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Engineering closed optical transitions in rare-earth ion crystals
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We propose a protocol to preserve the spin state of rare-earth ions when they are optically cycled. This technique
uses large magnetic fields to increase the probability of an optically excited ion returning to its initial spin state.
This Zeeman enhanced cyclicity is shown to be applicable to non-Kramers ions in various crystals irrespective
of the site symmetry. The specific example of Pr3+:Y2SiO5 is investigated to demonstrate that the protocol can
create closed optical transitions even where the point group symmetry of the site is C1. In this example, the
predicted cyclicity exceeds 104. This high level of cyclicity extends the usefulness of rare-earth ion crystals for
applications in quantum and classical information processing. We explore the use of this technique to enable
single-ion, spin-state optical readout and the creation of ensemble-based spectral features that are robust against
optical cycling.
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I. INTRODUCTION

Like trapped gases, solid-state rare-earth ion materials can
possess extremely narrow optical resonances, with homo-
geneous linewidths as narrow as 50 Hz [1]. Furthermore,
ground-state hyperfine level lifetimes have been measured to
be as long as 23 days [2] and the coherence times for transitions
between such levels have been extended beyond six hours
[3]. Rare-earth ion crystals are also inherently stable because
the crystal lattice prohibits spatial diffusion, while spectral
diffusion is limited by the insensitivity of the ions to electric
and magnetic perturbations.

The narrow and stable optical and spin transitions that
are found in systems such as trapped vapors and rare-earth
crystals can be manipulated precisely with electromagnetic
fields. The pairing of precise control with the high degree of
isolation from environmental perturbations observed in both
these systems provides opportunities for many applications.
For rare-earth ion crystals, such applications include classical
data storage [4] and processing [5], frequency references [6],
quantum memories [7,8], and nonclassical light sources [9].

Although trapped vapor systems and rare-earth ion crys-
tals have many similarities in their properties and potential
applications, there are several important differences. This
paper focuses on one such difference: the existence of closed
optical transitions. A closed optical transition is formed when a
quantum system can be repetitively cycled within a chosen set
of energy levels without decaying to a state outside this chosen
set [see Fig. 1(a)]. Being able to repetitively cycle within closed
transitions is important for processes such as laser cooling and
high-fidelity single-ion quantum-state readout [10,11].

Closed transitions exist in trapped gases because electronic
and spin selection rules allow transitions within the chosen set
of states whereas other transitions are forbidden. As a result,
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ensembles or single emitters can be optically cycled within the
closed transition with high efficiency or alternatively shelved
to an auxiliary level outside the chosen set.

Closed optical transitions seldom occur between the 4f N

levels of rare-earth ions in a solid-state matrix [see Fig. 1(b)].
The 4f N levels in a solid are strong admixtures of the levels
that exist for a free ion. This is a consequence of the crystal
field interaction, which admixes states of opposite parity, and
different electron spin angular momentum J . As a result,
quantum selection rules do not define allowed or forbidden
transitions between 4f N levels but rather a myriad of weakly
allowed transitions.

In sites without perfect axial symmetry, the inability to form
closed transitions also extends to sets of hyperfine spin states.
This is because the asymmetry of the electric field gradient
acting on the ion nucleus creates hyperfine nuclear spin states
that are admixtures of pure Iz states. Because the spin-state
admixtures differ for different crystal field levels, the optical
transition can induce a change in the hyperfine state. While this
process allows spin-state preparation and population shelving
using optical pumping, it also prevents the formation of closed
optical transitions defined by sets of spin states.

In this paper, we show that it is possible to control the
hyperfine state admixtures with magnetic fields to create
closed optical transitions. By applying large magnetic fields
along a specific direction, the resultant hyperfine eigenstates
of the ground- and excited-state crystal field levels coincide.
This effectively creates allowed and forbidden transitions.
This Zeeman enhanced cyclicity (ZEC) allows closed optical
transitions to exist that are defined by the hyperfine spin
states. This means that an ion’s initial hyperfine state can be
preserved upon repeated optical cycling, something that has
not previously been possible in rare-earth ion crystals.

The paper focuses on non-Kramers ions in noncentrosym-
metric crystalline sites where the ground and excited crystal
field levels are electronic singlets: all sites for Eu3+, and sites
with less than threefold-rotational symmetry for Pr3+, Tb3+,
Ho3+, and Tm3+ [12].

We divide the paper into six further sections. Section
II presents the foundations of the proposed technique and
explains why it is possible for closed optical transitions to be

2469-9950/2016/93(1)/014401(14) 014401-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.014401


BARTHOLOMEW, AHLEFELDT, AND SELLARS PHYSICAL REVIEW B 93, 014401 (2016)

FIG. 1. The difference between the relaxation paths for a closed
optical transition (a) and a general 4f N ↔ 4f N transition in rare-
earth ion crystals (b). |�g〉 and |�e〉 represent the ground- and excited-
state crystal field levels, and |�i〉 represents an intermediate crystal
field level. The |ψ〉 represent the hyperfine states of the respective
electronic levels. The red arrows represent photon interactions
whereas the black arrows represent phonon decay. In (a), relaxation
from |�e〉|ψe2 〉 can only terminate in |�g〉|ψg2 〉 and hence, the
transition is closed. In (b) relaxation can terminate in any of the
ground-state hyperfine levels making a closed transition impossible.

formed from sets of hyperfine spin states. In Sec. III, the ZEC
concept is developed into equations that describe the necessary
field directions to create cyclic transitions in the high-field
limit. In Sec. IV, we examine the form of the solutions for
ZEC field directions in sites with axial, orthorhombic, and
C2 point group symmetry. This discussion illustrates that the
complexity of the solutions increases as the site symmetry
decreases towards C1 point group symmetry. To show the
ZEC field solutions for a C1 site, specific calculations are
performed for Pr3+:Y2SiO5 in Sec. V. These calculations
include a quantitative analysis of the theoretically achievable
cyclicity and the effect of field misalignment. Section VI
describes two applications of ZEC. The first application
is direct single rare-earth ion qubit readout for quantum
information processing. The second is the engineering of
write-once, read-many (WORM) spectral features, which have
applications in both classical and quantum memory protocols.
The paper then concludes with a brief discussion of the
experimental considerations that will be important to realize
ZEC in Sec. VII.

II. FORMING CLOSED OPTICAL TRANSITIONS USING
HYPERFINE SPIN STATES

In this section, we explain why closed optical transitions
can be formed by manipulating the hyperfine states with
ZEC. An important part of this explanation is the ability to
separate the ion’s wave function into electronic and nuclear
components, which is justified in Sec. II A. In Sec. II B,
we show that the wave-function separation allows for closed
optical transitions to be defined using the hyperfine spin states.
Finally, in Sec. II C we present a condition on the ion’s optical
relaxation for this simple method to be effective in closing
optical transitions.

A. Separating the wave function

The 4f N energy levels in rare-earth ion crystals are defined
by the Hamiltonian

Ĥ = Ĥfi + Ĥcf + Ĥmh, (1)

where Ĥfi is the Hamiltonian for the free ion, Ĥcf describes
the crystal field interaction, and Ĥmh is the magnetic hyperfine
interaction [13,14].

For non-Kramers electronic singlets, the electronic states
are completely defined by Ĥfi and Ĥcf. The free-ion and
crystal field interactions are several orders of magnitude larger
than the magnetic hyperfine interactions. This means Ĥmh,
which governs the nuclear hyperfine states, can be treated
as a perturbation to the electronic interactions. This allows the
4f N wave functions to be separated into electronic and nuclear
components

|g〉 ≈ |�g〉|ψg〉, |e〉 ≈ |�e〉|ψe〉, (2)

where the �j and ψj represent the electronic and nuclear
hyperfine components of the ground and excited states,
respectively (see Fig. 1).

