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The Wang-Landau Monte Carlo algorithm is implemented within an effective Hamiltonian approach and
applied to BaTiO; bulk. The density of states obtained by this approach allows a highly accurate and
straightforward calculation of various thermodynamic properties, including phase transition temperatures, as
well as polarization, dielectric susceptibility, specific heat, and electrocaloric coefficient at any temperature. This
approach yields rather smooth data even near phase transitions and provides direct access to entropy and free
energy, which allow us to compute properties that are typically unaccessible by atomistic simulations. Examples
of such latter properties are the nature (i.e., first order versus second order) of the phase transitions for different
supercell sizes and the thermodynamic limit of the Curie temperature and latent heat.
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I. INTRODUCTION

Ferroelectric materials are of fundamental and technolog-
ical interest. Over the past decades, numerical simulations
based on the implementation of Metropolis Monte Carlo sam-
pling or molecular dynamics methods [1,2] within atomistic
approaches (e.g., effective Hamiltonians [3-6], bond valence,
and shell models [7,8]) have resulted in a better understanding
of finite-temperature properties of ferroelectrics. Though
they are widely used, standard Metropolis Monte Carlo
and molecular dynamics methods encounter severe problems
when applied to real ferroelectric systems. In particular, the
critical slowing down near the phase transition temperature
makes it very difficult to estimate the thermal average of
some microscopic quantities with satisfactory accuracy in a
reasonable computational time. For first-order transitions and
for systems with rough energy landscapes, the Metropolis
sampling and molecular dynamics methods may fail to sample
configurations properly or even leave some configurations en-
tirely unsampled. This kind of ergodicity breaking sometimes
goes unnoticed, because it may show up clearly only in certain
microscopic quantities. Moreover, Metropolis Monte Carlo
methods and molecular dynamics methods do not typically
give direct access to thermodynamic potentials. As a result,
estimating the free energy or entropy from such methods is
tricky [9,10], which makes the computation of some physical
responses rather challenging.

Interestingly, a Monte Carlo method based on the density
of states (or microcanonical ensemble partition function)
proposed by Wang and Landau [11] has the potential to
overcome these difficulties. As a matter of fact, the Wang-
Landau (WL) algorithm has been successfully applied to
numerous challenging problems in, e.g., magnetism [12,13],
liquid crystals [14], biophysics [15], lattice gauge theories
[16], etc. In particular, the WL method is useful for studying
phase transition phenomena because it does not suffer from
critical slowing. Surprisingly, it has been scarcely applied
to the important class of materials formed by ferroelectrics,
despite its potential (as evidenced by the recent study of
critical behavior in lead zirconate titanate materials using WL
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[17]). Three important issues therefore remain to be asserted,
to the best of our knowledge, before definitely asserting the
relevance of using WL to tackle complex phenomena in
ferroelectrics: (1) Is the WL algorithm able to reproduce with
the same accuracy the finite-temperature properties that are
already accessible by standard Monte Carlo and molecular
dynamics techniques in ferroelectrics (such as temperature-
driven transitions between the paraelectric and a ferroelectric
state, or between ferroelectric states having different directions
of the electrical polarization)? (2) Can the WL technique
allow easy access to an accurate computation of important
physical responses that are directly linked to the free energy or
entropy (such as electrocaloric coefficients) in ferroelectrics?
(3) What type of insight (with respect to traditional Monte
Carlo or molecular dynamics) can the WL “bring to the table”
in ferroelectrics?

The aim of this paper is to address all three general issues
by implementing the WL approach within a first-principles-
derived effective Hamiltonian [3] to conduct a detailed study
of physical properties of BaTiO3;. As we will see below,
questions (1) and (2) can be positively answered. Moreover,
the present study provides examples related to question (3),
by, e.g., demonstrating that the character of ferroelectric phase
transitions (i.e., second order versus first order) as well as
several challenging quantities (such as the thermodynamic
limit of the Curie point and latent heat) can be easily
determined by using a WL algorithm within an atomistic
approach.

