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Light atom quantum oscillations in UC and US
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High-energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic
neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding
to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US
and only a few oscillator peaks are visible. We show how the difference between the materials can be understood
by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used
to simulate the scattering, with near quantitative agreement with the data in UC, and some differences with US.
The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in
UC. Overall, the observed data is well accounted for by considering each light atom as a single atom isotropic

quantum harmonic oscillator.
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I. INTRODUCTION

The complex electronic structure of uranium leads to a wide
variety of unusual and diverse behaviors in the uranium salts
UX (X =C,N, P, S, As, Se, Sb, Te, and Bi), and therefore
the materials in this family have been the subject of many past
investigations characterizing their magnetic and vibrational
properties [1-12].

Despite this effort, many unresolved issues remain, includ-
ing the origin of unusual magnetic excitation spectra in several
of the materials [8,9], including antiferromagnetic UN (Ty =
53 K [13]) and ferromagnetic US (7, = 180 K [14]). Indeed,
our original motivation to study these materials using time-of-
flight neutron scattering methods was to closely examine the
high-energy portion of the magnetic excitation spectra. This
required a careful study of the vibrational scattering at these
energies as well. Moreover, there has been renewed interest in
more detailed calculations of the vibrational properties of this
family as certain members, including UN and UC, are under
active consideration for next generation nuclear fuels [15-17].

The recent neutron scattering studies of UN resulted
in the discovery of new and unexpected features in the
vibrational spectrum [18]. The same single crystal of UN
investigated in earlier work [8,10,19] was reexamined via
modern neutron time-of-flight (TOF) spectroscopy using the
SEQUOIA [20,21] and ARCS [22] spectrometers at the
Spallation Neutron Source, Oak Ridge National Laboratory.
Specifically, strong vibrational scattering was found at energies
above the usual acoustic and optic phonon branches. A
series of evenly-spaced, high-energy modes was observed, and
detailed quantitative analysis showed that these modes could
be attributed to the nitrogen atoms behaving as independent,
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isotropic, 3D quantum harmonic oscillators (QHOs) [18,23].
Some of the features of the QHO modes, for example, the
intrinsic broadening, were consistent with predictions of a
binary solid model [24]. This model applies to systems with
two different types of atoms with disparate masses and explains
how the motion of the heavy atoms affects the QHO behavior
of the lighter ones.

The observation of these well defined modes at energies
above the highest optic phonon branches in an ordered single-
crystal contrasts with the conventional view of the vibrational
response in crystalline solids. In this regime, the vibrational
response is usually weak and relatively featureless [25]. Prior
to the UN discovery, exceptions to this rule were generally
found in binary metallic hydrides [26-30], for example,
in ZrH, systems, where hydrogen atoms occupy interstitial
sites [28]. However, in those systems, the hydrogen modes
usually exhibit significant anisotropic and anharmonic effects,
mainly due to H-H interactions, crystalline anisotropy, and the
diffusion of the H atoms [26-29]. Typically, only a few modes
are observed. Conversely, the nitrogen oscillations in UN show
well-defined peaks up to the 10th order.

Known prerequisite conditions for the QHO modes to be
clearly observable in binary alloys include a large mass ratio
between the light and heavy atoms, and weak interactions be-
tween light atoms. Although the aforementioned binary solid
model provides some guidance, there is little experimental
information on the dependence of this part of the vibrational
response function on factors such as the mass ratio and atomic
neutron cross-sections. In this work, we investigate how these
factors affect the high-energy vibrational scattering in UX via
time-of-flight neutron spectroscopy measurements on single
crystals of UC and US. For UC, we find a series of well-defined
high-energy vibrational modes analogous to those observed
for UN. Overall these modes are described well by a QHO
model for the carbon atoms. Conversely, while the US data
also show evidence for the high-energy vibrational modes,
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only the lowest few are observed and they are much weaker in
intensity compared to those seen in UC and UN. We discuss
the reasons for these differences. In addition, we explore the
effect of multiple scattering on the observed spectrum, and
the possibility of extracting information on the directional
dependence and anharmonicity of the light atom potential via
measurements of the QHO modes.

II. INELASTIC NEUTRON SCATTERING

All neutron scattering measurements reported here were
collected using the SEQUOIA [20,21] and ARCS [22] TOF
Fermi chopper spectrometers at the Spallation Neutron Source
of Oak Ridge National Laboratory. The same depleted uranium
single crystals of UC and US used in previous studies were
investigated in this work [31,32]. Both samples had similar
total volumes on the order of 1 cm?. For the neutron scattering
experiments, each single crystal was mounted in an aluminum
can and loaded in a closed cycle helium refrigerator. All
data were collected at T = 4 K, with the [H H L] scattering
plane horizontal. A Fermi chopper was used to obtain several
different incident neutron energies, including E; = 80, 250,
500, 700, and 800 meV. The details for each chopper setting
are given in Table 1. All data sets were normalized against a
vanadium standard to account for variations of the detector
response and the solid angle coverage.