Given that the wave function is separable, the transition
probability from |e〉 to |g〉 can now be examined through the
application of an operator ̂O that governs the optical transition.
For example, ̂O = μ̂·E for electric dipole transitions, and
similar expressions can be written for magnetic dipole transi-
tions, electric quadrupole transitions, and other higher-order
operators:

|〈e| ̂O|g〉|2 ≈ |〈�e| ̂O|�g〉|2|〈ψe|ψg〉|2. (3)

The first term on the right-hand side of Eq. (3) governs
the overall dynamics of the optical transition, such as the
branching ratio and oscillator strength, and is equal for any of
the states in the hyperfine manifold. The relative spin transition
probabilities are given by the nuclear magnetic component.
This term is simply the overlap between the ground- and
excited-state spin wave functions and is the focus of this paper.

B. Definition of cyclicity

The previous section showed that the optical transition
probability between two 4f N levels is proportional to the
overlap of the excited-state and ground-state hyperfine wave
functions. Closed optical transitions can be achieved if this
term is engineered such that

|〈ψej
|ψgk

〉|2 =
{

0 if j �= k,

1 if j = k,
(4)

where j and k are labels based on the energy ordering of the
hyperfine states. Equation (4) defines a cyclic transition.

This paper focuses on manipulating the 〈ψe|ψg〉 term with
applied magnetic fields to approach the condition for cyclicity
defined in Eq. (4). It is interesting to note that the concept of
altering the zero-field transition probabilities of non-Kramers
rare-earth ions in crystals has been explored previously in the
context of creating efficient � transitions in Tm3+:YAG[15,16]
and Pr3+:YLiF4 [17]. This is, in many ways, precisely the
opposite goal of this paper. In Refs. [15,17] the aim was to
create a � transition in sites with high point group symmetries
(D2 for Tm3+:YAG and S4 for Pr3+:YLiF4) for which the two
branches of the transition had equal probabilities |〈ψe|ψg〉|2. In
this paper, we investigate cyclicity, a more stringent condition,
with a method applicable to all sites with noncentrosymmetric
point group symmetries.
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C. A condition for creating cyclicity via
manipulation of 〈ψe|ψg〉

To close an optical transition, there are four stages that
need to be considered to justify the ZEC approach: excitation,
the duration in |e〉, relaxation, and the duration in |g〉 before
reexcitation. We consider the evolution of the 〈ψe|ψg〉 term
during all four of these stages. The relaxation process is
particularly important because it involves intermediate crystal
field levels possessing distinct hyperfine interactions. We
present a requirement on the relaxation process for cyclicity
to be achieved through this simple criteria.

The direct excitation of the transition |�g〉|ψg〉 → |�e〉|ψe〉
is controlled via the applied laser frequency. Because of the
O(kHz) homogeneous linewidths of rare-earth 4f N ↔ 4f N

transitions in the materials of interest, the O(MHz) hyperfine
level separations allow each level to be spectrally resolved.
Although there is a finite probability of off-resonant excitation
to another excited-state hyperfine level, it is assumed that the
Rabi frequency can be sufficiently decreased to eliminate this
effect.

The next consideration is whether there is any evolution
of the ion’s spin state when it resides in |e〉 after excitation
or in |g〉 after relaxation. At low temperature, the hyperfine
manifolds are sufficiently decoupled from the lattice to possess
lifetimes as long as 100 s [18] to 20 days [2]. In comparison, the
optical excited-state lifetime and the delay between excitation
pulses are commonly of the order of milliseconds for most
applications. Therefore, the hyperfine state of the ion is
preserved during these stages of the cycling process.

The final consideration is the possible perturbation to
the hyperfine structure during the relaxation process. It is
necessary to consider two types of relaxation paths to the
ground state: relaxation via the direct optical transition and
relaxation through intermediate states. For a more detailed
treatment of both these cases, the reader is directed to
Appendix A.

In the case of a direct optical transition from |�e〉|ψe〉 →
|�g〉|ψgn

〉, the hyperfine state of the ion is unaffected giving
the obvious term for the transition probability: |〈ψe|ψgn

〉|2.
However, the branching ratio for the direct optical transition
is typically < 0.1 because of the numerous weakly allowed
transitions that exist between electronic states in rare-earth ion
crystals. Therefore, the dominant relaxation path is through
intermediate levels.

We first consider an individual indirect pathway through
one intermediate level as shown in Fig. 1(b). When the ion
relaxes from |�e〉|ψe〉 to the intermediate crystal field level
|�i〉, the hyperfine state |ψe〉 is initially unchanged. In general,
|ψe〉 is not within the set of hyperfine eigenstates |ψim〉 of |�i〉,
which are defined by the spin Hamiltonian Ĥi :

Ĥi |ψim〉 = Eim |ψim〉 = �ωm|ψim〉. (5)

The state |ψe〉 can be represented as a superposition of the
|ψim〉 in the form

|ψe〉 =
∑
m

cim |ψim〉. (6)

The ion will remain in |�i〉 for a time τ governed by the lifetime
of that state. During time τ , the superposition state of Eq. (6)

will evolve. Each term in the superposition will accumulate a
phase e−iωmτ :

|ψ(τ )〉 =
∑
m

e−iωmτ cim |ψim〉. (7)

If τ � ωm
−1 (for m = 1, . . . ,2I + 1), the accumulated phases

e−iωmτ ≈ 1 and the initial state is preserved: |ψ〉(τ ) = |ψe〉.
That is, a sufficiently rapid indirect transition from |�e〉|ψe〉 to
|�g〉|ψgn

〉 through |�i〉 can be considered to be a diabatic pas-
sage [19] with the transition probability given by |〈ψe|ψgn

〉|2.
The diabatic criterion can be extended to indirect transitions

containing multiple intermediate states. This means that if
the relaxation process through the intermediate levels is
sufficiently rapid, cyclicity can be controlled by manipulation
of the resonant state hyperfine levels.

There are many rare-earth ion materials for which the
diabatic criterion is satisfied because there is an absence
of metastable states. For example, the electronic structure
of europium in crystalline environments makes it a good
candidate for ZEC because all relaxation pathways should
fulfill the diabatic condition. In general, the six intermediate
LSJ manifolds between the 5D0 excited state and 7F0 ground
state all possess small energy separations compared to the
crystal’s maximum phonon energy [20]. As a result, relaxation
is dominated by rapid [O(ns)] decay mediated by multiphonon
transitions [21].

If metastable electronic states exist (τ is comparable to
ωm

−1), then further criteria need to be met for cyclicity to be
controlled by manipulating 〈ψe|ψgn

〉. To complete this section,
we provide a brief statement regarding an alternate criterion,
which will be discussed further in Sec. VII A. In the analysis
above we have considered the most general case where |ψe〉 is
not an eigenstate of Ĥi . In the more specific case where |ψe〉
is an eigenstate of Ĥi (|ψe〉 = |ψim〉) for all |�i〉, no evolution
of the hyperfine state will occur during relaxation. This is
because the phase term e−iωmτ does not change the state mixing
irrespective of the lifetimes τ of the intermediate levels. In
Sec. IV, we show that this criterion can be satisfied by using
the ZEC technique in sites that possess a proper rotation axis
of symmetry.

III. ENHANCING CYCLICITY IN NON-KRAMERS IONS

The cyclicity definition of Sec. II B can be reformulated
in terms of the reduced spin Hamiltonians of the ground-
and excited-state hyperfine levels. For non-Kramers ions, the
magnetic hyperfine interaction for a singlet electronic state can
be described by the Hamiltonian [22]

Ĥmh = [B · Z · B]̂E + B · M · ̂I + ̂I · Q · ̂I, (8)

where ̂E is the identity operator, ̂I is the nuclear spin angular
momentum operator, B is the applied magnetic field vector,
and Z, M, and Q are the quadratic Zeeman, linear Zeeman,
and quadrupole tensors, respectively.

