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Impact of lattice rotation on dislocation motion
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We introduce a phenomenological theory of dislocation motion appropriate for two-dimensional lattices. A
coarse grained description is proposed that involves as primitive variables local lattice rotation and Burgers
vector densities along distinguished slip systems of the lattice. We then use symmetry considerations to propose
phenomenological equations for both defect energies and their dissipative motion. As a consequence, the model
includes explicit dependencies on the local state of lattice orientation, and allows for differential defect mobilities
along distinguished directions. Defect densities and lattice rotation need to be determined self-consistently and
we show specific results for both square and hexagonal lattices. Within linear response, dissipative equations
of motion for the defect densities are derived which contain defect mobilities that depend nonlocally on defect
distribution.
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I. INTRODUCTION

A phenomenological model of dislocation motion in two-
dimensional lattices is introduced which is based on a coarse
grained Burgers vector density. We extend existing treatments
that are based on dissipative motion driven by plastic free-
energy minimization by introducing anisotropic mobilities
along locally rotated slip systems. Local lattice rotation is
self-consistently determined with the evolving Burgers vector
density distribution.

Coarse grained descriptions of defected crystalline lattices
are often based on Nye’s dislocation density tensor [1], and
have been summarized in a number of excellent monographs
[2–5]. The general starting point is the introduction of a
coarse graining volume that contains a large number of defect
lines threading it. The resulting dislocation density tensor αik

depends on the distribution of geometrically necessary dislo-
cations in the volume, while statistically stored dislocations
(those portions of dislocation loops that do not contribute
to the dislocation density tensor) are averaged out in the
coarse graining [6]. In three dimensions the dislocation density
tensor is αik = −εilm∂lwmk , where εilm is the antisymmetric
Levi-Civita tensor, and wmk = ∂muk is the elastic distortion
tensor. The dislocation density tensor can be represented by a
vector in two dimensions which we refer to as the Burgers
vector density b(r). In the r = (x,y) plane bk(r) = α3k(r)
and hence can be written as bk = εml∂lwmk , where εml is the
two-dimensional antisymmetric tensor.

Our approach follows closely the particular description
employed in equilibrium theories of two-dimensional melting
[7–9]. In addition to the strain, the primary variables employed
to describe this two-dimensional defected medium include the
Burgers vector density b(r) and the local (coarse grained) bond
angle field θ (r) (also called lattice rotation). The system is
assumed to be in elastic equilibrium at all times consistent with
a given defect distribution, so that strain and bond orientation
fluctuations are slaved to the instantaneous defect density
distribution. Equilibrium fluctuations in θ (r) were computed
within linear elasticity in Ref. [9], and shown not to destroy

long range orientational bond order in a two-dimensional
crystalline lattice.

The same coarse grained description together with the
methods of linear irreversible thermodynamics have been used
to obtain the equations governing dissipative motion of the
dislocation density tensor under the assumption that it is driven
by free-energy minimization [10–14]. We extend this research
here by incorporating a defect mobility that explicitly depends
on variations in the local orientation of the slip lines in the
defected medium.

Our study is motivated by recent developments that allow
quantitative characterization of defect structures and motion at
the nanoscale. For example, recent high resolution microscopy
studies have enabled imaging of the displacement fields
created by dislocations with sub-Ångstrom resolution [15].
At the same time, equilibrium configurations [16] and defect
motion [17] have been investigated in a special realization
of a two-dimensional crystal: a colloidal lattice. This system
affords convenient visualization of defect configurations and
the concomitant strain fields. In particular, optical tweezers
methods have recently allowed a very detailed analysis of the
microscopic mechanisms of defect motion, including the emer-
gence of dissipative motion as the extent of the defect increases
[18]. The nanoscale structure of isolated defects has also been
recently resolved in smectic liquid crystals with cryoelectron
microscopy [19], with some surprising results concerning the
structure and extent of edge dislocations. Additional interest
in defect motion in two-dimensional systems has been spurred
by novel strain engineering methods that seek to control the
electronic properties of graphene sheets [20–22].

Our study is also motivated by fully microscopic numerical
investigations of a variety of defect mediated dynamics,
including, for example, interactions among an ensemble of
dislocations [23], plastic deformation, or grain boundary mo-
tion [24]. Simple early models of plastic deformation in metals
that are based on the existence of Frank-Read dislocation
sources and their glide over lattice-specific slip planes have
been greatly extended thanks to information obtained through
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massively parallel molecular dynamics studies. Such atomistic
level simulations have enabled quantitative descriptions of
complex situations in heavily deformed materials, e.g., dislo-
cation nucleation at grain boundaries and their coupled motion
[25]. Although atomistic in scale, the simulations methods are
largely based on dissipative (or noninertial) motion. This is
accomplished by the introduction of suitable “thermostats” in
the simulations, or by explicitly solving an elastic boundary
value problem slaved to the instantaneous location of the defect
lines [26]. The general assumption is that defect segment
motion occurs in a time scale that is much slower than the
characteristic time of elastic relaxation of the medium. This
separation of time scales is also implicit in the model described
in this paper. The model which we describe aims at a coarse
grained description of these simulations while still retaining
mesoscale information about the lattice slip planes and their
contribution to defect motion.

Bridging experiments at the nanoscale and related mi-
croscopic numerical studies with macroscopic descriptions
based on continuum elasticity theory has proven difficult,
but doing so is becoming a necessity in order to properly
describe microstructural evolution in nanostructured materials
[13,25,27–29]. We do not attempt here a derivation of
dislocation mobilities from a microscopic model of a two-
dimensional lattice. Rather we use symmetry arguments to
propose phenomenological equations of defect motion that
depend on the symmetry and local state of orientation of the
lattice, and that allow for differential defect motion along
distinguished directions. We consider two possible types of
crystalline lattices in two dimensions: hexagonal and square.
In the former case, the description is somewhat simpler in
that, to linear order, defect energies are the same as in an
isotropic material. However, the description of lattice effects
near defect cores is complicated by the need to introduce
geometrically unnecessary dislocations. On the square lattice,
on the other hand, the anisotropic nature of the linear response
is more complex. In both cases we obtain the orientation
dependent mobilities under several approximations. We close
by presenting an illustrative example involving the motion of
two edge dislocations. We make a number of simplifications
to make the calculation analytically tractable, and show how
lattice rotation affects glide and climb motion, and how it can
prevent dislocation annihilation thorough the local distortion
of the slip planes.