Empty-can measurements were performed at 7 = 4 K and
subtracted from the US data sets. A small amount of Al from
the sample mount was not perfectly accounted for in the US
empty-can measurement; we discuss below the implications
of this imperfect background subtraction on the scattering
observed in US. On the other hand, the fragility of the
UC crystal required a unique sample mounting arrangement
that could not be disassembled and therefore prevented a
comparable empty can measurement. It is well known that
Al scattering is strongest at low energies up to the cutoff in the

TABLE I. List of experimental conditions used to collect data
for (a) UC and (b) US, on SEQUOIA (E; = 80 meV only) and
ARCS (E; = 80, 250, 500, 700, and 800 meV). Here, dgc is the
slit spacing of the Fermi chopper, Rgc is the radius of curvature of
the Fermi chopper, vgc is the frequency of the Fermi chopper, vry
is the frequency of the TO chopper, and AE FWHM represents the
corresponding instrumental energy resolution at zero energy transfer.

@ UC, T =4K

E; (meV) 80 500 700 800
drc (mm) 15 0.5 0.5 0.5
Ryc (m) 0.58 1.53 1.53 1.53
Ve (Hz) 120 480 600 600
V1o (Hz) 90 180 180 180
AE FWHM (meV) 9.0 18.2 26.1 314
(b)US, T =4K
E; (meV) 80 250 500
drc (mm) 36 0.5 05
Ryc (m) 1.53 1.53 1.53
Ve (Hz) 240 360 480
vro (Hz) 90 180 180
AE FWHM (meV) 4.1 8.8 18.2
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Al phonon density of states. Furthermore, when high incident
neutron energies are chosen (i.e., 500 meV), the overall
scattering from Al also includes a significant multiphonon
contribution and over most of the measured energy transfer
range the intensity decays approximately exponentially with
energy. Due to the lack of an appropriate Al empty can
subtraction for UC, Al single phonon and multiphonon effects
are directly included in the UC simulations, as discussed below.

Figure 1 shows representative measurements with E; =
80 meV for (a) UC from ARCS and (b) US from SEQUOIA
along the [22L] direction in reciprocal space. The results
for the acoustic and optic phonons are consistent with those
previously reported in the literature [10,31]. Both the acoustic
and optic modes in nonmagnetic UC are clearly visible with
large signal compared to background. On the other hand, the
phonon modes of US are only weakly visible in the data.
We note also that weak magnetic scattering is present near
the ferromagnetic zone center (220) extending up to at least
60 meV.

The decreased intensity of the phonon scattering in US can
be understood by considering the one phonon structure factor,
g, for the rocksalt structure. Along symmetry directions this
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FIG. 1. The phonons along the [22 L] direction for (a) UC (ARCS)
and (b) US (SEQUOIA) with E; = 80 meV. In both cases, the
acoustic and optic phonon modes are well separated. The optic modes’
signal to background ratio is much higher for UC as compared to
US. The energies of the optic modes for UC and US are known
to be 48 and 40 meV [10]. The white text O and A indicate the
general location for the optic and acoustic phonon modes, while B
denotes significant background contribution. As mentioned in the
text, additional scattering is observed in the US plot centered about
the ferromagnetic zone center (220); this scattering is visible most
clearly between 40 and 60 meV.
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TABLE II. Relevant parameters for phonon intensities in UC,
UN, US, and Al [34].

Atom m (amu) b (fm) b*/m (fm?/amu)
N 14 94 6.31
C 12 6.6 3.63
S 32 2.8 0.25
U 238 8.4
Al 27 3.4
can be written as [3,33]
g’ =(Q-&y¢” (1)
with
bU ey bXeX
g = < + , 2)
M m

where Q is the neutron momentum transfer, £ is a unit vector
describing the phonon polarization, M is the mass of U, m is
the mass of the light atom X, ey and ey are the eigenvectors
of the U and the X ions, subject to the constraint e7, + e} = 1,
and by and by are the coherent neutron scattering lengths
[3]. The sign between the two terms in Eq. (2) depends on
the (H K L) indices of the Brillouin zone, where (+) and (—)
correspond to all even and all odd indices respectively.

