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Chiral separation and chiral magnetic effects in a slab: The role of boundaries
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We study the chiral separation and chiral magnetic effects in a slab of Dirac semimetal of finite thickness,
placed in a constant magnetic field perpendicular to its surfaces. We utilize the Bogolyubov boundary conditions
with a large Dirac mass (band gap) outside the slab. We find that, in a finite-thickness slab, the axial current
density is induced by helicity-correlated standing waves and, as a consequence, is quantized. The quantization
is seen in its stepped-shape dependence on the fermion chemical potential and a sawtooth-shape dependence on
the thickness of the slab. In contrast to a naive expectation, there is no chiral charge accumulation anywhere in
the bulk or at the boundaries of the semimetal. In the same slab geometry, we also find that a nonzero chiral
chemical potential induces no electric current, as might have been expected from the chiral magnetic effect. We
argue that this outcome is natural and points to the truly nonstatic nature of the latter. By taking into account a
nonzero electric field of a double layer near the boundaries of the slab, we find that the low-energy modes under
consideration satisfy the continuity equation for axial current density without the anomalous term.
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I. INTRODUCTION

Nowadays there is significant interest in relativistic matter
in a strong magnetic field. Such matter is intensively studied
both experimentally and theoretically. It has a number of
applications in high-energy physics and astrophysics (e.g., in
the context of compact stars, heavy-ion collisions, and the
early universe), as well as in condensed matter physics (e.g.,
in the context of novel Dirac/Weyl materials).

In condensed matter physics, after the first reports of three-
dimensional Dirac semimetals appeared two years ago [1–3],
the field exploded with numerous investigations of their exotic
properties (for reviews, see Refs. [4–6]). One of the key aspects
of such materials is a well-defined chirality of the low-energy
quasiparticles, described by Weyl fermions. Because of the
chiral anomaly [7], the chirality is not a conserved charge
and, thus, the corresponding quasiparticles must come in both
chiralities [8]. In Dirac semimetals, the low-energy spectra
of the quasiparticles of opposite chiralities are degenerate.
Such degeneracy is often protected by symmetries (e.g., the
symmetry under time-reversal or parity). If the corresponding
symmetry is broken, however, a Dirac semimetal may turn
into a Weyl semimetal, in which the degeneracy of the
quasiparticles with opposite chiralities is lifted. A number
of materials of this latter type has been recently reported as
well [9–15].

Phenomenologically, a chiral asymmetry in relativistic
matter may be introduced via a nonzero chiral chemical
potential μ5 [16]. Such a chemical potential couples to a
difference between the number densities of the left- and
right-handed fermions and enters the Lagrangian density
through the term μ5ψ̄γ 0γ 5ψ , where ψ̄ ≡ ψ†γ 0. The latter
produces a chiral asymmetry in magnetized relativistic matter
and leads to a nondissipative electric current j = e2Bμ5/(2π2)
in the presence of an external magnetic field B [16–18]
(see also Refs. [19–22]). This phenomenon is known in the

literature as the chiral magnetic effect (CME) and its origin
is related to the famous chiral anomaly [7]. Moreover, the
charge-dependent correlations and flow, observed in heavy-ion
collisions at RHIC [23–27] and LHC [28], appear to be in a
qualitative agreement with the predictions of the CME [29,30]
(for recent reviews, see also Refs. [31–33]). In the context
of condensed matter physics, it was also suggested that the
measured quadratic field dependence of the magnetoconduc-
tance in ZrTe5 is an indication of the chiral magnetic effect
[34].

Unlike the chiral chemical potential, which is a rather exotic
quantity and is not very well defined theoretically, the chemical
potential μ (associated, for example, with a conserved electric
or baryon charge) is common in many physical systems. It
was shown in Refs. [35–37] that a nondissipative axial current
density j5 = −eBμ/(2π2) exists in the equilibrium state of
noninteracting massless fermion matter in a magnetic field.
This effect is known as the chiral separation effect (CSE). In
fact, as suggested in Refs. [38,39], the CSE may lead to a chiral
charge separation (i.e., effectively inducing a nonzero chiral
chemical potential μ5) and, thus, trigger the CME even in the
absence of topological fluctuations in the initial state.

The physical and mathematical reasons for the chiral
asymmetry in relativistic matter in a magnetic field are quite
transparent (for an elegant exposition, see also Ref. [40]).
In essence, its origin is connected with the spin-polarized
nature of the lowest Landau level (LLL). The corresponding
fermionic states are also characterized by a well-defined
longitudinal momentum and, thus, chirality. Moreover, the
states with opposite signs of the longitudinal momenta carry
opposite chiralities and, thus, lead to a nondissipative axial
current density j5 = −eBμ/(2π2) [35,36].