II. MESOSCOPIC MODELS

We consider a two-dimensional crystal that contains a
large number of dislocations which are relatively close to
each other, yet separated by distances much larger than the
lattice spacing so that the distribution can be effectively coarse
grained. A coarse graining cell is introduced with a net Burgers
vector that is the sum of the many Burgers vectors of the
underlying crystal dislocations within the cell. As is standard
(see, e.g., Refs. [2,9]), the resulting Burgers vector density is
approximated by a continuous vector field b(r) on this two-
dimensional space [with components bi(r) = α3i(r),i = x,y,
and 3 denoting the direction perpendicular to the plane]. We
first decompose the Burgers vector density into a combination

of a finite number of discrete slip systems [2,8,27,30]

b(r) =
∑

s

b(s)(r)θ̂ (s)(r), (1)

where s runs over the possible slip systems with Burgers
vector density b(s) locally oriented along the direction θ̂ (s)(r).
We assume that the unit vectors θ̂ (s)(r) can be expressed as
θ̂ (s)(r) = {cos[θ (r) + πs/2], sin[θ (r) + πs/2]}, s = 0,1, for
a square lattice and θ̂ s(r) = {cos[θ (r) + 2πs/3], sin[θ (r) +
2πs/3]}, s = 0,1,2, for a hexagonal lattice. The local rotation
of the coarse graining cell is θ (r) = (1/2)εij wij (r), where εij

is the antisymmetric Levi-Civita tensor, and wij is the elastic
distortion tensor. The lines defined by the directions θ̂ (s)(r) do
not cross if there are no unbound disclinations [31], which we
assume throughout this paper.

In an unbounded medium, it is possible to express the elastic
energy as a function of the Burgers vector density. For an
isotropic system, this energy is given by [32,33]

Hint = −K

2

∫
|r−r′|>a

drdr′

×
[
b(r) · b(r′) ln

(ρ

a

)
− b(r) · ρ̂ b(r′) · ρ̂

]
, (2)

where a is a short distance cutoff on the order of the lattice
spacing, K is the two-dimensional Young’s modulus and
ρ = r − r′, ρ̂ is the corresponding unit vector, and ρ = ‖ρ‖.
This expression does not include a nonlocal self-energy of
the dislocation distribution due to their long ranged strain field
because the total Burgers vector over the entire system is taken
to be zero, so that dislocations are created and annihilated
in opposing pairs. There is also, however, a local energy
contribution associated with the nonlinear strain fields near
the core of the dislocation. This energy is assumed to be
approximately independent of the local strain field due to other
sources [34], and is modeled by a quadratic term in the Burgers
vector [32]

Hloc = Ec

∫
dr b(r) · b(r), (3)

with Ec a constant core energy. Below we will propose a
slightly different core energy to also include the energy of
geometrically unnecessary dislocations (dislocation groups
that do not contribute to the local Burgers vector density).

In an unbounded system, the solution of the equilibrium
elasticity problem is equivalent to obtaining the Burgers vector
density distribution. This is because the incompatibility of
the plastic strain is completely balanced by an elastic strain
that makes the total strain compatible [3]. This allows one to
express the solution for the strain field as a function only of
the Burgers vector density that acts as a source of strain [4,33].

Dislocations and other defects play a key role in determin-
ing the evolution, properties, and response of materials outside
of thermodynamic equilibrium. While the systems under study
here are assumed to be in elastic equilibrium relative to a given
defect distribution, defects interact, and are free to move and
annihilate to relieve stresses and reduce the overall energy
of the system. Such an evolution can have reversible and
irreversible contributions that correspond to different models
of relaxation [18]. A number of theoretical studies in the

014107-2



IMPACT OF LATTICE ROTATION ON DISLOCATION MOTION PHYSICAL REVIEW B 93, 014107 (2016)

literature have addressed dissipative motion of an ensemble of
dislocations at the mesoscale [10–13,35–37]. A relaxational
equation for the Burgers vector density is introduced under the
assumption that the evolution of the density is driven by plastic
energy minimization. The equation is of the general form

∂bj

∂t
= −εlmBmjsiεsb∂l∂b

δH

δbi

, (4)

where H = Hint + Hloc, and Bmjst is a constant mobility
tensor. We propose in this paper a more accurate description
of the kinetic motion of the defect distribution by considering
anisotropic mobilities along slip lines of the lattice rather than
along the orientations defined locally by the Burgers vector
density as is the case in Eq. (4). Moreover, we show how to
distinguish glide and climb in two-dimensional lattices that
are locally rotated, as they are in the presence of an ensemble
of dislocations.

Within linear elasticity in an isotropic medium the local
orientation of a two-dimensional coarse graining cell is related
to the Burgers vector density through a nonlocal relation [38]

θ (r) = − 1

2π

∫
dr′ b(r′) · ρ̂

ρ
. (5)

On an infinite lattice in which the Burgers vector decays
sufficiently fast at infinity we can take θ (r) = 0 at infinity
[39]. The fact that the orientation is different at all points
on the plane implies that the local slip lines θ̂ (s)(r) are also
position dependent. Therefore, if the dislocation mobility is
anisotropic, Eq. (4) will not adequately describe defect motion
along locally rotated slip systems.

We propose to extend Eq. (4) in two ways, both phe-
nomenological and based on symmetry arguments. First, in the
presence of an orientation field θ (r), or lattice torsion, there is
no longer strict translational symmetry, but the composition of
a translation and a rotation due to plastic deformation. In this
way, the configurational energy depends explicitly on local
orientation, as the lattice symmetries of reflection and rotation
must be applied locally [9]. Second individual dislocations
respond anisotropically to forcing so that the motion of an
ensemble of dislocations depends on how the local Burgers
vector density is decomposed among slip systems as shown
in Eq. (1). We note that while we allow the slip system
directions to be different from one coarse graining cell to
another, we neglect changes to the relative angle between them
due to deformation of the cell. Hence the local coordinate axis
system defined by the slip systems θ̂ (s)(r) is, approximately,
determined by a single angle θ (r) [as explicitly shown below
Eq. (1)].

