjacent
stacked layers along the c axis are ferromagnetically aligned with
ferromagnetic (negative) nearest-neighbor exchange interaction Jc

(not shown). Since the chemical and magnetic unit cell are the same,
the AFM propagation vector is k = (0,0,0).

the same two eigenvectors. This shows that the net energy
of interaction of a moment with the magnetic fields of the
other moments inside the Lorentz sphere only depends on the
projections of those moments on the eigenvector axis.

The fact that λ(1/3,1/3) is negative, whereas the eigenvalue
for collinear AM ordering along the easy c axis for k = ( 1

3 , 1
3 )

in Table I is positive, suggests that the MDI might tend to cant
the moments in the classical 120◦ coplanar structure out of the
ab plane and also introduce an amplitude modulation of the
ordered moments.

B. GdB4 and Shastry-Sutherland antiferromagnets

The AFM structure for GdB4 shown in Fig. 12 was
deduced from neutron diffraction measurements [57]. The
configuration of the exchange interactions J1 and J2 shown
in the figure is an example of a so-called Shastry-Sutherland
Heisenberg exchange model in two dimensions [58]. In GdB4,
this AFM structure is stacked along the c axis with FM
alignments between nearest-neighbor layers and a correspond-
ing FM interlayer interaction Jc that is not included in the
Shastry-Sutherland model.

Here we assume that the AFM structure is known, along
with the relative orientations of each of the ordered moments
in a unit cell. For noncollinear AFMs, Eq. (14) cannot be
used and instead one must express each �μk in a magnetic =
crystallographic unit cell in terms of the central moment �μi

around which the dipolar sum within the Lorentz sphere is
calculated. Thus, we use the method described in Sec. II E
to obtain the orientation (eigenvector) of �μi with respect to
the Cartesian coordinate system, together with the associated
eigenvalue.

GdB4 has a primitive-tetragonal crystal structure with
space group P 4/mbm [57]. The Gd atoms occupy the
Wyckoff 4g positions (1) ( 1

2 − x,x,0), (2) (1 − x, 1
2 − 1,0),

(3) ( 1
2 + x,1 − x,0), and (4) (x, 1

2 + x,0) with x = 0.31746(2).
Thus, from Eq. (A1a) the absolute positions of the atoms within
the unit cell normalized to the a-axis lattice parameter are

r1

a
=

(
na + 1

2
− x, nb + x, nc

c

a

)
, (30a)

r2

a
=

(
na + 1 − x, nb + 1

2
− x, nc

c

a

)
, (30b)

r3

a
=

(
na + 1

2
+ x, nb + 1 − x, nc

c

a

)
, (30c)

r4

a
=

(
na + x, nb + 1

2
+ x, nc

c

a

)
, (30d)

where na , nb, and nc are positive or negative integers or zero.
Taking the central moment �μi to be at position r1 with na =
nb = nc = 0, one obtains the rki = rk − ri as

r1i

a
=

(
na, nb, nc

c

a

)
, (31a)

r2i

a
=

(
na + 1

2
, nb + 1

2
− 2x, nc

c

a

)
, (31b)

r3i

a
=

(
na + 2x, nb + 1 − 2x, nc

c

a

)
, (31c)

r4i

a
=

(
na − 1

2
+ 2x, nb + 1

2
, nc

c

a

)
. (31d)

The 3 × 3 rotation matrices Rk for the four numbered moments
in the lower-left unit cell in Fig. 12 are

R1 = 1, (32a)

R2 = yx − xy, (32b)

R3 = −1, (32c)

R4 = xy − yx, (32d)

where xy and yx are 3 × 3 dyadics.
The sums in Eq. (17a) were calculated out to a Lorentz

sphere radius R/a = 50 for 3D GdB4. Then diagonalizing Ĝi

gave the eigenvectors and corresponding eigenvalues listed
in Table V. Recalling that the largest positive eigenvalue
corresponds to the minimum energy according to Eq. (16a), the
data in Table V show that the MDI favors moment alignment
along the c axis, contrary to the experimental result in Fig. 12,
which gives the alignment of the k = 0 spin as the [1,1̄,0]
direction, corresponding to the second-highest λkα . The highly
unstable [110] direction for central moment #1 corresponds to
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TABLE V. GdB4 and Shastry-Sutherland lattice. Eigenvectors
[μx,μy,μz] for central spin �μi and eigenvalues λkα for the 3D Gd
sublattice in GdB4 and for the 2D Shastry-Sutherland model. For
both cases, the experimental 90◦ angles between adjacent spins was
assumed with the order φ = φ0, φ0 + 90◦, φ0 + 100◦, and φ0 + 270◦

on going clockwise around a Gd square as shown in Fig. 12, but with
the value of φ0 undetermined for the moment in the lower left corner
of each square. The experimental x value and c/a ratio for GdB4 are
0.317 46 and 0.567 97, respectively. In the 2D Shastry-Sutherland
model, x = 1/4 and c/a = ∞. The symbol 1̄ means −1.

System x [μx,μy,μz] λkα

3D GdB4 0.31746 [001] 27.945
(actual) [11̄0] 20.112

[110] −48.055
[001] − [11̄0] 7.883
[001] − [110] 76.000

1/4 [11̄0] 40.013
[001] 26.833
[110] −66.845

[11̄0] − [001] 13.180
[11̄0] − [110] 106.858

2D Shastry- 1/4 [11̄0] 40.790 982
Sutherland [001] 7.483 697

[1̄1̄0] −48.274 678
[11̄0] − [001] 33.307 285
[11̄0] − [1̄1̄0] 89.065 660

all magnetic moments in Fig. 12 rotating clockwise by 90◦ and
hence all moments in each Gd4 square pointing towards the
center of the square. The RKKY interaction between Gd spins
and/or a high-order crystalline electric field effect evidently
give an anisotropic exchange interaction that is responsible for
the observed ordered-moment directions.

Calculations were also carried out for x = 1/4, which
corresponds to untilted Gd4 squares in Fig. 12, as shown in
Table V. One sees significant differences in the eigenvalues
compared to the results for the observed x = 0.317 46. In
particular, the Gd ordered moments are now predicted to
have the experimental ordered-moment directions. We also
carried out calculations for the Shastry-Sutherland 2D lattice
and the results are shown in Table V, where the favored
ordered-moment direction for Gd1 is found to be the same
as for x = 1/4 and c/a = 0.56797, the observed c/a ratio for
GdB4. Thus, the ground-state ordering direction predicted by
the MDI is sensitive to the tilting angle of the Gd4 squares.

VI. MAGNETIC ORDERING TEMPERATURE DUE TO
MAGNETIC DIPOLE INTERACTIONS

The MFT calculations in this and the following sections
closely follow the development of the author detailed in
Ref. [11]. Therefore only an outline of the calculations
associated with the MDI is given.