The quadratic Zeeman interaction produces a common
frequency shift for all hyperfine states within a particular
crystal field level and does not alter the admixtures of the
states. Hence, it is ignored.
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Another way of posing the question of cyclicity is to
ask whether the two matrices representing the ground- and
excited-state Hamiltonians Ĥg and Ĥe, respectively, can
be simultaneously diagonalized. If both matrices can be
diagonalized in the same basis, then the overlap between the
eigenstates 〈ψej

|ψgk
〉 is unity for j = k and zero otherwise.

This is precisely the cyclicity condition defined in Eq. (4).
The ground- and excited-state Hamiltonian terms will be

simultaneously diagonalizable, if and only if Ĥg commutes
with Ĥe [23]. This follows from the fact that Ĥg and Ĥe are
diagonalizable on the finite-dimensional vector space spanned
by Iz.

To provide an illustration of the relationship between the
commutation criterion and cyclicity, we first examine sites
with axial point group symmetry in zero field.

A. Sites with axial point group symmetry: An example of the
commutation criterion in zero field

In zero magnetic field, the spin Hamiltonian for the ground
and excited states reduces to the quadrupole term ̂I · Q · ̂I . In
axial symmetry, the quadrupole tensor Q for any 4f N level is
cylindrically symmetric about the rotation axis. In a coordinate
system with the z axis along the rotation axis, Q can be written

Q =
⎛⎝−D

3 0 0
0 −D

3 0
0 0 2D

3

⎞⎠, (9)

where D is the quadrupole parameter of the particular
electronic state. This gives a Hamiltonian

Ĥq = D
(
Iz

2 − 1
3I (I + 1)

)
. (10)

It can be seen, then, that the ground- and excited-state Hamil-
tonians are identical except for the scaling parameter D, and
therefore must commute. Furthermore, the eigenvectors are
the pure Iz states. The cyclicity condition is therefore satisfied
for sites with axial symmetry in zero field. Significantly, the
spin Hamiltonian given in Eq. (10) holds for all intermediate
crystal field levels. Thus, a site with axial symmetry satisfies
the condition mentioned at the end of Sec. II C: |ψe〉 = |ψim〉
for all �i .

An excellent example of a system where the off-diagonal
terms of Ĥq are vanishingly small is Pr3+:YLiF4. In this
axial site, hole burning at zero field is not observed, which
demonstrates the high cyclicity of the optical transition [24].

We have shown that perfect axial symmetry assures
zero-field cyclicity. However, any deviation from axial
symmetry will admix the pure Iz states and break the cyclicity
condition. Axial sites in some materials demonstrate zero-field
hole burning [25], an indication that the cyclicity condition
does not completely hold and that the axial symmetry is
partially broken.

The aim of this paper is to derive a method to achieve cyclic
transitions irrespective of the site’s point group symmetry. As
it will be shown, this is possible by changing the hyperfine
state admixtures through the linear Zeeman interaction. We
note here that the quadrupole interaction admixes states with
�Iz = ±2 and the linear Zeeman interaction admixes states
with �Iz = ±1. Therefore, it is not possible to undo the
admixing created by the quadrupole interaction by applying

a magnetic field. Rather, cyclic optical transitions can only
be achieved in the limit where the linear Zeeman interaction
strength is far greater than the quadrupole interaction strength:
the high-field limit.

B. Derivation of field directions for ZEC

In this section, we consider the high-field limit where the
spin Hamiltonian can be approximated by the linear Zeeman
interaction. We derive the magnetic field directions along
which the spin-state admixtures created by the linear Zeeman
interaction are equivalent in the ground and excited states.
Thus, in the high-field limit, where the quadrupole contribution
is negligible compared to the linear Zeeman term, the transition
will approach perfect cyclicity. The following process allows
the direction of the ZEC field to be calculated even for the
lowest symmetry site.

To calculate the overlap between the eigenvectors of
the ground- and excited-state hyperfine Hamiltonians, both
Hamiltonians must be expressed in a common coordinate
frame. The form of the linear Zeeman tensors in a common
coordinate frame can be written as

˜M j = RMj · M j · RMj
T , (11)

where the M j are the ground- and excited-state linear Zeeman
tensors expressed in their respective diagonal bases. The
rotation matrices are defined by Euler angles (α,β,γ ) [26],
which in the general case can be written as R(αMj ,βMj ,γMj ).
Upon the application of the ZEC field, both the ground- and
excited-state Zeeman Hamiltonians could be transformed into
a common basis (xB,yB,zB) that diagonalizes both terms.

Let Mg and Me be the ground- and excited-state linear
Zeeman Hamiltonian terms represented in their respective di-
agonal bases. We choose the basis that diagonalizes Mg as the
common basis for our derivation: (x,y,z). In this common ba-
sis, the two matrices Mg and ˜Me are parametrized according to

Mg =
⎡⎣gx 0 0

0 gy 0
0 0 gz

⎤⎦, M̃e =
⎡⎣G1 G2 G3

G2 G4 G5

G3 G5 G6

⎤⎦. (12)

The relationship between the six components of the ˜Me tensor
in Eq. (12) depends heavily on the point group symmetry
of the rare-earth ion site. As will be detailed in Sec. IV,
for sites with higher point group symmetries the number of
independent components reduces to a minimum of two for
axial symmetry. This significantly reduces the complexity
of the commutation criterion compared to the general case
required for sites with Cs and C1 point group symmetry.

In the high-field limit, the commutation criterion for ZEC
is written as

[(B · Mg · ̂I)(B · ˜Me · ̂I) − (B · ˜Me · ̂I)(B · Mg · ̂I)] = 0.

(13)

Upon expanding out the expression in Eq. (13), the Îx
2
, Îy

2
, and

Îz
2

terms cancel, leaving only cross terms. Thus, the equality
can be written

{[Îx ,Îy](Bygyu − Bxgxv) + [Îx ,Îz](Bzgzu − Bxgxw)

+ [Îy ,Îz](Bzgzv − Bygyw)} = 0, (14)
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where [Îj ,Îk] is the normal commutator operation and u, v,
and w are given by

u = BxG1 + ByG2 + BzG3,

v = BxG2 + ByG4 + BzG5, (15)

w = BxG3 + ByG5 + BzG6.

None of the three terms in square brackets on the left-hand
side of Eq. (14) commute. Thus, the condition for achieving
ZEC can be reduced to three equations

Bygyu − Bxgxv = 0, (16a)

Bzgzu − Bxgxw = 0, (16b)

Bzgzv − Bygyw = 0 (16c)

or explicitly

[Bygy(BxG1 + ByG2 + BzG3)

−Bxgx(BxG2 + ByG4 + BzG5)] = 0, (17a)

[Bzgz(BxG1 + ByG2 + BzG3)

−Bxgx(BxG3 + ByG5 + BzG6)] = 0, (17b)

[Bzgz(BxG2 + ByG4 + BzG5)

−Bygy(BxG3 + ByG5 + BzG6)] = 0. (17c)

The field directions that simultaneously diagonalize the
ground- and excited-state linear Zeeman Hamiltonians can
be calculated by solving the expression in Eq. (17). Because
this condition is equivalent to achieving cyclic transitions, the
solutions represent the ZEC fields.

IV. ZEC FIELD DIRECTIONS FOR
NONCENTROSYMMETRIC SITES WITH

A PROPER ROTATION AXIS

A greater understanding of the ZEC technique can be gained
by examining the field directions for cyclic transitions for sites
possessing particular point group symmetries. The discussion
begins by calculating the ZEC field directions for sites with
axial point group symmetry. Then, the ZEC field solutions
are calculated for the three symmetries that are nonaxial but
still possess a proper rotation symmetry axis: D2, C2v , and
C2. The progression from high to low symmetry is mirrored in
the ZEC field directions, which develop in complexity towards
the general case: the remaining two noncentrosymmetric point
group symmetries Cs and C1 (see Sec. V).