For optic phonons, at the zone center, |e7, M| = |e%m| and
therefore g’ can be rewritten as

'=b T4 M 3
R T Rt TR M

In the limit of M — o0,

b2
lim g% =% €]

M— o0 m
This expression indicates that the intensity of the optic
modes is determined primarily by the mass and scattering
length of the light atoms. Under the assumption of similar
scattering lengths, the intensity of the optic modes decreases
with increasing mass m of the light atom. Table II further em-
phasizes this point by comparing several parameters relevant
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to the phonon intensities of UC, UN, and US [34]. It is seen
that the optic phonon cross section for US is more than an order
of magnitude smaller than the comparable cross-sections for
UC or UN. Al is also included in the table since it leads to
significant background scattering in the US experiments, as
discussed below.

Figure 2 depicts the orientationally averaged, high-energy
response observed for both UC and US on ARCS. Several
evenly-spaced vibrational modes are easily visible in the
UC E; = 500 meV spectrum shown in Fig. 2(a). In the US
data with E; = 500 meV shown in Fig. 2(b), ferromagnetic
fluctuations are seen at low Q, but the high-energy vibrational
modes are barely visible. On the other hand, some weak
vibrational modes can be ascertained in the higher resolution
E; = 250 meV data depicted in Fig. 2(c). In both materials, the
vibrational modes appear on inspection to be evenly spaced.

We first discuss the vibrational scattering seen in UC.
Figure 3 shows the E; = 500 meV Q-integrated data for UC,
with two different panels corresponding to linear (top) and
logarithmic (bottom) y axes. Modes up to seventh order are
clearly visible as peaks in the data. To test whether these
are evenly spaced, the Q-integrated data set is fitted to the
following functional form:

(E—En)?

I(E)=Y T,e i + Bege ™"+ By 5)
n

T, is a scale factor for each individual Gaussian peak and
o, is the standard deviation for each peak. An empirical
background consisting of a constant By and decaying expo-
nential Bexpe *#£ was incorporated into the fit. The decaying
exponential term is expected from a simple diffusive model
of multiphonon scattering [35,36]. E, are the mode positions
that were fit independently and the last term incorporates all
others sources of background.

The solid line in Fig. 3 represents the fitted curve from
Eq. (5). The fitted peak positions of the modes for all measured
data sets are shown in Table III, and are evenly spaced. The
average spacing between the modes, incorporating all fitted
data sets, was found to be hwy=48+1 meV for UC.
The values are averaged by a weighted approach meaning
hwy = (hwy + hw, /2 + hws/3 + - - - + hw,/n)/n.  Values
calculated from individual peaks, i.e., hw, /n deviate from the
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FIG. 2. Color contour plots of the inelastic neutron scattering spectra for (a) UC, E; = 500 meV, (b) US, E; = 500 meV and (c) US,
E; = 250 meV. The evenly-spaced, high-energy vibrational modes are clearly visible in the UC plot, but much less pronounced in the case of
US. The low- Q inelastic scattering seen for US arises from ferromagnetic fluctuations.
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FIG. 3. The Q-integrated intensity vs energy plot for UC at 4 K,
with E; = 500 meV. The upper plot shows the systematic decline of
intensity for higher modes. The lower (log) plot shows that the QHO
modes remain visible for this data set up to the seventh mode. The
black points are from the experimental data and the solid red line is
the fit to the data using Eq. (5).

average by less than 1 meV, which implies a highly harmonic
potential.

The fact that the spectrum is characterized by a series of
evenly-spaced modes suggests that the light atoms behave like
independent 3D QHOs similar to UN [18]. This hypothesis can
be tested quantitatively by comparing the relative intensities
of the modes to the known dynamical structure factor for the
nth mode of a QHO at low T, which has a simple analytical

TABLE III. Peak positions of the high-energy vibrational modes
(in meV) for UC from fits to the Q-integrated data. Note that the error
bars are statistical from the fitting of the data and do not account for
instrumental resolution or systematic effects.

(aUC, T=4K

n\E; 500 meV 700 meV 800 meV
1 47.7(3) .. ..

2 96.2(3) 98.1(2) 99.7(4)
3 142.8(4) 144.1(3) 146.0(5)
4 189.1(6) 190.9(3) 193.0(4)
5 235.6(1) 237.3(4) 239.0(4)
6 283.8(36) 283.7(6) 284.7(6)
7 329.9(7) 331.0(1.0)
8 372.9(1.2) 375.5(1.7)

average hwy: 48 + 1 meV.
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form given by

D ( hQ*\" —hQ?
SH(Q,a»:—( Q )exp( Q )ﬂ(a)), ©)

n! \ 2mwy 2mawy

where F,(w) = §(hw — nhwy) and D is a constant.