In this section, an AFM ordering (Néel) temperature arising
from dipolar interactions only is denoted by TNA and a FM
ordering (Curie) temperature by TCA, where the subscript A
refers to the quantity being the contribution from an anisotropic
magnetic interaction. Similarly, a Néel temperature arising

from Heisenberg exchange interactions only is denoted by
TNJ and a Curie temperature by TCJ . We use the Weiss MFT
to calculate these transition temperatures where we assume that
the spins are identical and crystallographically equivalent and
we only treat EM (not AM) magnetic structures on Bravais
lattices. Within MFT, the contributions of the dipolar and
exchange interactions to the actual ordering temperatures TN

and TC, respectively, are additive:

TN = TNA + TNJ , TC = TCA + TCJ . (33)

The magnetic ordering temperature TmJ (m = N, C) for
both AFMs and FMs due to exchange interactions is given by
the same expression [11],

TmJ = −S(S + 1)

3kB

∑
j

Jij cos φji, (34)

where φji is the angle between magnetic moments j and i in
the ordered state and φji = φj − φi = 0 for a FM. We define
the reduced ordered and/or applied magnetic field-induced
average moment μ̄ for a spin S as

μ̄ ≡ μ

μsat
= μ

gSμB
, (35)

where μsat = gSμB is the saturation moment of the spin and
g is the spectroscopic splitting factor. Using Eq. (34), one can
write the exchange field seen by a representative moment i in
zero applied field H as

Hexch i = TmJ

C1
μ0 = 3kBTmJ

gμB(S + 1)
μ̄0, (36)

where the subscript 0 in μ̄0 signifies H = 0, C1 is the single-
spin Curie constant (see below) and this expression applies to
the ordered state.

The magnetic ordering temperature is determined within
MFT by the criterion that μ̄0 → 0 for T → T −

m . For magnetic
dipole ordering, the near-field contribution to the local mag-
netic induction is given by Eq. (20). The magnetic moment μ

in that equation is defined in general as either the ordered
moment in a magnetic structure in H = 0 (μ0) and/or an
average moment induced by Hα > 0 (μ). Using Eq. (35),
Eq. (20) associated with MDIs becomes

Bnear
int α i = gμBSμ̄λkα

a3
. (37)

A. Antiferromagnetic ordering (Néel) temperature

Here we calculate TNA in H = 0 within MFT for a specified
AFM wave vector k and ordered-moment axis μ̂ in the
presence of MDIs but in the absence of exchange interactions.
The standard MFT prediction is obtained from [11,40,59]

μ̄0 = BS

(
gμBB local

int α

kBT

)
, (38)

where we have dropped the subscript i because all moments
are crystallographically equivalent in H = 0, the subscript 0
in μ̄0 signifies that H = 0 as above, and BS(y) is the Brillouin
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function for spin S given by our unconventional expression

BS(y) = 1

2S

{
(2S + 1) coth

[
(2S + 1)

y

2

]
− coth

(
y

2

)}
.

(39)
There is no demagnetizing field for an AFM in H = 0 because
there is no net magnetization, so for AFM ordering in H = 0 the
local field is just the near field. Inserting Bnear

int α i from Eq. (37)
into (38) gives

μ̄0 = BS(y0), (40a)

where

y0 = g2Sμ2
Bμ̄0λkα

a3kBT
. (40b)

Then one obtains for a given k and easy axis α the Néel
temperature [11]

TNAα = g2S(S + 1)μ2
Bλkα

3a3kB
. (41)

The relevant ordering axis α and hence TNAα is the one with
the largest eigenvalue λkα for the given AFM structure.

The single-spin Curie constant C1 for spin S is given by
[37]

C1 = g2S(S + 1)μ2
B

3kB
, (42)

so Eq. (41) can be written more succinctly as

TNAα = C1λkα

a3
. (43a)

Thus, one can also write

λkα

a3
= TNAα

C1
= 3kBTNAα

g2S(S + 1)μ2
B

. (43b)

Then for H = 0 and T � TNA one can write the near field in
Eq. (37) in the direction of each ordered moment as

Bnear
int α = 3kBTNAαμ̄0

g(S + 1)μB
. (44a)

The exchange field for H = 0 seen by each moment in its
ordering direction due to Heisenberg exchange interactions
for either FM or AFM ordering can be written in the same
form as [11]

Hexch = 3kBTmJ μ̄0

g(S + 1)μB
, (44b)

where TmJ is the contribution of Heisenberg exchange inter-
actions to either a FM Curie temperature TCJ or an AFM Néel
temperature TNJ . Using Eq. (33), in the case of AFM ordering
the sum of the two local fields in Eqs. (44) can be written

B local
α = 3kB(TNJ + TNAα)μ̄0

g(S + 1)μB
= 3kBTNμ̄0

g(S + 1)μB
, (45)

where TN is the Néel temperature in the presence of both
exchange and MDIs.

Because different sources of local fields are additive in their
contributions to the observed TN within MFT, if both exchange
and dipolar interactions are present TNA is the contribution of

dipolar interactions to TN, which is usually but not always a
small fraction of TN.

Quantum fluctuations generally increase as the dimension-
ality of a spin lattice decreases. These quantum fluctuations
can prevent long-range magnetic ordering from occurring.
Corruccini and White found from spin-wave calculations that
AFM order cannot occur at finite temperature on the 2D square
spin lattice due to dipolar interactions alone [13]. MFT does not
take into account such quantum fluctuations associated with
reduced dimensionality and hence predicts that AFM ordering
can occur in 1D, 2D, and 3D spin lattices.

B. Ferromagnetic ordering (Curie) temperature

As is well-known, whether or not a particular sample
exhibits FM ordering driven by the MDI depends on the
shape of the sample via the demagnetizing field as well as
the competition with AFM states. The former is evident from
Eq. (8a), which for Hα = 0 becomes

B local
int αi = gμBS

a3

[
λ0α + 4π

Vspin/a3

(
1

3
− Ndα

)]
μ̄, (46)

where a is the a-axis lattice parameter of the unit cell, Vspin is
the volume per spin, λ0α refers to FM moment alignments, the
magnetic moment per unit volume is μ/Vspin = gμBSμ̄/Vspin,
and we used Eqs. (35) and (37). Then following the same
development as in the previous section gives the Curie
temperature

TCA α = g2S(S + 1)μ2
B

3kBa3

[
λ0α + 4π

Vspin/a3

(
1

3
− Ndα

)]

= C1

a3

[
λ0α + 4π

Vspin/a3

(
1

3
− Ndα

)]
(FM), (47)

where C1 was defined in Eq. (42). The system will choose
the easy axis α with the largest value of λ0α . For a cubic
Bravais lattice λ0α = 0, so there is no preferred easy axis for
FM ordering according to the present treatment.

Using Eq. (47) one can write the local field in Eq. (46) for
FM moment alignments as

B local
int αi = 3kBTCA α

gμB(S + 1)
μ̄. (48)

If Heisenberg exchange interactions are present, one adds the
local exchange field in Eq. (44b) to the dipolar contribution in
Eq. (48) to obtain

B local
int αi = 3kBTCα

gμB(S + 1)
μ̄, (49)

where TCα = TCA α + TCJα according to Eq. (33).
Comparing Eqs. (45) and (49) one sees that the same form

of the local field in the direction of each ordered moment is
obtained for both FM and AFM structures in the ordered states
and one can therefore write the local magnetic induction seen
by each moment in general for either FM or AFM moment
alignments and dipolar and/or Heisenberg interactions as

B local
int αi = 3kBTmα

gμB(S + 1)
μ̄, (50)
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where Tmα is the Curie or Néel temperature for the collinear
ordering axis α.