A. ZEC field directions for sites with axial
point group symmetry

In a site with axial point group symmetry, the principal axes
of the ground- and excited-state Zeeman tensors coincide and
the x and y axes are equivalent and labeled ⊥. Therefore, gx =
gy = g⊥, G1 = G4 = G⊥, G2 = G3 = G5 = 0, and any field
in the xy plane is labeled as B⊥. In this case, the expressions
in Eq. (17) reduce to one equation

B⊥Bz(gzG⊥ − g⊥G6) = 0. (18)

Therefore, the ZEC field solutions are simply fields of the
form (B⊥,0) and (0,Bz). That is, a closed optical transition
can be formed by applying a large magnetic field parallel or
perpendicular to the z axis of an axial site. Two examples of
crystals in which rare-earth ion dopants reside in an axial site
are YLiF4 and YPO4.

B. ZEC field directions for sites with D2 and
C2v point group symmetry

We now examine sites with D2 or C2v (orthorhombic)
point group symmetry. As an example, orthorhombic site
symmetry occurs for rare-earth ion dopants in Y3Al5O12

(YAG) crystals. Like in the axial case, the directions of the
three principal axes are common for the ground- and excited-
state tensors. However, the x and y principal axes are now
distinct. Therefore, G2 = G3 = G5 = 0, and the expressions
in Eq. (17) become

BxBy(gyG1 − gxG4) = 0, (19a)

BxBz(gzG1 − gxG6) = 0, (19b)

ByBz(gzG4 − gyG6) = 0. (19c)

From the form of the expressions in Eq. (19) the ZEC field
solutions can be simply identified as (Bx,0,0), (0,By,0), and
(0,0,Bz). That is, a closed optical transition can be formed by
applying a large magnetic field along any of the three principal
axes of the linear Zeeman tensor. This effect has already been
discussed in the paper examining � transitions in the specific
case of Tm3+:YAG [15].

C. ZEC field directions for sites with C2 point group symmetry

When the site point group symmetry is reduced from
orthorhombic to C2 symmetry, the only common principal
axis for both ground- and excited-state linear Zeeman tensors
is the z axis. The relationship between the two tensors is
then a rotation around the common z axis. In contrast to the
orthorhombic symmetry case, G2 �= 0. The resulting forms of
the expressions in Eq. (17) are

− Bx
2gxG2+By

2gyG2+BxBy(gyG1−gxG4) = 0, (20a)

Bz[Bx(gzG1 − gxG6) + BygzG2] = 0, (20b)

Bz[By(gzG4 − gyG6) + BxgzG2] = 0. (20c)

For Bz = 0, the three equations are satisfied by the solution
of Eq. (20a), the form of which is governed by the discriminant

� = (gyG1 − gxG4)2 + 4gxgyG2
2. (21)

If � < 0, there are no real solutions apart from the trivial
solution (0,0,0). In the specific case where � = 0, then there
exists one ZEC field direction (Bx,mBx,0) where

m = gxG4 − gyG1

2gxG2
. (22)

Finally, if � > 0 then there are two ZEC field directions of the
form (Bx,m̃Bx,0) where

m̃ = gxG4 − gyG1 ± √
�

2gxG2
. (23)
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The case where Bz �= 0 also needs to be considered. The
solutions for Eq. (20a) are identical to the Bz = 0 case.
Equations (20b) and (20c) are satisfied when

By = gxG6 − gzG1

gzG2
Bx (24)

and

By = gzG2

gyG6 − gzG4
Bx, (25)

respectively. The only solution that satisfies all the expressions
in Eq. (20) for Bz �= 0 is (0,0,Bz).

Therefore, in a site with C2 point group symmetry there
will always be at least one magnetic field direction to provide
ZEC: a field applied parallel to the site z axis (0,0,Bz).
Depending on the site, there may be two, one, or no further ZEC
field directions. If these further solutions exist, the required
direction will lie in the plane perpendicular to the z axis.
Examples of crystals in which rare-earth ions reside in a
C2-symmetric site include Y2O3, LaF3, and EuCl3 · 6H2O.

V. ZEC IN Pr3+:Y2SiO5: A C1 SITE

In this section, we demonstrate that there are field directions
that satisfy the ZEC criterion for site point group symmetries
without a proper rotation symmetry (Cs and C1). Crystals in
which such site symmetries occur include YAlO3 and Y2SiO5.
We achieve this by calculating the ZEC field directions for
the lowest site point group symmetry C1 and, hence, illustrate
the general applicability of ZEC for forming closed optical
transitions. For sites with Cs or C1 point group symmetry,
there are no restrictions on the form of ˜Me. This means that it
is not possible to generalize the ZEC field solutions for these
low-symmetry sites.

Instead, we use the example of the 3H4 ↔ 1D2 transition
of site 1 Pr3+-ion dopants in Y2SiO5, a material of significant
interest for both quantum information applications [7,27,28]
and single-ion detection [29]. To begin with, the ZEC field
directions for this low-symmetry site are calculated. We then
calculate the transition probabilities for a field applied along
the ZEC field directions taking both the quadrupole and linear
Zeeman interactions into consideration.

There is strong evidence that site 1 ions in Pr3+:Y2SiO5

satisfy the diabatic criterion presented in Sec. II C. In
particular, studies have demonstrated that there is strong
agreement between high-frequency resolution hole burning
spectra and models based on the transition probabilities of the
direct 3H4 ↔ 1D2 transition [32]. The agreement between the
experiment and model demonstrates that indirect relaxation
pathways do not significantly perturb the hyperfine state of the
ions. If Pr3+:Y2SiO5 does not fulfill the diabatic criterion,
the analysis included in this section still demonstrates the
existence of ZEC field directions in sites with C1 symmetry.
Furthermore, the calculations in Sec. V A indicate the degree
to which the optical transition probabilities in rare-earth ion
materials can be engineered to approach unity in the high-field
limit. The calculated transition probabilities represent the
possible level of cyclicity in materials suitable for ZEC (see
Sec. VII A).

TABLE I. Spin Hamiltonian parameters for Pr3+:Y2SiO5 (site 1)
as measured by Lovrić et al. [30].

Ground state 3H4 Excited state 1D2

Value Value

D −4.4435 MHz 1.35679 MHz
E −0.56253 MHz 0.42192 MHz
αQ 62.1◦ 123.51◦

βQ 31.81◦ 94.69◦

γQ 93.94◦ 170.56◦

gx 26.57 MHz/T 14.54 MHz/T
gy 31.01 MHz/T 14.30 MHz/T
gz 113.08 MHz/T 33.76 MHz/T
αM 112.0◦ 44◦

βM 35.68◦ 63.91◦

γM 101.54◦ 3◦

αC2 110.0◦ 120◦

βC2 1.574◦ 1.65◦

Table I details the parameters for the ground- and excited-
state quadrupole and linear Zeeman Hamiltonian parameters as
determined by Lovrić et al. [30]. The ground- and excited-state
linear Zeeman tensors Mg and ˜Me, respectively, can be written
in the basis that diagonalizes Mg:

Mg =
⎡⎣26.57 0 0

0 31.01 0
0 0 113.08

⎤⎦,

M̃e =
⎡⎣23.60 8.85 3.71

8.85 23.17 3.67
3.71 3.67 15.83

⎤⎦. (26)

When these two Zeeman tensors are fed into the expressions
in Eq. (17), three solutions are found for the case where Bz �= 0,
while no solutions exist for Bz = 0. The ZEC field directions
for Pr3+:Y2SiO5 are plotted in the commonly used (D1, D2,
C2) coordinate frame [18] in Fig. 2. The three solutions are

[BD1,BD2 ,BC2 ] =
⎧⎨⎩[−0.81,0.16,0.56] (i),

[0.59,0.29,0.75] (ii), and
[0.02, − 0.98,0.18] (iii).

(27)

It is interesting to note that the three ZEC field directions
are almost mutually orthogonal, which suggests a deeper
underlying symmetry to this ZEC analysis. This would be
an interesting subject of further study beyond this work.