Assuming that one has a carbon atom QHO with the
measured energy spacing of hwy = 48 meV and a mass of
12.01 amu the calculated value of /i/2mawy is 0.0036 A2, Given
the range of Q measured and the Q dependence in Eq. (6), it is
surprising that the higher-order modes are visible in Fig. 2. This
can be understood by considering that S,,(Q,®) only accounts
for single scattering events. With equally spaced modes,
however, the contributions from multiple scattering will also
peak at energies corresponding to QHO mode positions, and
as discussed below the multiple scattering contributes to the
intensity at low Q.

We consider the meaning of a single scattering event in both
QHO language and an alternate, but equivalent description
based on creating Einstein phonons of fixed frequency. At
T = 0, an inelastic neutron scattering event, at an energy of
nhwy in QHO language, represents a transition from the QHO
ground state to the nth eigenstate. In Einstein mode language,
it consists of a single scattering event, with total wave-vector
transfer magnitude Q, that creates n Einstein phonons, each of
energy hwy. In either case, the scattering cross-section contains
a factor Q%". On the other hand, a multiple scattering event
in QHO language corresponds to a set of multiple transitions
from the ground state to the nth excited state, while in the
phonon description several different scatterings occur creating
in aggregate n Einstein phonons. The jth scattering event
contributes a factor Q? to the total observed cross-section.
These processes are depicted in Fig. 4 for the case n = 2.
The single scattering event shown in Fig. 4(a) will have an
intensity 7 ~ Q* and a requirement that the vector sum of
the individual Einstein phonon momenta Q; and Q; has a
magnitude equal to Q. On the other hand, in the multiple
scattering event shown in Fig. 4(b) each created Einstein
phonon contributes a separate factor to the measured intensity,
which is, therefore, proportional to (Q;Q,)>. The total net

(a) single scattering event (b) multi-scattering event

1

n
[+]

=>
5
)

FIG. 4. Schematics showing the difference between (a) single
scattering processes and (b) multiple scattering processes leading to
the observed neutron scattering spectra for UC, UN, and US. k; and
ks refer to the incident and final neutron momenta. In (b), values of
Qq and Q; were chosen such that the total momentum transfer Q =
0 but the scattering intensity is nonzero (see text for details).
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vector momentum transfer Q measured in the experiment can
take on a wide range of values, including Q = 0 as depicted
in the figure. The average over all possible multiple scattering
combinations can lead to a cross-section that is independent of
Q. Therefore the observed intensity of the higher-order peaks
at small Q arises principally from multiple scattering.

With this in mind, we fit the constant- E cuts of the UC data
to a modified expression of S(Q,w) for QHOs [18], given by

5.(Q,w) = A, 0™ exp(—C Q?) + B,. 7

Here, C is h/2mwy and a Q-independent B, term is included
to account for the multiple scattering described above. For the
ideal QHO model, A,/ D = C"/n!. By relaxing this constraint
and allowing A, and C to be independent parameters in the
data fitting, one can gain a sense of how much the UC data
deviates from the ideal QHO limit.

Figure 5(a) depicts constant- E cuts from the 500 meV data
set for the n = 1-5 modes, centered about nhw for the nth
mode (20-meV integration range). Similar cuts were made for

= [38,58] (meV) (a)

. = [86,106]
0 1.0+ & [134,154]
= [182,202]
= [230,250]
5 -
[
S
> 05
7
c
2 -
= =4

0 T I T I T I T I T ] T I

] (b)
0.1—_
1E-6
< ]
< 1E-11
1| A E=500mev
1E-16 | @ E,=700meV
]| = E=800mev
]| =/ QHO model
1821 dI7/—r7/——F—T—"—"T—"—7——1

1 2 3 4 5 6 7
Mode n

FIG. 5. (a) The Q dependence of the intensity for the n = 1-5
UC oscillator modes with E; = 500 meV, integrated over the energy
ranges shown in the legend. The solid lines are fits to the QHO model
described in the text. (b) The A, coefficients for the n = 1-5 modes
normalized by the values of A;. The coefficients are extracted from
fits to the E; = 500 (black triangles), 700 (red circles), and 800 meV
(blue squares) ARCS data sets. The solid line is the prediction of the
QHO model with ~wy = 48 meV and m corresponding to the mass of
a carbon atom. The ratio is plotted on a logarithmic scale and spans
almost 20 orders of magnitude.
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the E; = 700 and 800 meV data sets (not shown). Figure 5(b)
plots the ratios of the fitted parameters A, /A, for the E; =
500, 700, and 800 meV data sets. The solid line indicates the
prediction for the QHO model with hwy = 48 meV, with the
noninteger n values interpolated by using I'(n + 1) to calculate
n!. Asin the case of UN, there is excellent agreement between
the QHO model and the data over 20 orders of magnitude.
The experimental C value, corresponding to the zero point
motion of the oscillator, also agrees well with the model. By
incorporating all three data sets into the fit, the average value
of C was found to be 0.0031(1) A2, which is close to the
calculated value for the ideal QHO of 0.0036 A? discussed
above. These findings provide strong confirmation that the
high-energy vibrational modes observed in UC correspond to
quantum oscillations of the carbon atoms in the system.