VII. COMPETITION BETWEEN FERROMAGNETIC AND
ANTIFERROMAGNETIC ORDERING

One can have a crossover between FM and AFM ordering
depending on the value of the demagnetizing factor Ndα and
the possible AFM eigenvalues λkα and FM eigenvalues λ0α .
The value of Ndα depends on the shape of the sample. For FM
ordering, the field direction with the smallest value of Ndα gives
the lowest free energy and hence is the FM ordering direction
provided that the calculated TCAα > 0 and that competing
AFM states have a lower calculated TNAα > 0.

To examine this competition, we define the dimensionless
reduced AFM and FM ordering temperatures obtained from
Eqs. (43a) and (47), respectively, as

TNAαa3

C1
= λkα (AFM), (51a)

TCA αa3

C1
= λ0α + 4π

Vspin/a3

(
1

3
− Ndα

)
(FM). (51b)

As an example, we consider the competition between FM
and AFM ordering due to dipolar interactions on sc, bcc, and
fcc Bravais lattices, which have λ0α = 0 and Vspin/a

3 = 1,
1/2, and 1/4, respectively. The reduced Curie temperature
in Eq. (51b) is plotted versus Ndα for sc, bcc, and fcc Bravais
spin lattices in Figs. 13(a)–13(c), respectively. Using Eq. (51a)
and the data in Tables II–IV, AFM λkα values are plotted for
the most stable (positive) λkα value for each k as horizontal
lines for the sc, bcc, and fcc lattices in Figs. 13(a)–13(c),
respectively. One sees from Fig. 13 that for the magnetic
structures considered, the ground state of the sc lattice is AFM
ordered with k = ( 1

2 , 1
2 ,0) r.l.u. and ordering axis μ̂ = [001]

for all values of Ndα , the bcc lattice is unstable to FM ordering
only for Ndα ≈ 0 and the fcc lattice for Ndα � 0.03. These
inferences are consistent with early results [4]. A sample
with the shape of a long thin needle with the magnetization
directed along the axis of the needle has a demagnetizing factor
Ndα ≈ 0.

VIII. PROPERTIES OF THE MAGNETICALLY
ORDERED STATE

A. Ordered moment and magnetic heat capacity

For either an AFM or FM with Heisenberg and/or MDIs,
Eq. (50) gives the same form of the local magnetic induction
seen by each spin in its ordering direction for T � Tm. Using
Eq. (50), the behavior of μ̄ versus t is the same as for pure
Heisenberg interactions and is shown for several values of the
spin S in Fig. 10 of Ref. [59].

The magnetic energy per spin is given by

Emag i = − 1
2μiB

local
i , (52a)

where the factor of 1/2 derives from the fact that B local
i is

attributed to the neighbors of μi whereas the energy is equally
shared by pairs of interacting spins. Inserting B local

i from
Eq. (50) into (52a) for a mole of spins with N = NA where
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FIG. 13. Reduced magnetic ordering temperature Tmaga
3/C1

versus the demagnetizing factor Ndα with 0 � Ndα � 1 for pure
magnetic dipolar ordering in (a) sc, (b) bcc, and (c) fcc Bravais
spin lattices as predicted for FM and AFM ordering by MFT via
Eqs. (51). An ordering wave vector is labeled as (m1,m2,m3) r.l.u.
and the ordered-moment axis as [μx,μy,μz] in Cartesian coordinates.
Values of Tmag < 0 are unphysical. For the fcc lattice, the most stable
AFM wave vector shown is k = (1/3,1/3,1/3) r.l.u.

NA is Avogadro’s number, one obtains

Emag = − 3RS

2(S + 1)
Tmμ̄2

0, (52b)
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where R = NAkB is the molar gas constant. Then the magnetic
heat capacity Cmag per mole of spins is obtained as [11,59]

Cmag

R
= −3Sμ̄0(t)

S + 1

dμ̄0(t)

dt
, (52c)

where t = T/Tmag and the reduced ordered moment versus
temperature μ̄0(t) in H = 0 is obtained as described in
Ref. [11]. This equation is identical to that obtained for
pure Heisenberg interactions, where plots of Cmag/R versus
t for several values of S are shown in Fig. 11 of Ref. [59].
For quantum spins, Cmag decreases exponentially to zero for
t → 0, whereas for classical spins Cmag/R → 1 for t → 0.

B. Dipolar anisotropy of uniaxial antiferromagnets
in the ordered state

Here we calculate the dipolar anisotropy of the free energy
between EM orthogonal principal collinear magnetic ordering
axes denoted as the α and β axes. We consider collinear
AFMs with noncubic spin lattices containing identical crys-
tallographically equivalent spins. The lowest-order expression
for the anisotropy free energy per spin Fi is given by the usual
expression

Fi = K1 sin2 θ, (53)

where θ is defined as the angle between the ordered-moment
axis and the α axis. We derive an expression for K1 associated
with the anisotropic MDI in terms of the eigenvalues and
eigenvectors of the MDI tensor.

The orientation of a representative T -dependent ordered
moment �μi in the α-β plane in H = 0 with μ0 = |�μi | is

�μi = μ0(cos θ α̂ + sin θ β̂), (54)

where μ0 is the T -dependent ordered moment in H = 0
and θ = 0 corresponds to �μi parallel to the α axis. The
corresponding T -dependent internal local field is

Blocal
int i = B local

int α i cos θ α̂ + B local
int β i sin θ β̂, (55)

where the expression for Blocal
int α i is given in Eq. (8a), with

Hα = 0. The differential dFi of the magnetic free energy of
the moment is

dFi = − 1
2 �μi · dBlocal

int i , (56)

where the factor of 1/2 is present because Blocal
int i arises from

the neighboring moments of �μi , whereas the free energy per
moment is equally shared between each pair of moments.
Inserting Eqs. (54) and (55) into (56) gives

dFi = μ0

2

(
B local

int α i − B local
int β i

)
sin θ cos θ dθ. (57)

Integrating dFi from θ = 0 to θ yields

Fi = μ0

4

(
B local

int α i − B local
int β i

)
sin2 θ. (58)

This expression for Fi applies to moments along the collinear
ordering axis with angles of either ±θ to the α axis because the
sine function is squared. Comparing Eq. (58) with (53) gives
the anisotropy parameter K1 as

K1 = μ0

4

(
B local

int α i − B local
int β i

)
. (59)

For an AFM in the ordered state, one has Blocal
int α i = Bnear

int α i .
Inserting Bnear

int α i in Eq. (20) into (59) gives

K1 = μ2
0

4a3
(λkα − λkβ). (60)

From Eqs. (53) and (60) one obtains

Fi =
{

0 (θ = 0),
μ2

0(T )
4a3 (λkα − λkβ) (θ = π/2).