The paper is organized as follows. Section II provides
details about the effective Hamiltonian and the Wang-Landau
implementation. Results are given and discussed in Sec. III.
Finally, Sec. IV summarizes the present work.

II. METHOD

A. Effective Hamiltonian

Here, we use the effective Hamiltonian (H.¢) of Ref. [3]
that was developed to model Ba;_,Sr, TiO; (BST) systems.
Its degrees of freedom are: (1) the local soft mode u; [4],
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which is technically centered on the Ti sites of the five-
atom unit cell i and which is directly proportional to the
electric dipole moment of that cell; (2) inhomogeneous-strain-
related dimensionless displacement variables {v;} [4]; (3) the
homogeneous strain tensor {ng} [4]. Two additional physical
quantities are defined in this effective Hamiltonian but are kept
frozen during the simulations—unlike {w;}, {v;}, and {ny}.
They are the set of variables {o;} characterizing the atomic
distribution of the mixed A sublattice [6]—with o; = +1 or
—1 corresponding to the presence of either a Ba or Sr atom at
the A-lattice site j—and the local strain {n),}, which is related
to the difference in ionic radius between Ba and Sr ions. The
total internal energy of this He is given by:

Eo = Eae({w},{vi}.{nu}) +Eloc({ui}v{vi}v{aj}v{nloc})» (D

where FE,. represents the energy of a virtual (A)TiOs
simple system whose (A) atom involves the potential average
of Ba and Sr atoms [18], and where Ej,. represents a
perturbation to this virtual crystal approximation to model
real (Ba;_,Sr,)TiOs systems (including x = 0, that is pure
BaTiOs3). E,. contains a local-mode self energy, a long-range
dipole-dipole interaction, a short-range interaction between
soft modes, an elastic energy, and an interaction between the
local modes and local strain [4]. Moreover, Ejo. incorporates
the effect of the real Ba and/or Sr ions on the local soft
modes and the inhomogeneous strain tensor [3]. All parameters
of this effective Hamiltonian are fitted from first-principles
calculations, except one of them (namely, the one related
to the harmonic part of the local-mode self energy) that is
allowed to vary in order to reproduce the experimental value
of the Curie temperature of the disordered (BaysSrgs)TiO3
solid solution. These parameters are provided in Ref. [3], and
more details about effective Hamiltonians can be found in
Ref. [4] (and references therein). When used in “traditional”
Monte Carlo (MC) and molecular dynamics techniques, this
Hamiltonian has been shown to accurately predict several
static and dynamical properties of BST systems [3,19-21].
In particular, it results in critical temperatures of 385, 280,
and 230 £5 K for the cubic-to-tetragonal, tetragonal-to-
orthorhombic, and orthorhombic-to-rhombohedral transitions
of pure BaTiO3 (BTO) bulk, respectively, which are in good
agreement with the corresponding measurements of 400, 280,
and 180 K [22]. Other examples demonstrating the accuracy of
this effective Hamiltonian are the subtle temperature-gradient-
induced polarization [19] and the existence of two modes
(rather than a single one, as previously believed for a long time)
contributing to the GHz-THz dielectric response of BaTiO3
and BST compounds [20,21].