Figure 6 shows the Q-integrated data for US with E; = 250
and 500 meV, including fitted curves using Eq. (5). The same
fitting approach, described earlier for UC, was also used for
the US data. However, due to the weaker mode intensities in
US, it is not possible to fit as many peaks in the US data sets.
Nonetheless the modes are evenly spaced, similar to UC, with
an average hwg of 41(1) meV. The fitted peak position of each
individual mode is shown in Table IV.

The weak intensities of higher QHO modes in US can
be largely explained by the phonon structure factor of the
rocksalt structure, as discussed earlier by Egs. (3) and (4) and
Table II. The greater mass and shorter scattering length of

4
US, E=250meV,,
T=4K. O=|5.max|
0.1
7 0.01
=
| e
- |
- 1E-3 : ,
= 0 50 100 150
E, E(meV)
2
®m 1 .
L US, E=500meV.,
2 T=4K. O=|5max|
£ 014
0.01 -
1E-3 4
0 100 200 300

E (meV)

FIG. 6. The Q-integrated intensity vs energy plot for US at 4 K,
with E; = 250 and 500 meV. The QHO modes are much less intense
compared to those observed in UC, with only three modes observable
for E; =250 meV and four for E; = 500 meV. The black points
are from the experimental data and the solid red lines are the fits to
the data using Eq. (5). Note that the Q-integrated range for the US
datais Q > 5 A™! only. This is done to avoid contributions from the
magnetic excitations at low Q as seen in Figs. 2(b) and 2(c).
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TABLE IV. Peak positions of the high-energy vibrational modes
(in meV) for US from fits to the Q-integrated data. Note that the
error bars listed are from the fitting of the data and do not account for
instrumental resolution.

US,T =4K
n\E; 250 meV 500 meV
1 40.9(3) e
2 79.909) 85.6(2.4)
3 e 122.9(3.6)
4 166.7(5.8)

average hwg: 41 &+ 1 meV

sulfur results in a much smaller b>/m compared to carbon or
nitrogen. At small Q, the scattering at the nth mode position
is dominated by multiple scattering processes sequentially
creating single optic phonons. The observed cross-section is
therefore proportional to (b?/m)". For this reason, the higher
QHO modes appear much weaker in US compared to UC.

The correction for the Al background scattering is also a
significant complication for the observation of QHO modes in
US. The QHO cross-section for each mode reaches a maximum
at the value of Q where the mode energy corresponds to the
energy of the recoil scattering, which is given for an atom of
mass m by Eecoil = 2 Q? /2m. As seen in Table II, the masses
of Aland S are relatively close, so the recoil scattering from the
Al is strong near the position where one expects to observe the
most intense QHO scattering from S. Altogether, quantitative
analysis of the intensity of the QHO modes in US is more
difficult.

III. MONTE CARLO RAY TRACING SIMULATIONS

Monte Carlo (MC) ray tracing simulations of both the
UC and US ARCS neutron scattering experiments were
performed to gain a better understanding of the various
factors contributing to the observed scattering intensity. This
approach worked exceptionally well to describe the neutron
scattering spectra observed for UN [23]. The ability to
model more realistic instrument and sample configurations
is ever increasing [37,38]. The simulations took advantage
of the hierarchical representation of neutron components
and samples made possible in the MC ray tracing pro-
gram Monte Carlo Virtual Neutron Experiment (MCViNE),
which was developed in the Distributed Data Analysis for
Neutron Scattering Experiments (DANSE) software develop-
ment project [39]. The MCViNE simulations of neutron beams
in these instruments were derived from corresponding McStas
simulations [20,40—43].

In each simulation, the sample was modeled as a cube with
a 1 cm?® volume, approximating the shape of the sample used
in the measurement. The configuration files for the simulations
were created through a series of simple modifications to the
files used for the UN MC simulations described in detail in
Ref. [23], allowing for a straightforward extension of those
calculations to UC and US.