III. DISLOCATION MOTION ON A SQUARE LATTICE

The symmetry of the square lattice is generated by rotations
about π/2 and reflections about the two bond axes forming the
group D4. This symmetry implies that a rank two tensor (a
matrix) relating two vectors transforming under SO(2) has to
be proportional to the identity matrix. This can be checked
by assuming the most general 2 × 2 matrix and applying the
transformation matrices, demanding equality of the initial and
transformed matrices. A similar analysis for the compliance
matrix, a rank four tensor relating the stress matrix to the strain

matrix within linear elasticity (Hooke’s Law) uij = Sijklσkl ,
shows that it can be written in general as

Sijkl = αδij δkl + βδi(kδl)j + �δijkl, (6)

where α,β, and � are constants related to the elastic constants
of the lattice, and δijkl is the fourth rank identity tensor. Here
and below we will make use of the notation A(bc) = 1

2 (Abc +
Acb) and A[bc] = 1

2 (Abc − Acb). There is an additional term
allowed for a general fourth rank tensor which is not present
here because the stress is symmetric σij = σji .

In the case of hexagonal symmetry addressed in Sec. IV,
invariance under rotations of π/3 and reflections about the
three independent bond orientations, and again within linear
elasticity, leads to the same decomposition (6), but with
� = 0. Note that in this case, and within linear distortions,
the compliance matrix has the same decomposition as in an
isotropic system. In this latter case, the system is invariant
under arbitrary rotations and reflections.

An approximate expression for the energy of a distorted
and rotated lattice can be obtained by applying the tensorial
decomposition above in the local coordinates of each rotated
coarse graining cell (it is still the case that the stress is
symmetric on its indices in these coordinates). Introduce a
local coordinate system with unit vectors x̂′ and ŷ′ that are
related to laboratory coordinates x and y by a rotation about
θ (r): x̂′ = (cos θ, sin θ )T and ŷ′ = (− sin θ, cos θ )T . We use
in what follows upper indices for tensors expressed in local
coordinates and lower indices for tensors in the laboratory
frame. Then, for example, σab = Ra

.i[θ (r)]Rb
.j [θ (r)]σij , where

we have introduced the rotation matrix

Ra
.i[θ ] =

(
cos θ − sin θ

sin θ cos θ

)
. (7)

By reason of symmetry we have

uij = αδijσ kk + βσ ij + �(δix ′
δjx ′

σx ′x ′ + δiy ′
δjy ′

σy ′y ′
) (8)

in local coordinates. Equation (8) transformed to the laboratory
frame reads

uij = αδijσkk + βσij + �hijkl[θ (r)]σkl, (9)

with

hxxxx = hyyyy = cos4 θ + sin4 θ, hxxyy = 1
2 sin2 2θ,

hxxxy = −hxyyy = 1
4 sin 4θ, (10)

where the other components of the tensor function hklmn come
from that fact that it does not depend on the order of its indices
(a general result for this symmetry). We also have used the
notation σkk = Tr(σij ).

The elastic energy can now be calculated as follows:
Since ∂jσij = 0 and σij = σji an Airy stress function χ (r)
is introduced such that

σij = εikεjl∂k∂lχ. (11)

When there are no free disclinations, it is possible to express
the Airy stress function in terms of Burgers vector density
[33]. Apply εikεjl∂k∂l to Eq. (9) and substitute the definition
(11) to find

εikεjl∂k∂luij = α′∇4χ + �εikεjl∂k∂lD̂ijχ, (12)
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where we have introduced α′ = α + β, and the differential
operator

D̂ij [θ ] = hijkl(θ )εkmεln∂m∂n. (13)

The left-hand side of Eq. (12) is, by definition, εikεjl∂k∂luij =
εij ∂ibj . This definition, together with Eqs. (12) and (13), is the
solution of the equilibrium elastic problem that gives χ (r) as
a function distribution of the Burgers vector density b(r) and
rotation θ (r) that still remains to be determined.

Once the solution χ (r) is determined, the energy of the
configuration Hint = 1

2

∫
d2ruijσij can be found by substitut-

ing Eq. (9) for the strain, and the definition of the Airy function,
Eq. (11), for the stress. We find

Hint = 1

2

∫
d2rχ (r)[α′∇4 + �εikεjl∂k∂lD̂ij ]χ (r). (14)

Equation (12) cannot be solved explicitly for the Airy
function, and hence we cannot express the energy (14)
explicitly as a function of the Burgers vector density, unlike
the isotropic case of � = 0 [in this latter case, the differential
equation (12) is solved by using a Green’s function method,
see Nelson in his seminal paper [32], leading to Eq. (2) for the
energy of interaction]. Furthermore, the energy depends on the
rotation θ through the dependence of the differential operator
D̂ij , Eq. (13). Obtaining such a relation is the subject of the
next subsection.

Before proceeding, we note that it is possible to find a closed
form of the energy if rotation is neglected, and one starts from
the general form of Hooke’s law for a square lattice, Eq. (8),
written in laboratory frame coordinates (the linear elasticity
regime, see, e.g., [40]). Since

D̂ij (θ = 0) = [δixδjxεxlεxk + δiyδjyεylεyk]∂l∂kχ

= [
δixδjx∂

2
y + δiyδjy∂

2
x

]
χ, (15)

Eq. (14) reduces to

Hint = 1

2

∫
d2rχ (r)

[
(α′ + �)∇4 − 2�∂2

x ∂2
y

]
χ (r). (16)

After Fourier transformation, substitution of Eq. (12) into
Eq. (16) leads to an explicitly form of the energy in terms
of the Burgers vector density

Hint = 1

2

∫
d2q

(2π )2

|iεij qibj |2
(α′ + �)q4 − 2�q2

xq
2
y

= 1

2

∫
d2q

(2π )2

(q2δij − qiqj )

(α′ + �)q4 − 2�q2
xq

2
y

bi(q)bj (−q).

(17)

This extends the isotropic result of � = 0 to the square lattice.

A. Lattice rotation field

We next determine the nonlocal relationship between the
local rotation of a coarse graining cell and the Burgers vector
distribution to generalize Eq. (5) to a square lattice. The local
rotation θ (r), relative to an undistorted reference lattice with
θ = 0, is related the distortion tensor wij . The symmetric and
antisymmetric parts of the distortion tensor are identified as

the strain and orientation tensors, respectively [3],

wij = uij + θ (r)εij . (18)

By recalling the definition of the Burgers vector density in
terms of the distortion tensor bk = εij ∂j wik , and substituting
the decomposition of the distortion tensor, Eq. (18), one has

bk = εij ∂j (θεik + uik) = ∂kθ + εij ∂juik. (19)

Thus up to a constant, θ is specified by ∂kθ = bk − εij ∂juik .
The divergence of second term on the right-hand side of

Eq. (19) can be calculated with the help of Eqs. (11) and (13),

∂kεij ∂juik = α(εij ∂j ∂i)σll + βεij ∂j (∂kσik) + �εij ∂k∂j D̂ikχ

= �εij ∂k∂j D̂ikχ, (20)

where we have used the antisymmetry of εij and the condition
of elastic equilibrium ∂kσik = 0. Thus the divergence of
Eq. (19) is given by

∇2θ = ∂kbk + �εij ∂k∂j D̂ikχ.