(61)

Therefore, if λkα − λkβ > 0, the minimum free energy occurs
if the moments are aligned along the α axis (θ = 0) and hence
the easy axis is the α axis, whereas if λkα − λkβ < 0, the
β axis (θ = π/2) is favored for the ordering axis over the α

axis. These results are consistent with expectation because one
expects a moment �μi to line up along the axis with the largest
value of Bnear

int i in Eq. (20), i.e., with largest value of λk.

C. Perpendicular magnetic susceptibility of collinear
antiferromagnets in the ordered state

The Heisenberg exchange Hamiltonian has no intrinsic
magnetic anisotropy to determine the directions of the ordered
moments in the ordered state with respect to the spin-lattice
axes. In this paper the only source of magnetic anisotropy is the
MDI, and in this section we only consider collinear magnetic
ordering. The easy axis is the eigenvector of the interaction
tensor Ĝi(k) that corresponds to the largest eigenvalue for the
given AFM propagation vector.

The single-spin magnetic susceptibility χ is rigorously
defined as χ = limH→0 μ(H )/H , where μ is the thermal-
average moment of a spin in the direction of H that is induced
by H. Here we take the easy axis to be the x axis and the applied
infinitesimal field to be along a z axis, perpendicular to the x

axis. The magnitude of each ordered moment in zero field is μ0,
which is T dependent, as shown in Ref. [59]. In the presence
of the perpendicular field, the magnitude of the moment does
not change in the AFM phase [4,11] and the induced moment
acquires a component along the z axis. Including the applied
infinitesimal perpendicular field and both the exchange and
dipolar fields and setting the net torque on a representative
moment equal to zero following the procedure of Ref. [11]
yields the perpendicular susceptibility

χ⊥ = C1

(TNJ + TNAx − TCAz) − θpJ

. (62)

The T -dependent ordered moment μ0 canceled out, so χ⊥
is independent of T for T � TN, as also obtained for pure
Heisenberg spin interactions [11].

Several special cases occur for Eq. (62). If exchange
interactions are negligible, the pure magnetic dipole prediction
is obtained by setting TNJ = θpJ = 0, yielding

χ⊥ = C1

TNAx − TCAz

(63a)

= a3

λkx − λ0z − 4π
3Vspin/a3

. (63b)
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For cubic Bravais spin lattices for which λ0α = 0 for all α,
Eq. (63b) gives

χ⊥ = a3

λkx − 4π
3Vspin/a3

. (64)

This result agrees, e.g., with χ⊥ obtained from the equation
between Eqs. (29) and (30) in Ref. [4] which includes in the
denominator of Eq. (64) the ground-state eigenvalue λkx =
λ(1/2,1/2,0)[001] = 5.351 (f5 in their notation) for the sc dipolar
AFM, in good agreement with our value of 5.3535 in Table II.

When dipolar interactions are negligible, Eq. (62) gives for
the pure Heisenberg exchange model

χ⊥ = C1

TNJ − θpJ

(T � TNJ ), (65a)

in agreement with Ref. [11]. In the PM state at T � TNJ , the
isotropic susceptibility per spin is given by the Curie-Weiss
law [11]

χ = C1

T − θpJ

(T � TNJ ). (65b)

Comparing Eqs. (65a) and (65b) gives

χ⊥ = χ (TNJ ) (T � TNJ ). (65c)

D. Perpendicular critical field

As the perpendicular field is increased from zero at T < TN,
the induced perpendicular moment μ⊥ increases as

μ⊥ = χ⊥H, (66)

where χ⊥ is given by Eq. (62). When μ⊥ reaches the ordered
moment μ0(T ), the induced moments become parallel to H
and the system enters the PM state in a second-order transition
[4,11]. Setting μ⊥ = μ0 with increasing H , the critical field
Hc at which this happens is defined by μ0 = χ⊥Hc, yielding

Hc(T ) = μ0(T )

χ⊥
. (67)

Thus, one obtains

Hc(T )

Hc(0)
= μ0(T )

μ0(0)
= μ0(T )

μsat
= μ̄0(T ), (68)

where μ̄0 is plotted versus t ≡ T/TN in Ref. [59]. Since within
MFT μ0(T ) depends on the spin S of the moment, so does
Hc(T )
Hc(0) . Near t = 1, one obtains

Hc(T )

Hc(0)
∝ √

1 − t (t → 1−). (69)

Previous classical calculations (not utilizing the Weiss MFT
and hence not the Brillouin function for quantum spins) yielded
the behavior in Eq. (69) for the whole temperature range 0 �
t � 1, with the proportionality replaced by an equality [39]. In
that case, expanding the right-hand side of Eq. (69) in a Taylor
series about t = 0 gives the linear dependence Hc(T )

Hc(0) = 1 − t
2

(t � 1) instead of the exponential approach to unity for t → 0
obtained for quantum spins.

IX. CURIE-WEISS LAW IN PARAMAGNETIC STATE

In the PM state above the Néel or Curie temperature,
all moments are aligned in the direction α of the magnetic
field Hα applied along a principal axis of the spin lattice
[the magnetic propagation vector is k = (0,0,0) ≡ 0]. For
Heisenberg exchange interactions, the exchange field in the
PM state is isotropic and given by [11,40]

Hexch = 3kBθpJ

gμB(S + 1)
μ̄, (70)

where μ̄ is the normalized moment induced by Hα and

θpJ = −S(S + 1)

3kB

∑
j

Jij (71)

is the contribution to the Weiss temperature in the Curie-Weiss
law due to Heisenberg exchange interactions. Then adding
Hexch and Hα to the local dipolar field for Hα = 0 in Eq. (46)
gives the total local field seen by each moment as

B local
int αi = Hα + 3kBθpJ

gμB(S + 1)
μ̄

+ gμBS

a3

(
λ0α + 4π

3Vspin/a3

)
μ̄, (72)

where we assume that the demagnetizing field has been cor-
rected for in experimental data and hence the demagnetizing
factor Ndα does not appear in this expression. To include it,
replace the multiplicative factor 1

3 in the last term by 1
3 − Ndα .

Analogous to Eq. (38) for Hα = 0, in the present case one
has

μ̄ = BS

(
gμBB local

int α i

kBT

)
. (73)

Inserting B local
int α i from Eq. (72) into (73), Taylor expanding the

Brillouin function BS(y) to first order in y, solving for μ̄, and
using Eq. (35) gives the Curie-Weiss law

χα = C1

T − θpα

, (74a)

θpα = θpJ + θpAα, (74b)

where the single-spin Curie constant C1 is given in Eq. (42),
θpJ is given in Eq. (71), and the magnetic dipole contribution
θpAα to the Weiss temperature is

θpAα = C1

a3

(
λ0α + 4π

3Vspin/a3

)
. (74c)

A comparison of Eq. (74c) with (47) shows that the
contributions of dipolar interactions to the Weiss temperature
and the Curie temperature of a FM are the same, i.e.,

θpAα = TCAα, (74d)

which is the same result as obtained from MFT for a system of
local moments exhibiting a FM transition and interacting by
Heisenberg exchange only [11].