Intrinsic broadening of the QHO modes is included in the
simulation, as it is observed experimentally and predicted by
the binary solid model [24]. The broadening arises from the

PHYSICAL REVIEW B 93, 014306 (2016)

fact that the heavy U atoms are not completely stationary, and
can be modeled by replacing the Dirac-Delta function in the
QHO expression with a Gaussian:

(hw — nha)o)z)

2T4(T) ®)

F(w) = exp < -
where the Gaussian width I'(T) is a function of temperature
and given by

h2Q2 0 hu
2 —
P = S /0 duZ(u)u coth <2kBT>. )

Here, M is the mass of the heavy atom, in this case the U
atom. Z(u) is the acoustic phonon density of states calculated
with a Born-Van Karmen model and 6 is the maximum band
frequency for the acoustic phonon modes.

A Monte Carlo ray tracing simulation for UC with E; =
500 meV is shown as a color contour plot in Fig. 7(a)
and the Q-integrated result is presented in Fig. 7(d). This
simulation is similar to the one reported in Ref. [23] for UN
and includes various sample kernels accounting for elastic
scattering, QHO scattering (from carbon atoms), acoustic
phonon scattering (single and multiphonon), and all forms of
multiple scattering arising from the processes described above.
As discussed earlier, the multiphonon contribution from the
optic phonons is equivalent to QHO scattering. Multiphonon
processes simultaneously involving both the acoustic and optic
phonons lead to the intrinsic broadening accounted for by
Egs. (8) and (9) and are thus also included in the simulation.

Recall that the Al empty can scattering was not subtracted
from the UC data. Figure 7(d) also shows a simulation with
an additional term approximating the Al contribution as a
disk with a total mass similar to the Al sample assembly
used in the UC experiment. This significantly improves the
agreement of the UC simulation with the data at energy
transfers below 100 meV. The fractional contribution of Al
to the total scattering can be estimated from the difference
between the curves with and without the Al background term.
At low energy transfers, the contribution of Al scattering to
the background at the local minima between the QHO peak
positions can be substantial, as high as 30% of the total signal.
However, at an energy transfer of 150 meV, the fraction of the
total scattering from Al is approximately 1%, and this drops
off strongly as the energy transfer increases.

Monte Carlo simulations for US, incorporating sample
kernels with the same ingredients as for UC, are shown
as color contour plots in Figs. 7(b) and 7(c) with intrinsic
broadening included. The Q-integrated results are also pre-
sented in Figs. 7(e) and 7(f). For Fig. 7(f), data simulated
without intrinsic broadening is also included. At low signal
levels, the measured data approaches a constant value, above
the simulations. This indicates that there is a background
contribution, limiting the measurement sensitivity, that is not
captured in the Monte Carlo simulations, nor by the Al can
subtraction. The additional background could arise from a
combination of effects including imperfect Al background
subtraction and multiple scattering involving the magnetic
response or events partially external to the sample. There may
also be a contribution from fission neutrons in the sample that
moderate in the instrument shielding.
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FIG. 7. Color contour plots from the Monte Carlo ray tracing simulations described in text are shown here for (a) UC, E; = 500 meV,
(b) US, E; =500 meV and (c) US, E; = 250 meV. The simulations that incorporate intrinsic broadening of the QHO modes agree well with
the data for UC, but not for the case of US. (d), (e), and (f) show the corresponding Q-integrated plots for the three experimental data sets,
and compare them directly to the results from the simulations. Since an Al background subtraction was not performed for UC, simulations
both including and excluding an Al contribution are shown in (d). Furthermore, the MC simulation results shown in (f) are presented for two
different cases: (i) including and (ii) excluding intrinsic broadening of the QHO modes.

When comparing the high-energy vibrational modes of UC,
UN, and US it is apparent that the differences in the U: X mass
ratio (U:C =19.8, U:N = 17, U:S = 7.4) lead to more obvious
QHO behavior in the lighter atoms. As the U:X mass ratio
decreases, the dispersion of the optic phonon modes has been
shown to increase systematically [3], shifting the vibrational
behavior of the light atoms further away from the localized
QHO picture. A smaller U: X mass ratio has also the effect of
pushing the optic phonon frequencies down closer in energy
to the acoustic modes, so any resulting QHO excitations tend
to be more closely spaced and therefore harder to resolve for
a given instrumental energy resolution in neutron scattering
experiments.