To solve for θ we introduce the Green’s function of the two-
dimensional Laplacian operator and find

θ (r) = 1

2π

∫
|r−r′|>a

d r ′ ln

( |r − r′|
a

)
∂ ′
kBk(θ,r′)

= − 1

2π

∫
|r−r′|>a

d r ′ rk − r ′
k

|r − r′|2 Bk[θ,r′], (21)

where

Bk[θ,r′] = bk(r′) + �εij ∂
′
j D̂ik[θ (r′)]χ (r′), (22)

which reduces to the Burgers vector density of an isotropic
system when � = 0.

Equations (12), (21), and (22) now constitute a closed set of
equations for the elastostatics of a square lattice in terms of θ

and b. Equation (21), however, is only an implicit equation for
θ (r). As pointed out by Kröner [3], to obtain a relation between
b and θ one must solve the problem of elastic equilibrium
everywhere in order to relate the stress σij to the Burger’s
vector density b.

A simpler form follows if θ is everywhere small so that it
can be approximated by a constant in the right-hand side of
Eq. (21). Then

θ (r) = − 1

2π

∫
|r−r′|>a

d r ′

|r − r′|2 {(rk − r ′
k)bk(r′)

+�(x − x ′)(y − y ′)[σxx(r′) − σyy(r′)]}, (23)

where a is a short distance cutoff on the order of the lattice
spacing and we have dropped some boundary terms. This
reduces to Eq. (5) in the isotropic limit � = 0.

B. Dynamics

We extend next the kinetic equation (4). We decompose
the Burgers vector density into a finite number of slip systems
b(r) = ∑

s b(s)(r)θ̂ (s)(r), each defined by its own density b(s)

oriented along the direction θ̂ (s)(r). On the square lattice we
simply have b(s) = bs and θ̂ (s) = θ̂ s , the variables along the
locally rotated coordinate system.
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Since the Burger’s vector is a pseudovector (it is even under
a parity transformation, whereas a vector is odd under parity)
the natural Burgers vector flux is a pseudotensor i

k , which
represents the flux along the k direction of dislocations along
the i direction. For simplicity we limit our analysis here to
the case in which the Burgers vector densities are separately
conserved [36]

∂bi(r)

∂t
= −∂k

i
k. (24)

Explicitly, the assumption is that dislocations can only be
created or destroyed by pair annihilation and creation on each
slip system. This requirement also guarantees that the energy
integral is finite for an infinite system. As stated earlier, we
require that the bond directions are well defined, which implies
the absence of free disclinations [31].

Thermodynamic forces leading to defect motion arise from
δH

δbi (r) , the change in energy for a dislocation along slip plane
direction i to be placed at r. Therefore, its partial derivative
∂k

δH
δbi (r) represents the local difference in energy for dislocation

placement, and is thus the thermodynamic force. The total
energy H is quadratic in bi so that the resulting thermodynamic
force will be linear in bi , although nonlocal. Since bi is
pseudoscalar, we find that the thermodynamic force is a
pseudoscalar. In linear response, forces and fluxes are linearly
related as

i
k(r) = −Di

kj (r) ∂j

δH

δbi(r)
. (25)

This expression is nonlocal because the thermodynamic force
is a nonlocal functional of the dislocation densities. Of course,
this is only the case in the slow temporal scale of dislocation
segment motion, and is a consequence of the assumption that
the system is at all times in elastic equilibrium. We now
distinguish glide and climb motion and decompose Di

kj along

the direction θ̂ i(r) and transverse to it

Di
kj = Dgθ

i
kθ

i
j + Dc

(
δkj − θ i

kθ
i
j

)
, (26)

where Dg is identified as the mobility for glide motion, and
Dc for climb. For a square lattice, we write

θ̂ l(r) =
(

cos
[
θ (r) + l π

2

]
sin

[
θ (r) + l π

2

]
)

, (27)

where l = 0 defines x ′ and l = 1, y ′. A similar decomposition
of the dislocation mobility into climb and glide components
was given in the study of elastic instabilities of thin films [36],
and for the motion of isolated dislocations [8,41].

By combining Eqs. (24), (25), and (26) we obtain the
phenomenological equation of motion for the Burgers vector
densities,

∂bi(r)

∂t
= [

∂k(Dg − Dc)θ i
kθ

i
j ∂j + Dc∇2

] δH

δbi(r)
. (28)

This dynamical equation along with Eqs. (12), (14), (21), and
(22) completely specify our anisotropic model on the square
lattice. This, and the corresponding expression for a hexagonal
lattice to be given below, are the central results of this paper.

Prior work has not considered lattice rotation effects on
dislocation motion. We briefly show that Eq. (28) reduces to

simpler expressions, already in the literature, when rotation
is uniform. This simpler description allows for a more direct
comparison with isotropic theories in which the laboratory
coordinate system is the natural choice. We begin by writing

∂tbk = ∂t

∑
i

θ̂ i
kb

i =
∑

i

θ̂ i
k∂tb

i . (29)

Then inserting Eq. (28), we find

∂tbk =
∑

i

θ̂ i
k∂nD

i
nm∂m

δH

δbi
. (30)

We also have the relation δH
δbi = θ̂ i

l
δH
δbl

, which follows from the
chain rule. Then we can write the response explicitly in terms
of the Burgers vector density alone,

∂tbk =
∑

i

θ̂ i
kD

i
nmθ̂ i

l

{
∂n∂m

δH

δbl

}
, (31)

which explicitly separates the current originating from the
excess energy associated with dislocations and a mobility co-
efficient that depends on local orientation. Substitute Eq. (26)
into Eq. (31) and evaluate the sums over the orientation
directions∑

i

θ i
kθ

i
l = δkl,

∑
i

θ i
kθ

i
l θ

i
mθ i

n = hklmn(θ ), (32)

where the rank four tensor h is defined in Eq. (10), so that
Eq. (31) reduces to

∂tbk = K[(Dg − Dc)hkmnl + Dcδmnδkl]∂n∂m

δH

δbl

. (33)

Just taking the rotation angle to be zero, the equations of
motion reduce to [40]

∂tbx(q,t) = −[
Dgq

2
x + Dcq

2
y

]qy[qybx(q) − qxby(q)]

(α′ + �)q4 − 2�q2
xq

2
y

∂tby(q,t) = −[
Dgq

2
y + Dcq

2
x

]−qx[qybx(q) − qxby(q)]

(α′ + �)q4 − 2�q2
xq

2
y

.