On the other hand, a comparison of Eqs. (43a) and (74c)
shows that in general the contribution of dipolar interactions
to the Weiss temperature for AFMs is not equal to the negative
of the dipolar Néel temperature in Eq. (43a), as is also found
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in general for local-moment Heisenberg AFMs [11]. Thus, the
ratio f = θp/TC for a FM within MFT is

f = 1 (FM), (75a)

whereas in general for an AFM it is

fα = θpα

TNα

= θpAα + θpJ

TNAα + TNJ

< 1 (AFM). (75b)

X. ANISOTROPIC MAGNETIC SUSCEPTIBILITY OF A
SPHERICAL SAMPLE OF A PURE DIPOLAR

ANTIFERROMAGNET

In the following, we assume that the sample is in the
shape of a sphere, which cancels the Lorentz field within
the Lorentz cavity according to Eq. (8a) and hence ameliorates
the competition of FM with AFM ordering.

A. Paramagnetic state

For a dipolar collinear AFM at T > TNAx where the easy
axis is defined as the x axis, the Curie-Weiss law in Eq. (74a)
becomes

χα = C1

T − θpAα

(T > TNAx), (76)

where θpAα is given by setting the second term in Eq. (74c) to
zero for a spherical sample, yielding

θpAα = C1λ0α

a3
. (77)

This would be zero for a cubic Bravais spin lattice because in
that case λ0α = 0 for all α. The Néel temperature in Eq. (43a)
for the easy x axis is

TNAx = C1λkx

a3
(78)

and we define the ratio fAα as

fAα = θpAα

TNAx

= λ0α

λkx

, (79)

where the subscript A in fAα signifies that the value of f

arises only from the anisotropic MDI and α can be any of the
principal axes x, y, or z.

Using Eqs. (78) and (79), the Curie-Weiss law (76) for a
single spin can be written in dimensionless form as

χα TNAx

C1
= 1

tA − fAα

(tA > 1), (80a)

where the reduced temperature tA is defined as

tA = T

TNAx

. (80b)

Note that Eq. (80a) is a law of corresponding states for all
quantum spins S, since S only appears in C1.

The reduced PM susceptibility at TNAx from the Curie-
Weiss law (80a) is then

χα(tA = 1+) TNAx

C1
= 1

1 − fAα

(tA = 1+). (81)

From Eqs. (80a) and (81) one obtains

χα(tA)

χα(tA = 1+)
= 1 − fAα

tA − fAα

(tA > 1), (82)

which yields the identity

χα(tA = 1+)

χα(tA = 1+)
= 1, (83)

as required.

B. Perpendicular susceptibility in the AFM-ordered state

In the AFM state at T < TNA of a strictly dipolar AFM, one
sets TNJ = θpJ = 0 and for spherical samples Eqs. (63) yield

χ⊥(T � TNAx) = a3

λkx − λ0z

(84a)

= C1

TNAx − TCAz

, (84b)

where, as above, the x axis is the easy axis for the collinear
AFM ordering, TNAx is the associated Néel temperature, and
the z axis is perpendicular to the x axis; i.e., χ⊥ = χz. One can
write Eq. (84b) in dimensionless form as

χ⊥TNAx

C1
= 1

1 − rz

(tA < 1, z ⊥ x), (85a)

where, according to Eq. (43a) and Eq. (47) modified for a
spherical sample, one has

rz = TCAz

TNAx

= λ0z

λkx

. (85b)

Using Eqs. (81) and (85a), one obtains

χ⊥(tA < 1)

χα(tA = 1+)
= 1 − fAα

1 − rz

. (86)

Comparing Eqs. (83) and (86), one sees that in general the hard-
axis χz is continuous on cooling below TNAx , where χ⊥ = χz

below TNAx . If λ0α = 0 for all α, as in cubic Bravais lattices,
χ⊥ is obtained for all axes below TNAx .

C. Parallel susceptibility in the AFM-ordered state

When an infinitesimal field H = H î is applied in the
positive x direction along the collinear AFM ordering easy axis
at a temperature 0 < T < TNAx , an ordered moment initially
pointing parallel (antiparallel) to H increases (decreases)
slightly in magnitude, where the vectorial change d �μ = dμî is
the same for both moments. Therefore, in this section we only
consider the change in the x-axis component of a representative
moment �μi pointing towards the positive x axis due to the
applied field.

Following Ref. [11] we obtain the dimensionless equation

χ‖TNAx

C1
= 1

τ ∗(tA) − fAx

, (87a)

where tA is defined in Eq. (80b) and

τ ∗(tA) = (S + 1)tA
3B ′

S(y0)
, fAx = θpAx

TNAx

= λ0x

λkx

. (87b)
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TABLE VI. Eigenvalues λ and eigenvectors μ̂ = [μa,μb,μc] of the dipolar interaction tensor for simple tetragonal spin lattices with
c/a = 0.8 and 1.2 and wave vectors (m1,m2,m3) r.l.u. The data were taken from tables in the Supplemental Material [31]. The largest
eigenvalue for k = 0 is labeled as λ0α . For k = ( 1

2 , 1
2 ,0) r.l.u. the maximum eigenvector is denoted as λkx and the value for the perpendicular

direction as λkz. For each k, the values of fA and rz are listed as defined in Eqs. (79) and (85b), respectively. According to Eqs. (80a) and (85a),
the parameter fAα is relevant for the PM T range and rz is relevant for the AFM-ordered T range. In the table, the assignments of the x and z

Cartesian axes to the c and a crystal axes, respectively, are shown in the subscripts to the parameters.

c/a k (r.l.u.) [100] [001] fA rz

0.8 (0,0,0) λ0z,a = −1.9691 λ0x,c = 3.9382 fAx,c = 0.4104, fAz,a = −0.2052
( 1

2 , 1
2 ,0) λkz,a = −4.7977 λkx,c = 9.5955 rz,a = −0.2052

1.2 (0,0,0) λ0z,a = 0.9364 λ0x,c = −1.8728 fAx,c = −0.5010, fAz,a = 0.2505
( 1

2 , 1
2 ,0) λkz,a = −1.8691 λkx,c = 3.7381 rz,a = 0.2505

μ0(T ) is obtained by numerically solving

μ0 = gμBSBS(y0), (88a)

where

y0 = gμB

kBT

μ0λkx

a3
. (88b)

Here BS(y) is the Brillouin function in Eq. (39) and B ′
S(y0) ≡

[dBS(y)/dy]|y=y0 . Note that the parallel susceptibility in the
dimensionless form in Eq. (87a) still depends on S since
the Brillouin function on the right-hand side does. This
contrasts with the dimensionless forms of the Curie-Weiss and
perpendicular susceptibilities above for dipolar interactions
that do not depend on S.

Useful limits are

τ ∗(tA → 0) = ∞, τ ∗(tA → 1) = 1, (89)

yielding

χ‖TNAx

C1
= 0 (tA → 0), (90a)

χ‖TNAx

C1
= 1

1 − fAx

(tA → 1−). (90b)

The latter χ‖ expression is identical with

χx TNAx

C1
= 1

1 − fAx

(tA = 1+) (91)

obtained from Eq. (81) for the Curie-Weiss law at tA = 1+ for
the field applied along the x axis. Thus, χ‖ = χx for tA < 1
joins continuously with χx for tA > 1.