IV. ANHARMONICITY AND ANISOTROPY

In general, anharmonicity in lattice vibrations is manifested
in the linewidths of phonon modes. On the other hand,
anharmonic local potentials for the light atoms in the UX
salts should result in unequal spacings of the oscillator levels,
providing the possibility of complementary insight into the
anharmonicity of the systems. There is also a possibility that an
anisotropic local potential would result in different oscillator
frequencies, and perhaps departures from harmonicity, in
different directions. Experimental examples of these behaviors
are given in metals with H in interstitial positions, see TaH [44]

and ZrH; [45] for discussions on anharmonicity and anisotropy
of the local potential for the H atoms, respectively.

The high-energy vibrational data presented to this point for
both UC and UN [18] have been orientationally averaged, so
only Q is considered and not Q. Clearly the QHO description
of this data works very well, so overall the modes are highly
isotropic. To see whether anisotropy and/or anharmonicity
are experimentally observable in the QHO modes of UC, we
collected a E; = 700 meV data set with very high statistics
along three crystallographic directions, [100], [110], and
[111]. The C atoms have nearest neighbor distances along
these directions in the ratio of 1:\/5:\/5, as one can see
from considering the crystal structure shown in Fig. 8(a).
Unfortunately, both anharmonic and anisotropic features will
be masked by the effect of multiple scattering, since at any
value of Q it tends to cause peaks to appear at locations
corresponding to nfiwy. As a result, a straightforward plotting
of oscillator peaks along different directions does not show
evidence for either of these effects, and additional analysis is
needed to account for the multiple scattering.

As an effort to minimize the effect of multiple scattering
present in the single crystal data, we take advantage of the
fact discussed earlier that the small Q scattering for the higher
modes is totally dominated by multiple scattering, and use
the low Q data as a pseudobackground. For each of the three
directions, we integrate over a range perpendicular to that
direction given by |Q | = [—2,2] A-' Asa signal we use the
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FIG. 8. (a) The crystal structure of the binary uranium systems UX. The light X atom is in an octahedral cage of U atoms. The colored lines
indicate the three primary crystallographic directions, [001], [110], and [111]. The carbon atom nearest neighbor distances in these directions
are in the ratio of 1:4/2:4/3. (b) Constant-E difference cuts along the major crystallographic directions [001], [110], and [111] for UC. The
solid curves are fits of the data to Eq. (5). (c) Peak positions along the three different directions taken from the fits in (b). The dotted line
corresponds to the expected peak positions for an isotropic QHO. (d) The difference between the peak positions of the modes from our UC
data and a perfectly harmonic potential. (¢) Local potential of the carbon atoms calculated by DFT. The solid curves are fits to the anharmonic
function V (x) given in the text. (f) The difference between the peak positions of the UC data and the result from the DFT calculations.

high-Q part of the scattering defined by 20 < @ < 30 A~!,
and as a background we utilize the region 0 < Q; < 8 A~!,
The subtraction of these two Q regions leads to constant-Q
difference cuts along the three directions as shown in Fig. 8(b).
Note that the n = 1 peak is not sufficiently resolved in the
E; =700 meV data to be included here.

The difference cuts are fit to Eq. (5) to determine mode
positions along the [001], [110], and [111] directions; fits
are indicated in Fig. 8(b) by the solid curves, and the fitted
peak positions are listed in Table V. These are also shown in
Fig. 8(c), with the mode positions determined from the data
(E,®) and the dashed curve representing the expectation for
an ideal carbon QHO with hwo = 48 = 1 meV. Figure 8(d)
shows the difference between the mode positions for the ideal

TABLE V. Peak positions of the QHO modes (in meV) extracted
from fitting difference cuts of the E; = 700 meV single-crystal UC
data along three major crystallographic directions. The form of the
difference cuts is explained in the text.

n [001] [110] [111]
2 102(3) 98(3) 99(3)
3 147(2) 142(3) 144(3)
4 192(2) 192(2) 191(2)
5 239(3) 239(2) 235(2)
6 296(3) 287(2) 282(3)

model (nhwy) and the experiment. The error bars are statistical
and are larger than those for fits to the powder averaged
data, presumably due to the lower number of counts in this
single crystal data set. From the fits, the average oscillator
energies are given for the different directions as Eqg; = 49.0(6)
meV, Ejjp =48.0(6) meV, and E;;; = 47.9(6) meV. There
is no compelling evidence for anisotropy in the potential
although the experimental data along the [001] direction
exhibit systematically higher energies for the QHO modes than
those along the other directions. This observation is compatible
with density functional theory (DFT) calculations discussed
below.