B. Wang-Landau method

Here, we implement the flat histogram sampling method
of Wang and Landau [11] in Monte Carlo simulations using
this effective Hamiltonian and apply it to pure BaTiO3 bulk,
in order to illustrate how the resulting numerical tool can
lead to straightforward access of many properties that are
usually rather challenging to compute or even model. This
Wang-Landau (WL) Monte Carlo simulation algorithm relies
on the calculation of the density of states Q2(FE), defined
as the number of local dipole configurations for a given
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energy E. Unlike the conventional (Metropolis) Monte-Carlo
method [1] that practically generates a canonical distribution
Q(E)exp(—E/kpT) at a given temperature, WL determines
the density of states by conducting a non-Markovian random
walk in the configurational space. Specifically, in order to set
up the energy histogram, one first obtains upper and lower
bounds on E from estimating the energies relevant to a certain
temperature interval. For cases (such as ferroelectrics) for
which the energy can take continuous values, one needs to use
a discretization scheme to divide the energy range of interest
into a number of bins. Since Q(E) is not known a priori, the
histogram and Q2(E) are initialized with 0 and 1, respectively,
for all energy bins between the upper and lower bounds. Then,
the WL algorithm calculates 2(E) in an iterative procedure
by starting from a random local mode and strain configuration
with energy in the range of interest. As the algorithm proceeds,
the density of states is modified by a multiplicative factor, and
the energy histogram is simultaneously increased by 1 each
time an energy bin is visited. The fact that the probability of
the random walk is proportional to 1/$2(E) guarantees that
the energy histogram becomes flat when all energy bins are
about equally well sampled. In our simulations, the energy
histograms are typically checked every 10* Monte-Carlo
sweeps, and we impose the histogram of the lowest energy
bin to be larger than 90% of the value of the energy histogram
averaged over all energy bins as our criterion of flatness. The
iteration is completed when flatness is achieved. Next, the
modification factor is reduced following the strategy described
in Ref. [23], the histogram is reset to zero for all bins, and the
next step of iteration begins. Finally, the simulation ends after
the modification factor has reached a sufficiently low value.

Once Q(E) is determined, the partition function is naturally
obtained for any temperature 7 as Z = ZpQ(E)exp(—BE)
with 8 = kBLT As a result and as we will now illustrate, many
thermodynamic quantities can be easily calculated for any
temperature, and in a single step, within WL.

III. RESULTS

For instance, the supercell average of any n power of the
magnitude of the «-Cartesian component of the local modes
can practically be determined by computing

(it ") Yilug|"QUE)e PE
ua =
Y QE)ePE

@)

Note that such determination is similar in spirit to the
computation of magnetic properties discussed in Refs. [12]
and [13], since |uy|" is calculated here for each energy bin
used for estimating Q2(E) rather than by considering the
density of states as a function of both energy and polarization
and then calculating this joint density of states (which is
computationally demanding for ferroelectric systems).

A. Local modes and dielectric response

Figure 1(a) shows the temperature behavior of (|uy|), with
a =x, y, or z, as computed within WL using Eq. (2) with
n =1, fora 16 x 16 x 16 BaTiOs supercell (note that the x,
v, and z axes are chosen along the pseudocubic [100], [010],
and [001] directions, respectively). For comparison, Fig. 1(a)
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FIG. 1. Temperature behavior of the supercell average of the local
mode (a) and average dielectric susceptibility (b) for a 16 x 16 x
16 periodic BaTiO; supercell, as predicted from the Wang-Landau
method (crosses) and as computed using the Metropolis algorithm
(squares).

also reports the computation of the supercell average of the
local mode, (u), for the same supercell but using standard
Metropolis Monte Carlo simulations (using 20 000 MC sweeps
for reaching thermal equilibrium and an additional 20 000 MC
sweeps for computing statistical properties). It shows that the
(luxl), (luyl), and (|u.|) Cartesian components are all small
at high temperature (note that they do not fully annihilate
there, because, unlike for the conventional MC simulations,
Eq. (2), with n = 1, corresponds to the computation of the
supercell average of the magnitude of u, rather than the
supercell average of u,—that can take positive and negative
values. Such a difference also explains why predicted critical
transition temperatures can slightly vary between the WL and
Metropolis algorithms). Figure 1(a) also shows that (|u,|)
suddenly increases, while (|u|) and (|u,|) remain small, for
temperatures below ~385 K. This behavior is indicative that
BTO bulk is predicted to undergo a phase transition from
the paraelectric cubic phase to the ferroelectric tetragonal
phase at the Curie temperature of ~385 K, as similar to
previous works using the same effective Hamiltonian but
within Metropolis MC and molecular dynamics techniques
[3,20,21]. Similarly, the sudden increase of (|u,|) at around
280 K and then of {|u,|) close to 230 K are characteristic of the
well-known transitions towards (ferroelectric) orthorhombic
and rhombohedral states, respectively. Figure 1(a) therefore
attests that the implementation of the present H.y within
the WL algorithm is also capable of accurately predicting
structural transitions in ferroelectric systems. Interestingly, the
sharp increase of the (|u,|)’s seen in Fig. 1(a) at these three
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critical temperatures hint that the corresponding transitions
are all first order. We will come back to the nature of these
transitions later on.