D. Example

As an example, we consider the simple tetragonal Bravais
spin lattice with c/a = 0.8, 1.0, and 1.2 and AFM propagation
vector k = ( 1

2 , 1
2 ,0) r.l.u. for temperatures both above and

below the Néel temperature. Recall that for fAα , the x and
α axes are the easy principal axis for AFM ordering and any of
the three principal axes, respectively, whereas for rz, the z axis
must be an axis perpendicular to the x axis. In a real material,
one must identify x, z, and α with the appropriate crystal axes.

The eigenvalues and eigenvectors of the dipolar interaction
tensor taken from tables in the Supplemental Material [31] are
shown in Table VI along with the respective values of fAα and
rz defined in Eqs. (79) and (85b). One sees that the AFM state

is stable against the FM state below TNAx for both c/a values,
but that the anisotropy in the PM state at T > TNA changes
sign between the two c/a values.

Using the data in Table VI, Eq. (86) yields χ⊥(tA)
χa (tA=1+) = 1 for

the easy a axis for both c/a = 0.8 and 1.2. For the sc lattice
with c/a = 1, one has λ0α = fA = rα = θpaα = 0 for all α.
Therefore, χ (T ) follows a Curie law for tA � 1. Also, there is
no restoring force for keeping the easy axis parallel to the field,
so the magnetization flops to the perpendicular orientation
whenever this is attempted. Thus, only χ⊥(T ) = χ (TNAx) is
measured for tA � 1.

Shown in Fig. 14 are plots of χ(tA)TNAx

C1
versus tA for c/a =

0.8, 1.0 and 1.2 illustrating the progression of the anisotropy
in χ as c/a traverses the sc value of unity. To our knowledge
no theoretically predicted behaviors such as in Figs. 14(a) and
14(c) have appeared before in the literature.

XI. ANISOTROPY OF MAGNETIC SUSCEPTIBILITY OF A
HEISENBERG PARAMAGNET DUE TO MAGNETIC

DIPOLE INTERACTIONS

In this section we assume that demagnetizing fields have
been corrected for in experimental data and hence the
demagnetizing factor Ndα does not appear.

In the PM state above TN, according to Eq. (74c) the
anisotropy in χ can only arise from a difference in the dipolar
Weiss temperatures along different principal axis directions α

and β, given by Eq. (74c) as

θpAα − θpAβ = C1

a3
(λ0α − λ0β). (92)

For cubic Bravais lattices, one has no dipolar anisotropy in
the PM state because λ0α = 0 for all α. Here we follow the
approach of Keffer [60].

For two susceptibilities χα and χβ measured along the α

and β principal axes, one has the identity

1

χβ

− 1

χα

= χα − χβ

χαχβ

, (93a)

or

χα − χβ = χαχβ

(
1

χβ

− 1

χα

)
. (93b)

Using Eqs. (74), Eq. (93b) yields

χα − χβ = χαχβ

C1
(θpα − θpβ). (94)
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FIG. 14. Anisotropy of the magnetic susceptibilities χa and χc

due to MDIs versus reduced temperature tA = T/TNAx for a simple
tetragonal spin lattice with (a) c/a = 0.8, (b) 1.0 (sc lattice), and (c)
c/a = 1.2. The AFM propagation vector in the ordered AFM state
at tA < 1 is k = ( 1

2 , 1
2 ,0) r.l.u. and the easy axis is the c axis [001]

for both c/a = 0.8 and 1.2. The data were plotted using Eqs. (80)
(Curie-Weiss law) for tA � 1 and (85) (χ⊥) and (87) (χ‖) for tA � 1.

If the dipolar anisotropy in θ is small compared to the measured
average Weiss temperature θp, one can define the geometric-
mean susceptibility χ = √

χαχβ and use Eq. (92) to obtain

χα − χβ = χ2

a3
(λ0α − λ0β). (95)

Here the Curie-Weiss χ ’s are per spin and a is the a-axis lattice
parameter for the particular Bravais spin lattice considered.
The susceptibility difference per mole of spins is obtained by
multiplying each χ on the left side of Eq. (95) and one χ on
the right by Avogadro’s number NA and Eq. (95) yields the
molar susceptibility difference

χMα(T ) − χMβ(T ) = χ2
M(T )

NAa3
(λ0α − λ0β). (96)

Here we apply Eq. (96) to the primitive tetragonal rutile-
structure collinear AFM MnF2 with TN = 69 K, which is
often considered a prototype for collinear AFM ordering. This
compound contains a bct sublattice of Mn+2 cations with spin
S = 5/2 and an expected g = 2 and orders into an A-type
AFM structure with AFM wave vector k = (0,0,1) as shown
in Fig. 9. The lattice parameters are [51,61]

a = 4.8734(5) Å, c = 3.3103(10) Å,
c

a
= 0.6793(3).

(97)
For the given c/a ratio and FM k = 0 we find λ0[001] = 4.3219
and λ0[100],[010] = −2.1609, yielding

λ0[001] − λ0[100] = 6.4828, (98)

whereas for the ordering wave vector k = (0,0,1) r.l.u.
we obtain λ(001)[001] = 13.8639 and λ(001)[100],[010] = −6.9319,
with λ(001)[001] − λ(001)[100],[010] = 20.7958. These values show
that the [001] moment direction is energetically favored by the
MDI both above and below TN, in agreement with experiment,
as follows.

The anisotropic χ (T ) of MnF2 crystals is shown in
Fig. 15(a) [62,63]. Above TN, χ is found to be nearly isotropic.
Below TN, the data are a textbook example of the anisotropy
expected for collinear AFM ordering, where in this case the
easy axis is the c axis. According to MFT, χ⊥ = χab for
T � TN should be independent of T , which is well satisfied.
On the other hand, χ‖ = χc should go to zero as T → 0, as also
observed. We obtained a fairly good fit to χ‖(T � TN) using
our MFT with no adjustable parameters [40]. The fit function
used was similar to the equation we obtained for χ‖(T ) for the
pure dipole AFM in Eqs. (87) and Fig. 14.

The anisotropy �χ (T ) ≡ χc(T ) − χab(T ) was measured
with a torque magnetometer and the results are shown in
Fig. 15(b) [64]. The �χ data measured with the torque
magnetometer [64] for T < TN agree with the anisotropy
calculated from the direct measurements [62,63] in Fig. 15.
For T � TN, a comparison of the data in Figs. 15(a) and 15(b)
shows that |�χ |/χ ∼ 0.1% for T > TN. From Eq. (96), the
anisotropy of χ is predicted to be

�χM(T ) = χ2
M(T )

NAa3
(λ0[001] − λ0[100]). (99)

Using the values of a and λ0[001] − λ0[100] in Eqs. (97) and (98),
respectively, and the χM(T ) data in Fig. 15(a), �χM(T ) was
calculated from Eq. (99) and the result is shown as the solid red
curve in Fig. 15(b) (see also Ref. [60]). The calculation is in
excellent agreement with the data for T � 150 K, suggesting
that the MDI is responsible for the χ anisotropy in this T range
or at least reinforces this anisotropy. However, the data are
increasingly suppressed to lower values below 130 K, which
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FIG. 15. (a) Magnetic susceptibility χ versus temperature T of
tetragonal MnF2 crystals for applied fields along the c axis (χc) and in
the ab plane (χab) [62,63]. (b) Anisotropy χc − χab versus T (solid
blue squares) [64]. Note the factor of 100 difference between the
two ordinate scales in (a) and (b). The red solid curve is the MFT
prediction for magnetic anisotropy arising from MDIs obtained using
Eq. (96).

likely result from the onset of dynamic short-range collinear
AFM correlations along the c axis with a correlation length
that eventually diverges at TN = 69 K, where from Fig. 15(a),
�χM grows to become large and even more negative below
that temperature.