IV. DISLOCATION MOTION ON
A HEXAGONAL LATTICE

The fact that the linear elastic response of a hexagonal
lattice is isotropic makes the evaluation of the elastic energy
in Eq. (14) much simpler because any dependence on lattice
orientation vanishes at this order in the strain. On the
other hand, on a two-dimensional hexagonal lattice there
are three independent slip planes along which individual
Burgers vectors can be oriented. As was the case for the
square lattice, the Burgers vector distribution can be written
as b(r) = ∑

s b(s)(r)θ̂ (s)(r) with [8]

θ̂ (s)(r) =
(

cos
[

2πs
3 + θ (r)

]
sin

[
2πs

3 + θ (r)
]), s = 0,1,2. (34)

Unlike the case of a square lattice, a two-dimensional
hexagonal lattice has three separate slip systems, and hence
three separate Burgers vector densities. This implies that the
two-dimensional Burgers vector density has to be decomposed
along three independent projections, not two. To solve this
difficulty, we propose to introduce a new coarse grained field
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that captures dislocation configurations not describable by
the Burgers vector density. For instance, a dislocation triplet
within a single coarse graining cell, one in each of the positive
θ̂ (s)(r) directions, has zero Burgers vector. These dislocations
are considered geometrically unnecessary since they do not
contribute to the elastic energy, but they can be considered

to contribute to the local anisotropic response. We therefore
define the triplet density field t(r) as

b(s) = t + Proj(s)(b), (35)

with

Proj(s)(b) =
∣∣∣∣θ̂ (s)

i

(
δij − 1√

3
εij

)
bj

∣∣∣∣ × sgn (θ̂ (s) · b)�

[
‖θ̂ (s) · b‖ − 1

2

]
(36)

being the local projection of the Burgers vector density onto the nearest two directions θ̂ (s). This term can almost be written as
a tensor; the sign function arises from the fact that our choice of nonorthogonal axes depends on the angle of b, and the step
function � ensures that one axis does not receive a projection from b. This can also be written directly in terms of the absolute
angle ω(α) between θ̂ (s) and b,

Proj(s)(b) = ‖b‖
∣∣∣∣ 2√

3
cos

(
ω(s) − π

6

)∣∣∣∣ × sgn(cos ω(s))�

[
| cos(ω(s))| − 1

2

]
. (37)

A positive triplet has an equal Burgers vector in each of the
positive θ̂ (s) directions. Note that t is odd under rotations about
π/3, and hence also under reflections.

While it is simple to write down the Burgers vector
density given the Burgers density components along the slip
systems, the inverse problem requires the determination of
the geometrically unnecessary density t . For simplicity our
assumption here is that all of the geometrically unnecessary
dislocation content is in t . Therefore, the decomposition of the
coarse grained b onto the two nearest lattice directions θ̂ (s) is
minimal in the following sense: If b is parallel or antiparallel
to one of the slip planes θ̂ (s), the lowest energy configuration is
assumed to be the one that only has dislocations pointing along
this axis: b(s) = ‖b‖ with b(r �=s) = 0 (Fig. 1). Otherwise, we
project b onto the two (of six) closest nonorthogonal directions
along which a Burgers vector can point. Then the remaining
dislocation densities must form a zero-vector configuration.
This choice of decomposition is motivated because it is the
one that minimizes a local defect energy associated with a
core energy that depends on the number of dislocations rather
than the magnitude of the Burgers vector.

We consider only three separate signed densities, and
opposite pairs within the same coarse graining cell are assumed
to annihilate; the only remaining coarse grained configurations
of geometrically unnecessary defects are dislocation triplets.
We could, on the other hand, consider six separate dislocation
densities on the three slip systems. This may be a more accurate
description for large coarse graining cells. Here we may con-
sider smaller coarse graining cells so that opposite dislocations
in the same cell would be unstable to annihilation energetically.
However, this ignores the fact that opposite dislocations on
different glide planes can form a stable dislocation pattern that
has no vector component and corresponds to a vacancy defect.
We do not consider this complication here and only add more
variables as are necessary to introduce a dependence of the
response on the local bond orientation.

In summary, we choose the three densities b(s)(r) to be our
primitive variables. The lattice orientation field θ (r) and the
Burgers vector density b(r) can be obtained by simultaneously
solving Eqs. (1), (5), and (34). From them the triplet density
t(r) can be obtained. We note that the three Burgers vector

densities and the triplet dislocation density at every point in
space contain all of the information of the defected lattice
configuration that we are considering.

The equilibrium linear elasticity of the hexagonal system is
simple: decompositions of rank two and rank four tensors are
the same as for isotropic systems. We can therefore use known
results for isotropic systems: Given the two-dimensional
Young modulus K , the elastic energy of a configuration
of defects is well described by the long ranged transverse
interaction of Eq. (2) [33]. The energy depends only on the
Burgers vector density r, and not on the makeup of that defect
density in terms of dislocations densities b(s)(r) in the three
different slip directions.

(0)

(1)(2)

FIG. 1. An illustration of the two decompositions used. The
Burger’s vector is shown in blue and its projections onto the nearest
glide planes are in red. The green vectors represent the triplet density.
The dislocation densities are the sum of the corresponding projection
(red) and the triplet density (green). The case shown is when the
dislocation density b(2) vanishes and b(1) does not receive a projection.
θ̂ (0) is shown vertical for convenience, but its orientation with respect
to x̂ is given by θ .
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In terms of the core energy, we proceed by analogy with
Eq. (3), and introduce a local contribution to the energy from
defect cores of the form

Hloc = Ec

2

∫
dr

∑
s

b(s)(r)b(s)(r). (38)

The energy Ec is the approximate local energy cost due to
lattice distortion to have a dislocation pair along a given
direction. Note that this expression allows both geometrically
necessary and unnecessary dislocations. The above form is
different than Eq. (3), although the two definitions coincide on
the square lattice. Equation (38) predicts that the core energy
of a dislocation triplet is 3

2Ec. The ratio of 3/2 between triplets
and pairs is in good agreement with experiments on two-
dimensional colloids [16] where the energies of dislocation
pairs and triplets were measured for various configurations,
each of which create a vacancy defect.