For now, let us concentrate on the diagonal elements of
the dielectric response x,, Which can also be easily accessed
from the Wang-Landau algorithm once 2(E) is known, by
computing [12,13]:

Xew = BL ({Jual®) — (luel)®) A3)

for a L x L x L supercell and where (Juy|?) and (|u,|) are
obtained via Eq. (2).

Figure 1(b) reports the average diagonal element of the
dielectric tensor, i.e., Xdiag = X Xaw/3, as a function of
temperature for the 16 x 16 x 16 supercell and also compares
it with the one obtained from the standard Metropolis Monte
Carlo simulations [this latter is computed from Eq. (3) too,
but for which (|u|?) and (|uy|) are determined by averaging
these quantities over the MC sweeps at every considered
temperature]. Figure 1(b) indicates that the WL algorithm
correctly predicts peaks of x4, at the critical transition
temperatures of 385, 280, and 230 K, respectively. It is also
important to realize that Figs. 1(a) and 1(b) demonstrate
that one particular strength of the Wang-Landau algorithm
is to provide physical quantities (such as polarization and
dielectric response) that smoothly behave with temperature
for any temperature window, which contrasts with the standard
Metropolis Monte Carlo simulations that typically yield large
fluctuation near transition temperatures [see, e.g., the variation
of (u,) in Fig. 1(a) near 280 K and yxgi,g near 320 K in Fig.
1(b) for the traditional MC computations]. Such strength will
be further demonstrated and taken advantage of below and has
been previously demonstrated to be crucial to study complex
phenomena (such as the existence of critical behaviors in
ferroelectric bulks or the diffuse character of phase transitions
in ferroelectric ultrathin films [17,24]).

B. Specific heat

Note that other physical quantities can be naturally and
smoothly obtained (for every temperature) by using the Wang-
Landau algorithm. One example includes the specific heat C,
which is given within our WL implementationfora L x L x L
supercell by [11-13]:

(E*) —(E)*

C:kBﬁz L3

“

with
YpE"Q(E)exp(—BE)
YEQ(E)e PE

(E") = &)
for any n integer.

Figure 2(a) shows the resulting specific heat of BaTiO;
as a function of temperature for a periodic supercell having
lateral sizes of L = 16. One can see sharp, large peaks at each
transition temperature, which is consistent with the excess
specific heat measured near the Curie temperature in Ref. [25]
and with the fact that the three phase transitions of BaTiO3;
bulks are experimentally known to be of first order.

Let us know use one aforementioned strength of the WL
method to further demonstrate that our effective Hamiltonian
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FIG. 2. Specific heat [(a) and (b)] and electrocaloric coefficient
(c) versus temperature for periodic BaTiO; supercells, as computed
within the Wang-Landau algorithm. (a) shows the specific heat C
of a 16 x 16 x 16 periodic BaTiO; supercell for an interval of
temperatures covering the three phase transitions, while (b) depicts
C close to the paraelectric-to-ferroelectric transition for L x L x L
supercells having different L lateral sizes. The inset of (b) shows C;™*
(see text) as a function of L3, with the linear fit being represented by a
straight line. A 14 x 14 x 14 supercell is used for the results depicted
in (c). Error bars are smaller than the dimensions of the symbols.