To gain insight into any expected anisotropy and anhar-
monicity of the oscillator modes in UC, we have used DFT
to calculate the potentials seen by the C atoms (see Appendix
for details). The calculated potentials for the three principal
directions are shown by the symbols in Fig. 8(e). The potential
in each direction is described well by the following expression:

V(x) = ax®+ Bx* (10)

with the results shown by the solid lines in the figure.
The values determined for o and g are also indicated. The
calculation shows a small amount of anisotropy, and also
indicates that the anharmonicity should be maximized along
the [001] direction. The latter result suggests that the harmonic
approximation begins to break down for the direction with the
shortest nearest-neighbor distance. Indeed the fitted 8 for [001]
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is more than twice the magnitude of the B’s along the other
directions.

Assuming that the x* term is small, the energy levels
corresponding to this potential can be calculated according
to first-order perturbation theory [46], with the nth energy
level corresponding to

2
E, = hoo(n +1/2) + (L> B6n? +6n+3), (11)
2mawy

and the energy difference between the nth level and the n = 0
ground state given by

E, — Ey = nhwy + 68C*(n* +n) (12)

with C = h/2may.

Assuming that the first mode occurs at 48 meV, the energies
of higher QHO levels along each of the three directions
can be calculated using Eq. (12) along with each direction’s
corresponding « and B shown in Fig. 8(e). Figure 8(f)
displays the difference between the oscillator mode positions
determined from the experiment and the value ES from
first-order perturbation theory. The downward slope indicates
that the experimentally determined anharmonicity is not as
large as the theoretical estimate. One must bear in mind that
despite the attempt to correct for multiple scattering in the data,
it makes up a larger fraction of the total signal at higher-order
QHO peak positions. This multiple scattering can effectively
mask subtle anharmonic effects.

V. CONCLUSIONS

For the binary crystal UC, time-of-flight neutron scattering
measurements reveal a series of well-defined, equally spaced,
high-energy vibrational modes that can be attributed to
quantum harmonic oscillator behavior of the carbon atoms
in this system. Measurements of the QHO modes along the
high-symmetry [001], [110], and [111] directions reveal that
these excitations are characterized by at most only a very
small amount of anharmonicity and anisotropy. Similar time-
of-flight neutron scattering data for US also shows evidence for
the high-energy vibrational modes, but only a few are clearly
observed and they are much weaker in intensity. The difference
can be understood by considering the U:X mass ratio, the
quantity b%/m that characterizes the scattering strength of the
modes, and the interference of Al recoil scattering with the
QHO signal in US. Some progress has been made in modeling
the various contributions to the scattering, but a better way
to handle multiple scattering will be needed to accurately
measure anharmonicity and anisotropy in the QHO modes.

Aside from the beautiful textbook physics the QHO modes
represent, they may also have implications for other studies of
the UX family. In particular, the exotic magnetic excitations of
UN and US are now known to extend in energy above the optic

PHYSICAL REVIEW B 93, 014306 (2016)

phonon modes. Therefore the QHO modes need to be treated
as background to isolate the magnetic scattering, which is an
important step towards understanding its true origin. It is also
interesting to consider whether the QHO modes are relevant
to the possible use of UC and UN as next generation nuclear
reactor fuels. The localized and strongly harmonic nature of the
modes suggests that they will have little effect on the thermal
conductivity of the materials, even at high temperatures. On
the other hand, it is possible that the modes need to be properly
accounted for to ensure sufficient accuracy in calculations of
the total neutron scattering cross sections.
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APPENDIX : DFT CALCULATIONS

For UC, the electronic structure within the density
functional theory (DFT) was obtained using the Quantum
ESPRESSO package [47] with a scalar relativistic approach.
The calculation was performed using a plane-wave basis set
and an ultrasoft pseudopotential [48] optimized in a RRKIJ
scheme [49]. The uranium pseudopotential was obtained
from an ionized electronic configuration: 6p°6d'5 f37s! with
cutoff radii equal to 3.5 atomic units (a.u.), 1.7 au., 2.6
a.u. and 1.6 a.u. for s,p,d, and f angular momentum. The
electronic levels deviate from the all-electron ones by less
than 0.1 meV. We used the Perdew, Burke, Ernzerhof [50]
exchange-correlation functional. The Brillouin zone (BZ)
summations were carried out over a 4 x 4 x 4 supercell.
The electronic smearing with a width of 0.02 Ry was
applied according to the Methfessel-Paxton method. The plane
wave energy and charge density cutoffs were 73 and 1054
Ry, respectively, corresponding to a calculation accuracy of
0.2 mRy/atom. The carbon atom potential was obtained from
the total energy modification of a 2 x 2 x 2 supercell when
one carbon atom was shifted from the equilibrium position in
the [100], [110], or [111] directions and the remaining atoms
were held fixed in their equilibrium positions.
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