It is our expectation, however, that as the coarse graining
cell size increases, the core energy Eq. (38) would simply
reduce to the core energy in Eq. (3). In fact, the local driving
force arising from the core energy satisfies the relation∑

s

θ̂ (s)(r)
δHloc

δb(s)(r)
∝ b(r), (39)

in agreement with the result that follows from the standard
form of the core energy in Eq. (2). Hence the degree of
anisotropy in the core energy of a hexagonal lattice is expected
be a function of the coarse graining size, with the limiting
behavior being that of an isotropic system.

The equation of conservation of Burgers vector is still
Eq. (24), but the linear response assumption relating forces
and fluxes is given by


(s)
k (r) = −2

3
D

(s)
kj (r) ∂j

δH

δb(s)(r)
. (40)

The constant factor of 2/3 corrects for the fact that the sum
of the projections onto three linearly dependent axes over
represents a vector by the factor γ in

∑
s θ

(s)
k θ

(s)
l = γ δkl , which

is 3/2 for the hexagonal lattice [Eq. (45)].
The energy in terms of the Burgers vector densities is the

same as in an isotropic system. Inserting Eq. (1) into Eq. (2)
we have

Hint = −K

2

∫
drdr′ ∑

s,r

{
θ̂ (s)(r) · θ̂ (r)(r′) ln

(ρ

a

)

− [θ̂ (s)(r) · ρ̂][θ̂ (r)(r′) · ρ̂]

}
b(s)(r)b(r)(r′), (41)

so that the functional derivatives are

δHint

δb(s)(r)
= −K

∫
dr′ ∑

r

{
θ̂ (s)(r) · θ̂ (r)(r′) ln

(ρ

a

)

− [θ̂ (s)(r) · ρ̂][θ̂ (r)(r′) · ρ̂]

}
b(r)(r′) (42)

or

δHint

δb(s)(r)
=−K

∫
dr′

{
θ

(s)
k (r) ln

(
ρ

a

)
− [θ̂ (s)(r) · ρ̂]ρk

}
bk(r′).

(43)

We now assume that the mobility in Eq. (40) can be
decomposed along the local slip planes into glide and climb
components as in Eq. (26). The resulting equation of motion
for a hexagonal lattice is also

∂b(s)(r)

∂t
=2

3

{
(Dg − Dc)∂k

[
θ

(s)
k (r)θ (s)

l (r)
]
∂l + Dc∇2

} δHint

δb(s)(r)
.

(44)

The orientations θ̂ (s) follow from Eqs. (5) and (34).
If we consider again the limiting case in which the

orientation is taken to be uniform, Hint and the kinetic equation
only depend on the Burgers vector density not on the separate
components along the slip systems. This can be shown by
multiplying Eq. (44) by θ

(s)
k and summing over s. For rank two

and four tensors the corresponding sums are isotropic tensors
due to the hexagonal lattice symmetry,

∑
s

θ
(s)
k θ

(s)
l θ (s)

m θ (s)
n = 3

8
[δklδmn + δknδlm + δkmδln],

∑
s

θ
(s)
k θ

(s)
l = 3

2
δkl . (45)

We find

∂bk(r)

∂t
= Dklmn∂l∂m

δHint

δbn(r)
, (46)

with

Dklmn = 1
4 [(Dg + 3Dc)δlmδkn + (Dg − Dc)2δk(lδm)n]. (47)

This expression reduces to the expected isotropic limit of
Dg = Dc.

Before addressing the contribution to dislocation motion
in a hexagonal lattice that arises from Hloc, we compare our
results, Eqs. (46) and (47), with prior coarse grained treatments
of the form (4) [11,13,37]. Comparison of Eqs. (4) and (46)
leads to the identification

Bjksn = εjlεsmDklmn, (48)

where we have made repeated use of the identity εij εjn = −δin

in two dimensions. Explicit substitution of Eq. (47) leads to

Bjksn = 1
4 [(3Dg + Dc)δjsδkn + (Dc − Dg)2δk(sδj )n]

= 1
2 (Dg + Dc)

(
δj (sδn)k − 1

2δjkδsn

)
+Dgδj [sδn]k + Dc

1
2δjkδsn, (49)

where we have separated the tensor B into a symmetric but
traceless part, an antisymmetric part, and the trace part with
respect to the first two indices (equivalently the last two). This
allows us to make a connection with the properties of the
dislocation density current Jjk ∝ Bjksn [11] as already argued
by Limkumnerd based on volume change arguments [37]: the
trace of the current is proportional to Dc so that the dislocation
current is indeed traceless if there is no climb.

Equation (49) is symmetric under the exchange of first and
second pairs of indices [(j,k) ↔ (s,n)] which is consistent
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with Onsager’s reciprocity relation because the rate of free-
energy change is

dF

dt
= −

∫
d3r

δH

δbj

Bmjst εlmεsb∂l∂b

δH

δbt

.

However, we obtain two additional allowed terms in Bmjst

compared to Ref. [11]. The latter only give the traceless
symmetric contribution in Eq. (49). In addition, and unlike
prior work, our expression for the mobility does explicitly
distinguish between climb and glide motion.

We turn next to the calculation of the contribution to the
motion of the Burgers vector density arising from the local part
of the energy. Replace Hint by Hloc given in Eq. (38) in Eq. (44).
The isotropic term in Eq. (44), proportional to Dc, leads to
diffusion of b(r) when the equation is multiplied by θ̂ (α) and
summed over α. However, the term involving the longitudinal
derivative is quite nontrivial because it involves products of
three bond unit vectors. When such a product is summed over
bonds α the resulting rank three tensor is not independent
of the bond orientation θ (r) although it does have hexagonal
symmetry with respect to the bond angle. Neglecting terms
involving time derivatives of the slip line orientations, we find
the core contribution to the evolution equation to be(

∂bk(r)

∂t

)
c

≈ 2

3
(Dg − Dc)

∑
α

θ
(α)
k θ

(α)
l θ (α)

m ∂l∂m

δHc

δb(α)(r)

+ 2

3
Dc∇2bk. (50)

Given Eqs. (38) and (35) we find

δHc

δb(α)(r)
= Ecb

(α)(r) = Ec[t + Proj(α)(b)]. (51)

We define the third rank tensor

gklm(θ ) = 4

3

∑
α

θ
(α)
k θ

(α)
l θ (α)

m , (52)

so that

gxxx = cos 3θ, gxxy = sin 3θ,
(53)

gyyy = − sin 3θ, gyyx = − cos 3θ.