results for the specific heat are consistent with the known
first-order nature of the paraelectric-to-ferroelectric transition
in BaTiO; bulk. More precisely, we take advantage that
WL provides very smooth data for the specific heat for any
temperature and for any considered L x L x L supercell,
as shown in Fig. 2(b) for temperatures close to the Curie
point. Such smoothness allows us to easily locate the Curie
temperature (which is the position of the highest-temperature
peak in the specific heat) and to extract the value of C at this
Curie temperature for any studied L x L x L supercell. This
latter value will be denoted here as C;"** and is shown in the
inset of of Fig. 2(b) as a function of the L lateral size of the
supercells (with L equal to or larger than 12). This inset clearly
reveals that CJ"* scales as L3, which is fully consistent with
finite-size scaling of a first-order transition [26].
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Interestingly, the thermodynamic limit of the Curie temper-
ature, T¢(00), for the paraelectric-to-ferroelectric transition
can also be easily determined within WL by first identifying
the transition temperature T¢(L) of the periodic L x L x L
supercell as the maximum position of the specific heat and
the minimum of the Binder parameter defined as V(L) =
1-— (E4)/3((E2))2 [26] [where (E*) and (E?) are given by
Eq. (5) with n =4 and 2, respectively] and then using the
finite-size scaling relation T¢(00) — Te(L) ~ L3 [26]. Doing
so provides a T¢(00) of 388.1 £ 0.1 K for the presently used
effective Hamiltonian.

C. Electrocaloric coefficient

Moreover, the electrocaloric coefficient, which is currently
attracting a lot of attention [27-31] can also be ‘“easily”
extracted from the Wang-Landau algorithm at any temperature.
For that, one has to recall that the electrocaloric coefficient
y corresponds to a change of temperature under an applied
electric field £ and is given by [30]:

_Taor ©)
Y=Teur)ys

where C is the specific heat and P is the electrical polarization.
Taking C to be provided by Eq. (4) and |P|=
Z* Tplu|QE)ePE
a2, SpQE)ePE
charge and the five-atom lattice constant, respectively, gives

in units of [pKT'm]:

where Z* and q,, are the Born effective

y = —1.94SZ*a1mL3T<<|u|E> — <|“|>§E>), (7

(E?) —(E)
EQ(E) exp(—BE
where (julE) = ZEEGESEEE  and  (ful)(E) =
QE) exp(—BE EQE)exp(—BE) .
Lt ';'Esg(;)eféf ). L zgs(z(g:%fﬂ ) while (E2) and (E) are

given by Eq. (5).

Figure 2(c) shows the resulting electrocaloric coefficient
for a 14 x 14 x 14 BaTiO3 supercell, as computed from WL
using Eq. (7). One can see that this coefficient peaks at the
transition temperatures, as consistent with recent theoretical
predications [28,29] and with measurements [32-34] in ferro-
electric materials. In particular, y is predicted to be larger than
~50mK cm/kV in the vicinity of the Curie temperature, which
is consistent with the experimental values of 53 mK cm/kV
obtained at a temperature of 391 K in BTO polycrystal [32]
and of 75 mK cm/kV extracted at T = 402 K in BaTiOj3 single
crystal [33].

D. Example of insight provided by WL

Let us also now further demonstrate the type of physical
insight that the WL method can provide in ferroelectrics, by,
e.g, paying close attention to the paraelectric-to-ferroelectric
transition in BaTiO3 bulk. For that, we take advantage of the
fact that the WL algorithm allows us to compute the free-
energy-like quantity defined as A(E,B) = —InP(E,B) [35],
where P(E,B) = % is the normalized canonical dis-
tribution (i.e., the canonical probability function). Figure 3(a)
shows how A depends on the E internal energy for the 16 x
16 x 16 supercell and at three different temperatures that are
all very close to the Curie temperature, namely 385.9, 385.0,
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FIG. 3. Properties related to the nature of the paraelectric-to-
ferroelectric transition of BaTiOj; bulks, as obtained from the Wang-
Landau algorithm. (a) represents the free-energy-like quantity A
versus the internal energy for temperatures above, below, and at the
transition point for a 16 x 16 x 16 periodic BaTiO; supercell. Panel
(b) provides similar data but for a 10 x 10 x 10 supercell. Panel (c)
displays the the finite-volume latent heat plotted against the lattice
size L, with the fit to Ae(L) = Ae(oco) + a exp(—bL) being shown
via a dashed line.