XII. SUMMARY

A detailed summary of the paper is given in the Abstract to
the paper. Here we provide a few additional comments.

The eigenvalues and eigenvectors of the MDI tensor
were determined for specified magnetic wave vectors and
spin lattices. The eigenvalues give the energy of a spin in
the magnetic fields of the local moments inside a Lorentz
sphere of radius R in units of the a-axis lattice parameter
a. For 3D lattices, R/a = 50 was usually used, for a 2D
circle R/a � 1000 and for a spin chain with R/a = ∞ the
eigenvalues were determined exactly. The eigenvectors are
the three orthogonal principal axis directions for collinear
magnetic ordering. For uniaxial 3D spin lattices, these were
calculated for c/a = 0.5 to 3 and the results presented in
figures in the main text and Appendix B and in tables

in the Supplemental Material [31]. We also calculated the
eigenvalues and eigenvectors for noncollinear AFM structures
including the 2D 120◦ triangular lattice and for the 2D
and 3D coplanar noncollinear Shastry-Sutherland lattice and
GdB4 magnetic structure. We compared the ordering-direction
predictions with data for some Mn+2, (S = 5/2), Gd+3, and
Eu+2, (S = 7/2) compounds and found good agreement.
Disagreement occurred for the itinerant AFM BaFe2As2 and
for the coplanar noncollinear AFM GdB4, which indicates
that a stronger anisotropy source must be present in these
compounds that defeats the preferences of the MDI.

A significant contribution of this paper was to apply our for-
mulation of the Weiss MFT [11,40] to predict many properties
of the ordered and PM states arising from MDIs. These include
the magnetic ordering temperature Tm, the ordered moment,
the magnetic heat capacity, and, for AFMs, the perpendicular
critical field, the anisotropic magnetic susceptibility versus
temperature for T � TN, and the parameters of the Curie-Weiss
law for the anisotropic susceptibility for both FMs and AFMs at
T � Tm. Within MFT, the contributions of different molecular
field sources to these properties are additive. This means
that the same theory can be used to treat purely magnetic
dipole magnets or spin systems containing both exchange and
dipole interactions. We recently used the theory to separate the
magnetic dipole and exchange contributions to the properties
of the bct compound EuCu2Sb2 with c/a = 2.4 and TN = 5.1
K, which then allowed estimates of the Eu-Eu exchange
interactions to be made [29].
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APPENDIX A: DIRECT AND RECIPROCAL LATTICES

1. Orthogonal Bravais lattices

In a Bravais spin lattice each spin position is a point
of inversion symmetry with respect to the other spins. For
orthogonal lattices which include as special cases the linear
chain, the simple square lattice, sc, bcc, fcc, simple tetragonal
and bct lattices, the unit cell origins are at

rji

a
= na â + b

a
nbb̂ + c

a
ncĉ, (A1a)

where na , nb, and nc are positive or negative integers or 0. For
all spin lattices, we normalize all spin positions and interspin
distances by the a-axis lattice parameter a. For body-centered
spin lattices one also has atoms at the body centers

r
a

=
(

na + 1

2

)
â +

(
nb + 1

2

)
b̂ + c

a

(
nc + 1

2

)
ĉ, (A1b)
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where c/a = 1 for the bcc lattice. The central magnetic
moment �μi is placed at ri = 0 and hence the sum over
neighbors �μj at positions rj = rji in Eq. (16c) excludes the
set (na,nb,nc) = (0,0,0) in Eq. (A1a). With our formulation,
Ĝi(k) does not explicitly contain the lattice parameters a or c,
and for tetragonal Bravais lattices just the dimensionless c/a

ratio appears as in Eqs. (A1).
The reciprocal-lattice vectors in reciprocal-lattice units are

k = m1a∗ + m2b∗ + m3c∗, (A2)

where the mi satisfy 0 � mi � 1 and the reciprocal-lattice
translation vectors are

a∗ = 2π

a
â, b∗ = 2π

a
b̂, c∗ = 2π

c
ĉ, (A3)

and a, b, and c are the corresponding direct-lattice translation
vectors. We normalize k by 1/a, yielding

ka = 2π

(
m1â + m2b̂ + 1

c/a
m3ĉ

)
. (A4)

Using Eqs. (A4) and (A1a), for the unit cell origins one has

k · rji = 2π (m1na + m2nb + m3nc) (A5a)

and for the body-center positions

k · rji = 2π
[
m1

(
na+ 1

2

)+m2
(
nb+ 1

2

) + m3
(
nc + 1

2

)]
,

(A5b)

where the c/a ratio has canceled out of both expressions.
The sum in Eq. (16c) gives an “extinction condition” for

the contribution to the sum in Eq. (16c) of the body-centered
spins in the bcc lattice in Eq. (A5b), where the contribution is
zero if k · rji is an odd multiple of π/2 rad. This extinction
occurs, for example, for AFM wave vectors

k = (
1
2 , 0, 0

)
,

(
0, 0, 1

2

)
,

(
1
2 , 1

2 , 1
2

)
. (A6)

For such cases, according to Eq. (15), which assumes a
collinear magnetic structure, the spins at the body centers of
the unit cells have zero ordered moment and they make no
contribution to the dipolar interaction tensor in Eq. (16c). The
interaction tensor is then the same as for a simple tetragonal
lattice of moments with the same c/a ratio and k value.

For the fcc lattice the lattice points are at the positions in
Eq. (A1a) and at

r
a

=
(

na + 1

2

)
â +

(
nb + 1

2

)
b̂ + 0, (A7)

r
a

=
(

na + 1

2

)
â + 0 +

(
nc + 1

2

)
ĉ, (A8)

r
a

= 0 +
(

nb + 1

2

)
b̂ +

(
nc + 1

2

)
ĉ, (A9)

with corresponding changes to the expressions for k · rji .