Here again the tensor does not depend on the order of its indices
since it comes from a tensor product over a single vector. Then
Eq. (50) reduces to(

∂bk(r)

∂t

)
c

= 2

3
Dc∇2bk + 1

2
Ec(Dg − Dc)gklm(θ )∂l∂mt(r)

+ · · · . (54)

We have not explicitly written here the term involving
projections of b since we just want to point out that there exists
a dependence of the motion of the Burgers vector density on
geometrically unnecessary defects through the triplet density
t . Although expression (54) is largely formal, it does show a
kinetic equation that explicitly depends on the rotation field
θ through a term that includes the density of unnecessary
dislocations.

We reiterate that the exact projections of the Burgers
vector along slip systems, and the concomitant triplet density
will depend on the size of the coarse graining cell. As its

size becomes larger, the triplet density will decrease as the
geometrically unnecessary dislocations are averaged out. As a
consequence, the contribution from Eq. (54) to the motion of
the Burgers vector will become smaller as the coarse graining
cell becomes larger. Eventually, at sufficiently long spatial
scales, the evolution on the hexagonal lattice should become
the same as in an isotropic system.

In summary, although we cannot provide complete explicit
equations for the model that we have introduced except
within the approximations given, the implicit relations between
magnitudes can be obtained via a numerical implementation.
In it, given the Burgers vector density distribution as initial
condition, Eq. (44) needs to be iterated in time, together with
Eq. (54) and the related equation that results from the local
projection of b. Equations (5) and (34) allow the determination
of the orientations θ̂ (s)(r) from the densities. From the densities
and the orientations the Burgers vector follows. The interaction
energy Hint can now be evaluated. Equation (35) is then used
to determine the triplet density, and the system of equations
evolved in time.

V. TWO EDGE DISLOCATIONS

The coarse grained theory presented has a simpler represen-
tation when the defects are assumed to be discrete and isolated,
although the assumptions of the theory fail in this limit. For the
sake of illustration only, we consider in this section the motion
of two point edge dislocations and also assume that both defect
interaction energies and lattice rotation can be approximated
by the results for an isotropic solid.

Consider as initial condition two edge dislocations at r = r1

and r = r2 of Burgers vectors b x̂ and −b x̂, respectively,
on an undistorted, infinite, two-dimensional space. In order
to avoid the complication of unnecessary dislocations, we
consider the case of only two slip planes as would be
appropriate for a square lattice. As was the case in Sec. III,
superindices correspond to magnitudes expressed in the rotated
lattice.

Insertion of these two dislocations in the otherwise undis-
torted lattice leads to rotation. For the purposes of the present
example, we estimate the lattice rotation by assuming that the
medium is isotropic instead, Eq. (5) [38],

θ (r) = − 1

2π

[
b(r − r1)θ̂0(r1)

|r − r1|2 − b(r − r2)θ̂0(r2)

|r − r2|2
]
. (55)

The initial condition (55) assumes that the Burgers vectors are
directed along one slip plane at the location of the defects. As
shown following Eq. (1), the directions of the slip planes of
this notional square lattice are

θ̂0(r) = [cos θ (r), sin θ (r)],
(56)

θ̂1(r) = [cos θ (r + π/2), sin θ (r + π/2)].

The rotation field (55) becomes singular at the defect location.
This singularity can be eliminated, for example, by noting that
near the defect the smallest possible distance is on the order
of the lattice spacing, itself on the order of the Burgers vector.
Other models of defect structures [42] lead to zero rotation
near the defect core. We adopt the latter and by combining
Eqs. (55) and (56) we find the following implicit relations for
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the lattice rotation:

θ (r1) = b

2π

(r1 − r2) · [cos θ (r2), sin θ (r2)]

|r1 − r2|2 ,

θ (r2) = b

2π

(r1 − r2) · [cos θ (r1), sin θ (r1)]

|r1 − r2|2 . (57)

The location of the defects and the two rotations of Eqs. (57)
constitute the initial conditions of the problem.

Defect motion on a square lattice is governed by Eq. (28).
The initial discrete Burgers vector distribution can be
written as

b = b δ[r − r1(t)] θ̂0(r1) − b δ[r − r2(t)] θ̂0(r2), (58)

where δ(r) is the two-dimensional Dirac delta distribution. The
initial Burgers vector of both dislocations is taken along θ̂0,
and given the assumed separate conservation of Burgers vector
components along each slip plane, b will remain along θ̂0 for
all times.

Given the relation ∂tδ[r − r(t)] = −∂j {δ[r − r(t)] drj

dt
}, the

conservation law of Burgers vector, Eq. (24) can be written as

b

[
δ[r − r1(t)]

d(r1)k
dt

− δ[r − r2(t)]
d(r2)k

dt

]

= −[
Dgθ

0
k θ0

j + Dc

(
δkj − θ0

k θ0
j

)]
∂j

δH

δb1(r)
, (59)

where we have also used the linear constitutive assumption
of Eq. (25), and the relation for the anisotropic diffusivity of
Eq. (26).

In order to compute the thermodynamic driving force on
the right-hand side of Eq. (59) we write Eq. (41) as

H = −1

2

∫
drdr′Vst (r,r′)bs(r)bt (r′). (60)

Then, given the discrete Burgers vector distribution of Eq. (58),
we find

∂j

δH

δb1(r)
= −b{∂jV [r,r1(t)] − ∂jV [r,r2(t)]}, (61)

also having defined V = V11. Finally, the kinetic equation for
the location of dislocation one is

d(r1)k
dt

= {
Dgθ

0
k (r1)θ0

j (r1) + Dc

[
δkj − θ0

k (r1)θ0
j (r1)

]}
× [−∂jV (r,r2)]r=r1 , (62)

and the analogous equation for the second dislocation. This
equation has the form d(r1)k

dt
= LkjFj according to which the

defect velocity equals a mobility times a thermodynamic force.
The mobility in this example depends explicitly on lattice
variables: the orientation of the slip systems at the defect
location.