and 384.0 K. A adopts two minima at energies to be denoted by
E; and E,, respectively, for any of these three temperatures
(with the value of E; and E, being slightly dependent on
the temperature). Strikingly, the minimum of A at Ej is
higher than the one at E, for the temperature above 385 K,
while the opposite situation holds below 385 K and these two
minima have equal depth at 7 = 385 K. Such features are
representative of a first-order transition occurring at 385 K
(for L = 16) with the minima at E¢ and E, corresponding
to the equilibrium energy of the ferroelectric and paraelectric
state, respectively. The first-order nature of the paraelectric-
to-ferroelectric transition in BaTiO; is a known experimental
feature and is thus undoubtedly (and “easily”’) confirmed by
the implementation of the Wang-Landau algorithm within our
effective Hamiltonian. Interestingly, Fig. 3(b) provides similar
data at three temperatures close to T¢ but for the L x L x L
supercell with L = 10 (note that the Curie temperature for such
a smaller supercell is numerically found to be 377.2 K). In that
case, the bimodality of the canonical probability distribution,
and hence the double-well structure of A, is lost, i.e., there
is only one minimum of A at any temperature (including the
Curie temperature)—which is characteristic of second-order
transitions. In other words, Figs. 3(a) and 3(b) reveal that
the (true) first-order nature of the paraelectric-to-ferroelectric
transition in BaTiO3 can only be resolved by simulations
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conducted on large-enough supercells (in our case, the L lateral
size of this supercell has to be at least 12 unit cells).
Moreover, for any L x L x L supercell with L larger than
12, one can also extract the latent heat at the first-order
paraelectric-to-ferroelectric transition as Ae(L) = (Ef(L) —
E p(L))/L3, where the difference in energy between E (L)
and E,(L) is computed at the T¢(oo) critical temperature.
The thermodynamic limit of this latent heat, Ae(co), is then
obtained by fitting the Ae(L)-versus-L curve as Ae(L) =
Ae(00) 4+ a exp(—bL), where a and b are parameters related
to finite-size corrections (here, they are numerically found
to be #—1.2 J/g and ~0.01 J/g, respectively). As shown in
Fig. 3(c), the resulting Ae(oco) is equal to 1.2 +£0.05 J/g,
which is in rather good agreement with the measurement of
1 J/g reported in Ref. [36]. The fact that Ae(oo) is finite
is also fully consistent with the first-order character of the
paraelectric-to-ferroelectric transition in BaTiO3; bulk. Note
that two previous methods also used effective Hamiltonian
techniques within a special numerical procedure (namely,
thermodynamic integration in Ref. [9] versus the application
of auxiliary fields in Ref. [10]) to extract free-energy-like
quantities close to the Curie temperature in BaTiO3; bulk.
However, these two methods did not report the behavior of
free-energy-like quantity as a function of the internal energy,
which therefore precluded the computation of the latent heat.

IV. SUMMARY

In summary, we have demonstrated the capabilities and
advantages of combining the Wang-Landau Monte Carlo algo-
rithm with an effective Hamiltonian approach for ferroelectric
bulks. It is also important to realize that this WL scheme can
be implemented within other atomistic approaches, such as the
bond valence and shell models [7,8]. It can also be applied to
nanoscale ferroelectrics, which are of high current interest—
partly due to their potential applications in miniaturized
devices [37-40]. In fact, it is timely and more appropriate
to use the microcanonical ensemble (as automatically done
within the WL algorithm) rather than the macrocanonical one
(which is inherent to the Metropolis Monte Carlo technique)
when mimicking ferroelectric nanosystems [41,42]. We are
therefore confident that our present work will motivate the
use of the WL algorithm in ferroelectrics, both in their
bulk and nanostructure forms, and can thus lead to a deeper
understanding of this important class of materials as well as to
the design of optimized or even novel properties.
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