A. Predicted performance of the ZEC technique

The ZEC technique predicts perfect cyclicity in the limit
of an infinitely large magnetic field. Having established the
existence and values of ZEC field directions for Pr3+:Y2SiO5

in the previous section, the performance of the technique
as we approach the infinite field limit is now calculated.
To investigate the upper bound on the level of cyclicity
induced by a large applied field in the directions calculated
by the analysis above, the transition probabilities |〈ψe|ψg〉|2
are calculated as a function of magnetic field strength. The
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FIG. 2. ZEC field directions for Pr3+:Y2SiO5 (site 1), labeled (i),
(ii), and (iii), in the (D1, D2, C2) coordinate frame.

hyperfine Hamiltonians, including both quadrupole and linear
Zeeman terms, are calculated for each magnetic field value.
The eigenvalues and corresponding eigenvectors |ψg〉 and
|ψe〉 of the Hamiltonian matrices are then used to calculate
the transition probability for each of the 36 ground- and
excited-state combinations.

To provide a reference for the ZEC field calculations,
the transition probability matrix for Pr3+:Y2SiO5 in zero
field is shown in Fig. 3. Because the quadrupole interaction
significantly mixes the pure I z states, the hyperfine structure
is identified by the labels 1 through to 6: 1 being the lowest-
energy level and 6 being the highest. In zero field, levels (1
and 2), (3 and 4), and (5 and 6) are degenerate for both the
ground and excited states.

Figure 3 illustrates the mixing due to the quadrupole term
in this material. For example, the transition probabilities

FIG. 3. Transition probabilities for relaxation from the 1D2

excited state to the 3H4 ground state of Pr3+:Y2SiO5 (site 1) in zero
magnetic field. The hyperfine levels are labeled according to their
energy: 1 for the lowest-energy level and 6 for the highest.

among states 3–6 are, to a large extent, independent of
the levels involved. In contrast, there is one transition that
exists in zero field that exceeds 90% likelihood: the (1,2)g
↔ (1,2)e. Although large compared to the other zero-field
transitions, this level of cyclicity is insufficient for high-fidelity
readout schemes, which require closer to 99.99% transition
probabilities [31].

We note that although the spin Hamiltonian parameters
calculated by Lovrić et al. [30] achieve excellent agreement
with the experimentally observed oscillator strengths [32], the
relative frequencies of these transitions are incorrect. From
the zero-field experimental results of Nilsson et al. [32], the
strongly selective transitions would be labeled by energy as
(1,2)g ↔ (5,6)e rather than as they appear in Fig. 3: (1,2)g ↔
(1,2)e.

The most likely explanation for this discrepancy is the
configuration of the Q-tensor principal axes chosen in Lovrić’s
paper. Clarification of the parameters for Pr3+:Y2SiO5 is in
progress to determine the correct configuration. However,
to maintain consistency with the published literature in the
absence of any revision at the time of writing, the parameters
from Ref. [30] are used. In the high-field regime in which the
ZEC protocol operates, the impact of the correct quadrupole
parameters on the transition cyclicity will be very small.
Therefore, the results presented in this paper are largely
independent of any future disambiguation of the quadrupole
parameters.

Figures 4–6 illustrate the calculated enhancement of the
transition probabilities when a large magnetic field is applied
along ZEC field direction (i) [see Eq. (27) and Fig. 2]. The
calculated transition probabilities with ZEC fields applied
along directions (ii) and (iii) are similar to the presented results.
Figure 4 plots the evolution of the ground- and excited-state
hyperfine level frequencies as the magnetic field is increased
to 1 T along direction (i). The nonlinear behavior at low field
is due to the interaction between the quadrupole and the linear
Zeeman terms and is indicative of the changing admixtures of

FIG. 4. Hyperfine level frequencies as the field magnitude is
increased along ZEC field (i). The frequency is plotted as an offset
from the lowest hyperfine level in zero field for the ground (3H4) and
excited (1D2) states, respectively. The ordering of the hyperfine levels
agree with the experimental results of Ref. [32].
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FIG. 5. Evolution of the transition probabilities P for the like-
to-like transitions as the magnetic field magnitude is increased along
ZEC field (i). The main figure shows that the P for all six transitions
approaches unity at 1 T. The inset shows the value of 1 − P for the
most cyclic like-to-like transition as a function of field strength and
alignment.

the states. As the field increases above 0.5 T, the behavior of
all the hyperfine levels trends towards the linearity dictated by
the dominant Zeeman term.

Figure 5 shows the transition probabilities P for the like-
to-like transitions as the field strength is increased. The like-
to-like transitions are defined via the level energies, giving
the 1g ↔ 1e transition as the lowest-to-lowest transition. For
very small fields, the transition probabilities change rapidly
due to the introduction of the linear Zeeman term. Above
approximately 0.5 T, the probabilities of all the transitions
asymptotically approach unity. This demonstrates the desired
ZEC effect for Pr3+:Y2SiO5.

The inset in Fig. 5 plots (1 − P ) as the field strength
is increased to 10 T for three levels of field alignment.
As shown, for a perfectly aligned ZEC field at 10 T the
probability of optically inducing a hyperfine state transition
is 10−4. Even with a misalignment of 1◦ at 10 T, an order
of magnitude decrease compared to the zero-field value of
( 1 − P ) can be achieved. If the field is misaligned at the
10◦ level, the transition probabilities for the six like-to-like
transitions are approximately equal to the best performing
zero-field transition: (1 − P ) ≈ 0.05.

To highlight the improvements offered by the ZEC tech-
nique, Fig. 6 shows the complete transition probability matrix
for a 1-T field applied along direction (i). This is a stark contrast
to the zero-field probabilities illustrated in Fig. 3. The strong
selectivity of the like-to-like transitions is emphasized, as the
diagonal elements are all close to unity. Correspondingly, the
off-diagonal elements are vanishingly small.

VI. APPLICATIONS OF ZEC IN RARE-EARTH
MATERIALS

The primary motivation for proposing ZEC for rare-earth
ion systems is to achieve single-ion, state-selective readout,
which we describe in this section. In addition, the ability
to tune the transition probabilities via magnetic fields has

FIG. 6. Transition probabilities for relaxation from the 1D2

excited state to the 3H4 ground state of Pr3+:Y2SiO5 (site 1) for a
1-T field applied along ZEC field (i).

applications for many protocols that involve � systems in
rare-earth ion materials. These include both the gradient echo
memory (GEM) [7] and atomic frequency comb (AFC) [8]
quantum memory protocols as well as classical data storage.
The example provided in this section is the application of
the ZEC technique to create write-once, read-many (WORM)
spectral features that can be applied for classical and quantum
data storage and processing.

A. Single-ion state-selective readout

Definitive optical detection of a single rare-earth ion
has only recently been achieved [29,33,34]. The ZEC tech-
nique extends the work contained in Refs. [29,33,34] by
establishing a feasible method for achieving hyperfine-state-
selective readout at the single-ion level. By engineering cyclic
transitions, the ion can be repeatedly optically excited from
a single hyperfine ground state. As a result, the presence
or absence of a fluorescent signal can be used to deter-
mine the nuclear spin of the single ion. Such a readout
scheme is a critical element for frequency-based, single-
ion qubit quantum computing proposals in rare-earth ion
systems.