The thermodynamic force can now be evaluated explicitly
from the interaction energy (41) if we also approximate it by
that of an isotropic medium. In Fourier space it is given by

H = K

2

∫
d2q

(2π )2

1

q2
(δij − q̂i q̂j )bi(q)bj (−q). (63)

For example, for a single edge dislocation at the origin, bj (r) =
bδ(x1)δ(x2)δj1, the energy of the configuration V1 is

V1 = Kb2

2

∫
d2q

(2π )2

q2
2

q4
. (64)

If we now consider instead two edge dislocations as in
Eq. (58) with ρ = r1 − r2, their interaction energy (excluding
self-energies) is

V (ρ) = −Kb2
∫

d2q
(2π )2

q2
2eiq·ρ

q4
. (65)

This integral can be evaluated explicitly. Let

J (ρ) =
∫

dq
eiq·ρ

q4
, (66)

then V (ρ) = [Kb2/(2π )2][∂2J (ρ)/∂ρ2
2 ]. The two-

dimensional Green’s function of the biharmonic
operator ∇4G(r − r′) = −δ(r − r′) is G(r − r′) =
−|r−r′|

8π
(ln |r − r′| − 1). Then J (ρ) = (π/4)|ρ|2(ln |ρ|2 − 2)

and

V (ρ) = − Kb2

(2π )2

π

2

[
1 − 2ρ2

2

ρ2
− ln ρ2

]
. (67)

This leads to the thermodynamic forces,

− ∂V

∂ρ1
= − Kb2

(2π )2

1

ρ
cos φ cos 2φ,

(68)

− ∂V

∂ρ2
= − Kb2

(2π )2

1

ρ
sin φ(1 + 2 cos2 φ),

where φ is the angle between the line joining the two
dislocations and the x axis. The functional dependence in
Eqs. (68) agrees with the classical result for the interac-
tion force between two straight edge dislocations in an
isotropic medium [noting, e.g., that sin φ(1 + 2 cos2 φ) =
y(3x2 + y2)/(x2 + y2)3/2] [43]. The coefficients differ in the
planar strain considered there because the stress in the direction
along the dislocation line in three dimensions is not zero,
but rather σ33 = ν(σ11 + σ22), with ν the Poisson ratio. This
component of the stress tensor does not appear in the purely
two-dimensional calculation addressed here.

Given an initial configuration comprising two edge dislo-
cations, Eqs. (68) would give the force acting on each one that
is required on the right-hand side of Eq. (62). The anisotropic
mobility depends of lattice rotation at the location of each
defect, which is given by Eqs. (57). Equation (62) then gives
the defect velocities.

We next evaluate the system of equations numerically.
Consider that the two opposite edge dislocations lie along
the line y = 0 separated by a distance 10b. For convenience
we work in reduced units such that distances are expressed
in units of b and speed in units of DgKb. In a first scenario,
we suppose that only glide is possible (i.e., Dc/Dg = 0) and
examine the impact of lattice rotation on the motion of the
dislocations. Figure 2(a) shows the dependence of dislocation
position on the y = 0 line x(t) on time t for each dislocation.
As is evident from the figure, in the absence of lattice rotations,
the dislocations move with increasing speed until annihilation.
Figure 2(b) shows the dislocation position normal to this plane
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FIG. 2. (a) The dislocation position on the y = 0 line x(t) as a
function of time t for two opposite edge dislocations that are initially
separated by a distance of 10, in units of b. For each case there is
no climb mobility. The blue and red curves are the positions in the
absence of lattice rotations, while the gold and green curves pertain to
a system with lattice rotations. Note that, in the latter case, motion is
arrested after some time. (b) The corresponding dislocation position
y(t) as a function of time t for the two dislocations.

y(t). In the absence of lattice rotations, there is no motion
perpendicular to the plane, as expected.

If lattice rotations are incorporated in the model, qualita-
tively new behavior is observed. Figures 2(a) and 2(b) also
show that the motion of two dislocations is similar to the case
of no rotation for large separations, but the two defects come
to rest at a fixed separation. The local rotation of the lattice
has evidently resulted in motion in the y direction leading
to the formation of a stable, dipolar configuration oriented at
somewhat less than 45◦ from the x axis. (One would expect
a 45◦ dipole for two opposite edge dislocations moving on
parallel slip planes in the absence of lattice rotations.)

In the second scenario, we assess the effect of defect
climb on the trajectory of the dislocations. Figures 3 show
the positions x(t) and y(t), respectively, for Dc/Dg = 0.02
with lattice rotations for the two dislocations. The inclusion
of climb is seen to lead to an instability in the dipolar
configuration resulting in annihilation, as might be expected
from the functional form of the force in the y direction given
in Eqs. (68).
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FIG. 3. (a) The dislocation position x(t) as a function of time t for
the case in which both lattice rotations and climb are operative. In this
case Dc/Dg = 0.02. The dipolar configuration seen in the previous
figure is unstable and annihilation results. (b) The corresponding
dislocation position y(t) as a function of time t .

This illustrative example, while highlighting the main ele-
ments and dependencies of the model described in Secs. III and
IV, has several shortcomings. First and foremost, the theory
as presented is expected to apply to a coarse grained defect
distribution but not to isolated defects. Thus the overdamped
nature of Eq. (25) can only be assumed at the mesoscale,
not at the scale of individual dislocations. Second, and for
the purpose of the example, we have used isotropic results
to compute interaction defect energies and lattice rotation,
while retaining motion along two privileged slip axes. The
results of Secs. III and IV are free of these limitations, but are
considerably more involved, necessitating a fully numerical
approach for their analysis.

We conclude by mentioning that we expect that the methods
described above provide a first step into incorporating kinetic
lattice effects into continuum (coarse grained) descriptions of
defect motion. We have done so by allowing directional defect
mobilities along distinguished slip systems in weakly distorted
systems. The case of a square lattice is somewhat simpler
as the number of slip systems equals the dimensionality of
the lattice. For a hexagonal lattice, on the other hand, linear
elasticity is that of an isotropic system—a simplification—
whereas the coarse grained model requires the introduction
of geometrically unnecessary dislocations—a complication.
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In this latter case, and for large coarse graining volumes, a
fully isotropic theory is expected albeit with separate climb
and glide diffusivities. Unfortunately, the governing equations
which we have obtained are quite complex and need to be
evaluated numerically. Such a numerical solution could be
compared to direct coarse graining of molecular dynamics
simulations of two-dimensional lattices. Alternatively, our
results can be verified against numerical solutions of phase
field crystal models which hold at the same level of coarse
graining as our theory. Finally, for the simple example of
two point edge dislocations that we have described in Sec. V,
we have shown dynamical arrest in dislocation motion that

arises from mismatches in the local slip planes as the defects
approach each other. Such an effect is absent in a purely
continuum theory.
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