2. Simple hexagonal (triangular) Bravais lattice

The normalized vectors rji for the simple hexagonal lattice
with a = b are given by

rji

a
= na â + nbb̂ + c

a
ncĉ, (A10)

a

b

a*a*

b*b*^

^

^

^

x

y
30˚

60˚30˚

FIG. 16. In-plane hexagonal lattice translation unit vectors â
and b̂ of the direct lattice and â∗ and b̂∗ of the reciprocal lattice,
respectively.

where here the b axis is at an angle of 120◦ with respect
to the positive x axis, as shown in Fig. 16, and the ni are
again positive or negative integers or zero. In two dimensions
one sets nc = 0. In Cartesian coordinates the translation unit
vectors are

â = î, b̂ = −1

2
î +

√
3

2
ĵ, ĉ = k̂. (A11)

A magnetic ordering wave vector k is written in terms
of the respective simple hexagonal reciprocal lattice vectors
as

k = m1a∗ + m2b∗ + m3c∗, (A12a)

where the mi are chosen to satisfy 0 � mi � 1 and the
reciprocal lattice translation vectors are given by

a∗ = 2π

a

(
î + 1√

3
ĵ
)

, b∗ = 4π

a
√

3
ĵ, c∗ = 2π

c
k̂,

(A12b)

|a∗| = |b∗| = 4π√
3a

≡ 1a,b-axis r.l.u., (A12c)

|c∗| = 2π

c
≡ 1c-axis r.l.u. (A12d)

In terms of â∗ and b̂∗, the direct lattice unit vectors
are

â = 1√
3

(2â∗ − b̂∗), b̂ = 1√
3

(2b̂∗ − â∗), ĉ = ĉ∗.

(A13)

The expression for k · rji is the same as in Eq. (A5a).
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APPENDIX B: FIGURES SHOWING THE APPROACH TO THE LARGE-RADIUS ASYMPTOTIC EIGENVALUES FOR
MAGNETIC ORDERING ON 2D AND 3D SPIN LATTICES
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FIG. 17. (a) Eigenvalue λ(0,0,0)[0,0,1] for ferromagnetic spin align-
ment along the c axis versus the inverse of the circle radius R around
the central moment in units of the square lattice parameter a for the
2D simple square lattice. The a- and b-axis eigenvalues are each equal
to −λ(0,0,0)[0,0,1]/2. (b) Deviation of the data from the fit. The “noise”
is due to the discrete nature of the lattice, not to numerical inaccuracy.
The lines in (b) are guides to the eye.
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FIG. 18. (a) Eigenvalue λ(1/2,1/2,0)[0,0,1] for the Néel-type AFM
moment alignment along the c axis versus the circle radius R around
the central moment in units of the square lattice parameter a for
the 2D simple square lattice. The a- and b-axis eigenvalues are each
equal to −λ(1/2,1/2,0)[0,0,1]/2. (b) Deviation of the data from the fit. The
“noise” is due to the discrete nature of the lattice, not to numerical
inaccuracy. The lines in (b) are guides to the eye.
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FIG. 19. Dependencies of the eigenvalue λ(0,0,0)[0,0,1] on the
inverse radius (R/a)−1 of the Lorentz sphere for ferromagnetic
moment alignments [k = (0,0,0)] along the c axis in 3D simple
tetragonal spin lattices with (a) c/a = 1.5 and (b) c/a = 3. The lines
are guides to the eye.

APPENDIX C: FIGURES SHOWING DIPOLAR
EIGENVECTORS AND EIGENVALUES VERSUS THE c/a
RATIO FOR TETRAGONAL AND HEXAGONAL BRAVAIS
SPIN LATTICES AND FOR THE HONEYCOMB LATTICE
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FIG. 20. Dependencies of the eigenvalue λ(1/2,1/2,1/2)[0,0,1] for
Néel-type ordering with k = (1/2,1/2,1/2) on the inverse radius
(R/a)−1 of the Lorentz sphere for antiferromagnetic moment align-
ments along the c axis in 3D simple tetragonal spin lattices with
(a) c/a = 1.5 and (b) c/a = 3. The lines are guides to the eye. The
averages for R/a = 51–100 are shown. With increasing c/a, the
averages of λ(1/2,1/2,1/2)[0,0,1] for R/a = 51–100 approach the 2D
square-lattice limit λ(1/2,1/2,0)[0,0,1] = 2.645 887 in Table I, as shown
in Fig. 3(b).
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FIG. 21. Dependence of the eigenvalue λ(0,0,0)[0,0,1] on the c/a

ratio for a simple tetragonal lattice with a FM alignment of the
magnetic moments along the c axis. From the figure, one sees that
FM alignment along the c axis is the most stable for c/a < 1, but for
c/a > 1 FM alignment along the a or b axis is energetically favorable.
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FIG. 22. Eigenvalues for wave vector k = (1/2,0,0) r.l.u. versus
the c/a ratio for a simple tetragonal or bct lattice with the moments
aligned along [010] (b axis, solid red circles), [001] (c axis, solid
green diamonds), or [100] (a axis, solid blue squares). The 2D limits
for c/a → ∞ are shown as horizontal dashed lines.
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FIG. 23. Eigenvalues (a) λ(1/2,1/2,0) for AFM wave vector k =
(1/2,1/2,0) r.l.u. and (b) λ(0,0,1/2) for AFM wave vector k = (0,0,1/2)
r.l.u. versus the c/a ratio for a simple tetragonal lattice with the
moments aligned along [1,0,0] or [0,1,0] (a or b axis, solid blue
squares) or [0,0,1] (c axis, solid green diamonds).
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FIG. 24. Eigenvalues for wave vector k = (1/2,1/2,0) r.l.u. versus
the c/a ratio for a bct spin lattice with the moments aligned along
[1,−1,0] (solid red circles), [001] (c axis, solid green diamonds), or
[110] (solid blue squares).
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FIG. 25. Eigenvalues for wave vectors (a) k = 0 (ferromagnetic)
or (1,0,0) and (b) k = (1/2,1/2,0) r.l.u. versus the c/a ratio for a simple
hexagonal (stacked triangular) spin lattice with the moments aligned
along the indicated principal axes. The 2D limits of the respective
eigenvalues for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 26. Eigenvalues for wave vectors (a) k = (1/3,1/3,1/3) and
(b) k = (1/2,1/2,1/2) r.l.u. versus the c/a ratio for a simple hexagonal
(stacked triangular) spin lattice with the moments aligned along the
indicated principal axes. The 2D limits of the respective eigenvalues
for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 27. Eigenvalues for wave vectors (a) k = (1/3,1/3,0) and (b)
k = (1/3,1/3,1/2) r.l.u. versus the c/a ratio for a simple hexagonal
(stacked triangular) spin lattice with the moments aligned along the
indicated principal axes. The 2D limits of the respective eigenvalues
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FIG. 28. Eigenvalues for propagation vectors
(a) k = (0,0,0) (FM) and (b) k = (1/2,0,0) r.l.u. versus the
c/a ratio for a honeycomb spin lattice with the moments aligned
along the indicated principal axes. The 2D limits of the respective
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FIG. 29. Eigenvalues for AFM propagation vectors (a) k =
(0,0,1/2) (Néel-type in all directions) and (b) k = (0,0,0) r.l.u.
(Néel-type in ab plane and FM alignment along c axis) versus the c/a

ratio for a honeycomb spin lattice with the moments aligned along the
indicated principal axes. The 2D limits of the respective eigenvalues
for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 30. Eigenvalues for AFM propagation vectors k = (0,0,1/2)
(FM alignment intraplane and AFM alignment interplane) versus the
c/a ratio for a honeycomb spin lattice with the moments aligned
along the indicated principal axes. The 2D limits of the respective
eigenvalues for c/a → ∞ are shown by horizontal dashed lines.
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