An important question is whether a hyperfine state readout
technique using ZEC can achieve a high level of fidelity. In
Sec. V A, the ZEC protocol was simulated to create transition
probabilities of the order of 99.99%. For common rare-earth
ion excited state lifetimes (100 μs − 1 ms), this would result
in the emission of 104 photons during a period ranging
between 1–10 s. These photons must be collected and detected,
which incurs losses. The collection efficiency exceeding 50%
achieved in Ref. [29] indicates that 10% total efficiency
in fluorescence detection is possible for isolated ions in a
bulk crystal. Therefore, a feasible number of detection events
when the ion is in the targeted ground-state hyperfine level
is 103.
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To determine the state of the single ion, the fluorescent
signal must be able to be differentiated from the absence of
fluorescence that indicates that the ion is in another hyperfine
ground state. To approximate the achievable signal-to-noise
ratio of this measurement, we assume that the only additional
noise source is the dark counts from the detector. Avalanche
photodiodes with dark count rates of the order of 1 count
per second are commercially available for the emission
wavelengths of praseodymium and europium. Therefore, for
integration over the period where the ion remains cyclic, the
number of dark counts would be described by a Poissonian
distribution with mean total counts 〈n〉 ≈ 10. In contrast,
the signal from a resonant single ion would be described
by a Poissonian distribution with mean total counts 〈n〉 ≈
103. Distinguishing between these two distributions, which
corresponds to a fluorescence-based measurement of the ion’s
hyperfine ground state, can be achieved with an error less than
10−5 [[31] pp. 49–51].

Therefore, by combining high optical detection efficiency
with the ZEC technique, it is feasible to achieve high-fidelity
single-ion state readout. As a consequence, the ZEC technique
represents a significant opportunity for increasing the scale of
rare-earth ion quantum computing [35,36].

B. WORM spectral features

Many applications for trivalent rare-earth ions in crystals
are centered on the ability to harness � systems to create
specific spectral features. For example, there is continuing
interest in using rare-earth ion crystals as frequency references
by creating single, isolated depleted regions in the absorption
profile (holes) [13]. An example of a more complex spectral
structure is the combs created for AFC quantum memory
protocols [37]. These and other similar spectral features are
often created by manipulating the population of ions among
the ground-state hyperfine levels.

Once spectral features are written into the inhomogeneously
broadened transition of an ensemble through optical pumping,
the long lifetimes of the hyperfine ground states ensure that
the structures can remain for hours to days [2]. However, if
the spectral feature undergoes further optical excitation, the
structure is quickly degraded because of optically induced
changes in the spin state. The result is that spectral features
must be repetitively created between processing steps to ensure
that the system is initialized correctly at each point in the
protocol.

The ZEC protocol proposed in this paper could be applied to
prepare a WORM spectral feature. That is, a feature optically
prepared in the inhomogeneous line could be engineered to be
robust against optical excitation. According to the theoretical
calculations outlined in this paper, through the application of
a ZEC field a spectral feature could be probed 104 times with
high-excitation probability before degrading significantly.
Furthermore, in the regime of low-excitation probability, the
feature could remain on time scales where the hyperfine
state lifetime rather than optical excitation effects limit the
feature stability. Such features would have applications in
many areas including frequency references [6], classical
[4] and quantum [7,8] memories, nonclassical light sources

FIG. 7. A technique to create WORM spectral features in the
presence of strongly favored like-to-like transitions created by ZEC.
Ions are optically excited at frequency ω0, which excites all like-
to-like transitions for a subset of ions within an inhomogeneously
broadened absorption profile. The application of a π pulse at ω12

changes the hyperfine state of all the excited ions. When the ions
relax, the initial ground-state hyperfine population distribution is
significantly altered.

[9], and other protocols utilizing � systems in rare-earth
materials.

One technique for writing a WORM feature is illustrated in
Fig. 7. The proposed technique uses a combination of optical
excitation and radio-frequency (rf) pulses to write the feature
in the presence of strongly favored like-to-like transitions. The
basis of this technique has been applied in optically detected
nuclear spin resonance experiments in axially symmetric sites
[24] and also to enhance optical pumping in poor � systems
[38]. To create a hole, the ions resonant at an excitation
frequency ω0 are optically pumped to the excited state. In a
time short compared to the excited-state lifetime, a rf π pulse
is applied, which is resonant with the excited-state hyperfine
splittings ω12. Following the rf pulse, none of the optically
excited ions reside in the hyperfine levels to which they were
excited. After a time long compared to the lifetime of the
optical excited state, the ions will have relaxed back to the
ground state. The result is a depleted absorption feature at ω0

because of the high probability of the like-to-like transitions.
The strongly cyclic transitions also allow the spectral region
around the hole to be optically probed repeatedly without
inducing changes in the ground-state hyperfine populations.
Therefore, the feature can be preserved despite optical inter-
actions. Although Fig. 7 illustrates the technique for spin- 1

2
ions, the procedure is easily extended to higher-spin systems
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through further rf π pulses at excited-state hyperfine transition
frequencies.

VII. CONSIDERATIONS FOR THE EXPERIMENTAL
REALIZATION OF ZEC

To supplement the theoretical aspects of this paper, in this
section we briefly discuss three experimental considerations
when using ZEC to close optical transitions. We first describe
in more detail which materials are suitable for the proposed
technique. We then discuss the requirements and optimization
of the applied magnetic field. Finally, we consider the
consequences of hyperfine parameter inhomogeneity in the
applications of the ZEC technique.

A. Rare-earth ion materials suitable for ZEC

In Sec. II C, we showed that the crystals in which relaxation
from the optical excited state can be treated as a diabatic
passage are suitable candidates for ZEC. For these materials,
the only relaxation pathways from |�e〉|ψe〉 to |�g〉|ψgn

〉 that
exist fulfill the diabatic criterion τ � ω−1

m . Although there are
many promising materials that satisfy this criterion, the range
of materials suitable for ZEC can be expanded considerably
by considering the ion’s electronic structure and its site point
group symmetry.

The electronic component of Eq. (3) governs the transition
probabilities between the electronic states �. This branching
ratio weights the contribution of each indirect relaxation path
towards the total probability of terminating in a particular
hyperfine spin state. Therefore, even if metastable states exist
that would violate the diabatic criterion, it is possible that
the branching ratio for indirect relaxation paths containing
these states is negligible. This increases the number of
materials in which cyclicity can be controlled by manipulating
〈ψe|ψg〉.

If relaxation pathways exist that contain metastable levels
and possess non-negligible branching ratios, the ZEC method
can still be successful. If all the relevant intermediate crystal
field level spin Hamiltonians can be simultaneously diagonal-
ized (equivalent to requiring |ψe〉 = |ψim〉 for all �i), then the
initial hyperfine spin state will be preserved irrelevant of the
relaxation path. This criterion is easily fulfilled in sites with a
proper rotation axis of symmetry. For sites with point group
symmetries higher than Cs , the relaxation path-independent
ZEC can be realized if the ZEC field is applied along any
common principal axis.

We conclude this discussion by summarizing the non-
Kramers crystals suitable for closing optical transitions using
the ZEC technique. First, if the site possesses a proper rotation
axis, then at least one ZEC field direction will provide
enhanced cyclicity. For sites with Cs or C1 point group
symmetry, the ZEC technique should succeed if all indirect
relaxation pathways fulfill the diabatic criterion, or indirect
pathways containing a metastable state possess negligible
branching ratios. The large number of crystals for which the
technique is applicable makes it an appealing protocol for
fundamental and applied rare-earth ion spectroscopy.

1. A comment on ZEC in crystals containing Kramers ions

In this paper, we have restricted our focus to non-Kramers
ions, but the natural next step is to consider the application of
ZEC to crystals containing Kramers ions. Here, we provide a
few brief comments on achieving closed optical transitions in
Kramers-ion systems as a starting point for a more complete
analysis in the future.

For a Kramers ion with zero nuclear spin, the spin
Hamiltonian Ĥmh of a Kramers doublet only contains the linear
(electronic) Zeeman interaction [13]

Ĥmh = β B · g · ̂S, (28)

where β is the electronic Bohr magneton, B is the applied
magnetic field vector, g is the g factor of the Kramers doublet,
and ̂S is the spin- 1

2 operator. The form of Ĥmh in Eq. (28)
is mathematically equivalent to the spin Hamiltonian of the
non-Kramers ion Tm3+, which has I = 1

2 . If the cyclicity
condition in Eq. (4) is expressed using electron-spin states
rather than nuclear-spin states, the commutation criterion
presented in Sec. III B can be applied by substituting the
appropriate g tensors for Mg and Me. Therefore, the general
results of Secs. IV and V hold for Kramers ions with I = 0.
This is supported by the conclusions of Ref. [39] where the
branching ratio of � transitions in Nd3+:YVO4 are found to
be zero when a field is applied parallel or perpendicular to the
crystal symmetry axis.

For Kramers-ion isotopes with I �= 0, both the electron-
and nuclear-spin interactions must be taken into consideration.
This case can be simplified by noting that the tensors that
describe these different spin interactions will all possess a
principal axis along the symmetry axis of the rare-earth ion
site (if one exists). Therefore, following the logic of Sec. IV,
for noncentrosymmetric sites possessing a proper rotation axis,
ZEC fields will exist parallel to the symmetry axis of the site.
As for sites with no proper rotation axis (Cs or C1), it is unclear
whether ZEC fields will exist.

Although ZEC field directions will exist for some Kramers-
ion systems, the achievable cyclicity enhancement needs to be
examined in detail, which is beyond the scope of this work.
For example, the level of cyclicity that can be obtained will
depend on the lifetime of the electron-spin states, which is
typically much shorter than the lifetime of nuclear-spin states
[38,39]. Furthermore, the diabatic criterion presented in this
work will be significantly harder to fulfill. This is because
the energy splittings between the electron-spin states can be
several orders of magnitude larger than the splittings between
nuclear-spin states.

B. Applied magnetic field

Because the performance of the ZEC technique relies on
working in the high-field limit, the properties of the applied
field are an important factor in closing optical transitions.
The magnitude, orientation, and homogeneity of the field
will contribute to the achievable level of cyclicity. Realizing
the magnetic field parameters for high-performance ZEC is
certainly feasible given the success of the significantly more
demanding zero first-order Zeeman (ZEFOZ) technique [3].
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To achieve the maximum possible cyclicity, the field
magnitude along the ZEC direction should be maximized.
In this work, fields up to 10 T were considered but the
calculations highlight that rapid gains in cyclicity can be
made for field magnitudes up to approximately 3 T. Although
cyclicity continues to improve as the field strength is increased,
the rate of increase diminishes.

For experiments applying fields less than ≈5 T it will
be important to factor in the finite contribution of the
quadrupole interaction when optimizing the field alignment.
The calculations performed in Sec. V A simply show the level
of cyclicity for fields applied along the direction derived in the
high-field limit. For field strengths below ≈5 T, the maximum
cyclicity may be achieved on the order of 1◦ away from the
ZEC field direction. The optimum direction can be found by
performing a numerical search in the magnetic field space
around the theoretical ZEC field.

In general, the enhancement of cyclicity relies on the linear
Zeeman interaction dominating the quadrupole interaction.
How strong a field is required to attain the high-field limit
is then governed by the relationship between the eigenstates of
the quadrupole interaction and the eigenstates of the linear
Zeeman interaction. We have explored this concept using
first-order perturbation theory in Appendix B.

Here, we summarize the results of Appendix B. For a
site with perfect axial point group symmetry, the quadrupole
eigenstates are identical to the linear Zeeman eigenstates. In
this case, any field magnitude along a ZEC field direction
will produce transition probabilities equal to unity. For other
site symmetries, the eigenstates of the quadrupole and linear
Zeeman interactions differ. In these cases, only an infinite field
applied along a ZEC field direction can produce transition
probabilities equal to unity. For nonaxial sites, it is possible
to estimate the transition probabilities possible for an applied
field along a ZEC field direction using the following expression
(derived in Appendix B):

|〈ψe|ψg〉|2 �
(

λeλg + 1(
λe

2 + 1
)2(

λg
2 + 1

)2

)2

(29)

for

λj = |Ejq
/Ejz

|, (30)

where j represents the excited state (e) or the ground state (g),
and |Eq/Ez| is the ratio of the quadrupole interaction energy
and the linear Zeeman interaction energy for a particular |ψj 〉.

C. Hyperfine parameter variation

A final consideration in the factors important for experi-
mentally achieving ZEC is the homogeneity of the hyperfine
parameters. Due to spatially dependent variations in the crystal
field, individual ions possess different quadrupole and linear
Zeeman properties. Equivalently, in an ensemble of ions there
will be inhomogeneities in both the Q and M tensors. The
variations in the Q tensor will not alter the direction of the
required ZEC field but will modify the resultant transition
probabilities. In contrast, the result of variations in the M
tensor is that each ion or subensemble will possess a unique
ZEC field direction.

In most materials, the variations in the Q and M tensors
will be small, a fact that is highlighted by the success
of other techniques reliant on the hyperfine Hamiltonian
parameters. For example, the ZEFOZ technique is much more
sensitive to variations in Q and M than ZEC, yet it has
been successfully demonstrated in several rare-earth materials
[3,40]. In addition, optimization of the magnetic field required
for ZEC is experimentally possible by measuring the relevant
transition probabilities as a function of field orientation.

VIII. CONCLUSION

A technique that allows the engineering of closed opti-
cal transitions in non-Kramers rare-earth ion crystals was
proposed and investigated. The technique is based on the
manipulation of the ion’s hyperfine state admixtures through
the application of specifically oriented, large magnetic fields.
When the spin Hamiltonians of the ground and excited states
possess the same eigenstates, cyclic transitions are formed that
allow an optical transition to be closed.

A complete justification of the ZEC technique was given
and a derivation of the ZEC field directions was performed.
General solutions were examined for sites with axial, or-
thorhombic, and C2 point group symmetry. Sites without
a proper rotation axis were also investigated through the
example of Pr3+:Y2SiO5: a C1 symmetric site. A quantitative
analysis performed for Pr3+:Y2SiO5 showed that transition
probabilities exceeding 99.99% are theoretically possible at
10 T.

Two applications of the ZEC technique were discussed:
single-ion, state-selective readout and the creation of WORM
spectral features. Given the simulated level of cyclicity
enhancement, high-fidelity single-ion qubit readout is feasible
under realistic experimental conditions. This result adds
weight to the investigation of single rare-earth ions for
quantum information processing. Ensemble-based protocols
would also benefit from creating spectral features that are
robust against optical excitation, which the ZEC technique
makes possible.

The engineering of closed optical transitions through the
ZEC protocol is a further technique to add to the quantum
control that can be achieved in rare-earth ion systems.
Critically, it enables the investigation of processes currently
impossible for rare-earth ion crystals both in the single-ion
and ensemble regimes.
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APPENDIX A: DERIVING THE DIABATIC CONDITION

In Sec. II C, a diabatic condition for the preservation of
an ion’s spin upon indirect relaxation is stated. The purpose
of this appendix is to explicitly derive this condition. First,
let the direct relaxation path from |�e〉|ψe〉 → |�g〉|ψgn

〉 be
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considered. In the excited state |�e〉 the state |ψe〉 is an
eigenstate of the Hamiltonian Ĥe,

Ĥe|ψe〉 = Ee|ψe〉, (A1)

where Ee is the energy of the |ψe〉 hyperfine state.
Similarly, the hyperfine levels |ψgn

〉 of the ground state �g

are governed by

Ĥg|ψgn
〉 = Egn

|ψgn
〉, (A2)

where Ĥg and Egn
are the Hamiltonian and energies for the

ground states |ψgn
〉.

When the ion relaxes to a different electronic level, the
hyperfine Hamiltonian changes from Ĥe to Ĥg . The state |ψe〉
is initially unchanged, but can be expressed in the basis states
of the ground-state Hamiltonian as

|ψe〉 =
∑
m

cgm
|ψgm

〉, (A3)

where the cgm
= 〈ψgm

|ψe〉.
In the Schrödinger picture, the time evolution of this

superposition state can then be described by

|(0)〉 = |ψe〉 =
∑
m

cgm
|ψgm

〉,
(A4)

|(t)〉 =
∑
m

cgm
e−iωmt |ψgm

〉,

where ωm = Egm
/�. If a measurement is made after time τ to

ascertain the hyperfine ground state, the relative probabilities
Pr|ψe〉→|ψgn 〉 are given by

Pr|ψe〉→|ψgn 〉 = |〈(τ )|ψgn
〉|2 =

∣∣∣∣∣∑
m

c∗
gm

eiωmτ 〈ψgm
|ψgn

〉
∣∣∣∣∣
2

= |c∗
gn

eiωnτ |2 = |〈ψe|ψgn
〉|2, (A5)

which is independent of the time τ .
However, as previously noted, the dominant relaxation path

to the ground state is a complex route through higher-energy
crystal field levels. Therefore, let an indirect relaxation path
through the intermediate electronic state |�i〉 be considered.
Analogous to Eq. (A3), the initial state |ψe〉 can be expressed
as a superposition of the basis states of the intermediate state
Hamiltonian Ĥi :

|ψe〉 =
∑
m

cim |ψim〉, (A6)

where the cim = 〈ψim |ψe〉. While the ion remains in state |�i〉,
the time evolution of the state is given by

|(t)〉 =
∑
m

cime−iωmt |ψim〉, (A7)

where ωm is now given by Eim/�. After time τi the ion relaxes
from �i to �g and each term in the superposition has accu-
mulated a phase e−iωmτi . The probabilities Pr|ψe〉→|�i 〉→|ψgn 〉 are
given by

Pr|ψe〉→|�i 〉→|ψgn 〉 = |〈(τi)|ψgn
〉|2

=
∣∣∣∣∣∑

m

c∗
im

eiωmτi 〈ψim |ψgn
〉
∣∣∣∣∣
2

. (A8)

If τi � max(ωm
−1), the phase evolution factors eiωmτi ≈ 1

giving

Pr|ψe〉→|�i 〉→|ψgn 〉 =
∣∣∣∣∣∑

m

c∗
im

〈ψim |ψgn
〉
∣∣∣∣∣
2

= |〈ψe|ψgn
〉|2. (A9)

Thus, if relaxation to the ground state through an intermediate
crystal field level is sufficiently rapid [τi � max(ωm

−1)], the
hyperfine state does not undergo any evolution. The resulting
transition probability of terminating in ground state |ψgn

〉 is
equal to the direct transition given in Eq. (A5). This can be
considered as a diabatic passage [19]. The diabatic criterion
can be extended to indirect relaxation pathways containing
multiple intermediate states. In this case, the lifetime τj of
every intermediate state |�j 〉 traversed in the relaxation process
must obey the condition τj � (ωm)−1 for m = 1 . . . 2I + 1.

APPENDIX B: FIRST-ORDER PERTURBATION
THEORY ANALYSIS FOR ZEC

Here, we treat the quadrupole interaction Ĥq as a perturbation
to the linear Zeeman interaction ĤZ for a large magnetic field
applied along one of the ZEC field directions. We work in the
eigenstate basis that simultaneously diagonalizes the ground-
and excited-state linear Zeeman Hamiltonians

ĤZ|ψn〉 = En|ψn〉. (B1)

According to first-order, time-independent perturbation
theory

(ĤZ + λĤq)|n〉 ≈ E′
n|n〉, (B2)

where

|n〉 = λ
∑
k �=n

〈ψk|Ĥq|ψn〉
En − Ek

|ψk〉 + |ψn〉

= λ
∑
k �=n

αkn

�Ekn

|ψk〉 + |ψn〉 (B3)

and

λ = |Eq/En|, (B4)

where Eq is of the order of the zero-field quadrupole splittings.
The perturbed eigenstates for both the ground and excited

crystal field levels can be written in the form of Eq. (B3). The
normalized eigenstates |en

〉 and |gn
〉 are

|en
〉 =

λe

∑
k �=n

αekn

�Eekn

|ψk〉 + |ψn〉∣∣∣λe
2 ∑

k �=n

|αekn
|2

(�Eekn
)2 + 1

∣∣∣2 (B5)

and

|gn
〉 =

λg

∑
k �=n

αgkn

�Egkn

|ψk〉 + |ψn〉∣∣∣λg
2 ∑

k �=n

|αgkn
|2

(�Egkn
)2 + 1

∣∣∣2 . (B6)
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The probability of a like-to-like transition can now be written as

|〈en
|gn

〉|2 =

∣∣∣∣∣∣∣
⎛⎜⎝λe

∑
k �=n

αekn
∗

�Eekn

〈ψk| + 〈ψn|∣∣∣λe
2 ∑

k �=n

|αekn
|2

(�Eekn
)2 + 1

∣∣∣2

⎞⎟⎠
⎛⎜⎝λg

∑
k �=n

αgkn

�Egkn

|ψk〉 + |ψn〉∣∣∣λg
2 ∑

k �=n

|αgkn
|2

(�Egkn
)2 + 1

∣∣∣2

⎞⎟⎠
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
λeλg

∑
k �=n

αekn
∗

�Eekn

αgkn

�Egkn

+ 1∣∣∣λe
2 ∑

k �=n

|αekn
|2

(�Eekn
)2 + 1

∣∣∣2∣∣∣λg
2 ∑

k �=n

|αgkn
|2

(�Egkn
)2 + 1

∣∣∣2

∣∣∣∣∣∣∣
2

. (B7)

For sites with perfect axial symmetry, the eigenstates of ĤZ

are also eigenstates of Ĥq. Therefore, for all k �= n

αkn = 〈ψk|Ĥq|ψn〉 = 0, (B8)

and the result of Eq. (B7) is a unity transition probability:
|〈en

|gn
〉|2 = 1.

For sites without perfect axial symmetry, the |ψn〉 are
no longer eigenstates of Ĥq. As a result, the precise value
of the transition probability given by Eq. (B7) is strongly
dependent on the αkn for the ground and excited states. The

calculation of the αkn requires the knowledge of the spin
Hamiltonians for the ground and excited states, in which case
the transition probabilities can be calculated directly, as was
done for Pr3+:Y2SiO5 in Sec. V A.

If the spin Hamiltonians for the ground and excited states
are not known, the form of Eq. (B7) can be used to make
a coarse approximation of the transition probability given
knowledge of λ:

|〈en
|gn

〉|2 �
(

λeλg + 1(
λe

2 + 1
)2(

λg
2 + 1

)2

)2

. (B9)
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[8] M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and
H. de Riedmatten, Solid State Spin-Wave Quantum Memory for
Time-Bin Qubits, Phys. Rev. Lett. 114, 230501 (2015).

[9] P. M. Ledingham, W. R. Naylor, and J. J. Longdell, Experimental
Realization of Light with Time-Separated Correlations by
Rephasing Amplified Spontaneous Emission, Phys. Rev. Lett.
109, 093602 (2012).

[10] C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom
cooling, trapping, and quantum manipulation, Rev. Mod. Phys.
71, S253 (1999).

[11] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and
interferometry with atoms and molecules, Rev. Mod. Phys. 81,
1051 (2009).

[12] A. Abragam and B. Bleaney, Electron Paramagnetic Reso-
nance of Transition Ions (Dover, New York, 1986), Table 20,
Appendix B, pp. 874–875.

[13] R. M. Macfarlane and R. M. Shelby, Coherent transient
and holeburning spectroscopy of rare earth ions in solids, in
Spectroscopy of Solids Containing Rare Earth Ions, edited
by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland,
Amsterdam, 1987).

[14] G. Liu, Electronic energy level structure, in Spectroscopic
Properties of Rare Earths in Optical Materials, edited by G.
Liu and B. Jacquier (Springer, Berlin, 2005).

[15] O. Guillot-Noël, P. Goldner, E. Antic-Fidancev, and J. L. Le
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