It was argued in Refs. [36,37] that nondissipative currents
in magnetized relativistic matter are determined by the
topological currents induced exclusively in the LLL and are
intimately connected with the chiral anomaly. This fact is
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directly connected with the well-known result that the chiral
anomaly in a magnetic field is also generated exclusively by
the LLL [41]. The first studies of interaction effects on the
chiral asymmetry of relativistic matter in a magnetic field were
performed in Refs. [38,42,43] by using Nambu–Jona-Lasinio
models with local interaction. In particular, it was found that
the interaction unavoidably generates a chiral shift � [38,42]
when the fermion density is nonzero. It enters the effective
Lagrangian density through the following quadratic term:
�ψ̄γ 3γ 5ψ , when the magnetic field is directed along the z

direction. The meaning of the chiral shift parameter is most
transparent in the chiral limit: it determines a relative shift of
the longitudinal momenta in the dispersion relations of oppo-
site chirality fermions, k3 → k3 ± �, where the momentum
k3 is directed along the magnetic field. Furthermore, as shown
in Refs. [38,42,44], the chiral shift � is responsible for an
additional contribution to the axial current density. Also, such
a dynamically generated chiral shift splits each Dirac node
into a pair of Weyl nodes of opposite chirality, thus producing
a Weyl semimetal from a Dirac one [45]. Recently, another
interesting mechanism for inducing a nonzero chiral shift was
proposed [46,47]. It uses a circularly polarized light and works
even at zero chemical potential.

Usually the chiral magnetic and chiral separation effects
are considered in the literature in unbounded material media.
In practice, however, all physical systems (except for the CME
and CSE in the early universe, perhaps) are finite. It is natural
then to ask about the role of boundaries and finite-size effects in
the chiral magnetic and separation effects. Indeed, even if one
assumes that, in the bulk of a bounded medium, the electric
and axial currents are the same as those in infinite systems,
they should get modified near the boundaries. This should be
an immediate consequence of the continuity equations if the
currents are required to vanish outside the material. This simple
observation was the main motivation for the present work.
Here we will study the chiral separation and chiral magnetic
effects in a slab with an external magnetic field perpendicular
to the boundary planes of the slab, which yields the simplest
realization of a finite-size system.

The paper is organized as follows. In Sec. II we intro-
duce the model of a slab with the Bogolyubov boundary
conditions [48], when the mass (band gap) parameter in
the vacuum outside the slab is taken to be the largest mass
(energy) parameter in the model. Note that we will use both
the terms “mass” and “band gap” interchangeably throughout
the paper. Section III is devoted to the analysis of the axial
current density (i.e., the CSE) in the slab with such boundary
conditions. The CME is considered in Sec. IV. In Sec. V
we discuss the chiral anomaly in vacuum regions near the
surface of the slab. The discussion of the main results is given
in Sec. VI. Some technical details, including the derivation
of the Landau-level wave functions and the implementation
of the boundary conditions, are presented in Appendices A
and B, respectively.

Throughout this paper, we set � = 1 and c = 1.

II. MODEL

The Hamiltonian of the low-energy model of a Dirac
semimetal slab situated between the planes z = −a and z = a

reads

H =
∫

d3r �†(r)[vF α · (−i∇ + eA) + γ 0m(z)]�(r), (1)

where α = γ 0γ , and γ are the Dirac matrices in the chiral
representation, i.e.,

γ 0 =
(

0 −I2

−I2 0

)
, γ =

(
0 σ

−σ 0

)
,

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
(

I2 0
0 −I2

)
. (2)

Here I2 is the two-dimensional unit matrix and σ = (σ1,σ2,σ3)
are the Pauli matrices. By assuming that the external mag-
netic field B is directed along the z axis, we will find it
convenient to use the vector potential in the Landau gauge,
i.e., A = (0,Bx,0). The other notations are as follows: e is
the electron charge, vF is the Fermi velocity, and m(z) =
M θ (z2 − a2) + m θ (a2 − z2) is the Dirac mass (band gap)
function [here θ (x) is the unit step function]. The case of a
Dirac semimetal with a zero band gap in the bulk is obtained
by taking the limit m → 0. In the model at hand, we assume
that the “vacuum” gap parameter M is much larger than
all characteristic energy scales in the slab (e.g., the work
function and/or relevant quasiparticle energies). Interestingly,
such a model of the slab is nothing else but a generalized
Bogolyubov bag model [48]. In the studies of graphene, similar
boundary conditions with an infinite gap outside the material
are known as the infinite mass boundary conditions [49,50].
The same idea, albeit with a finite-size band gap, is also utilized
in modeling a potential barrier in the context of the Klein
paradox in graphene; see Ref. [51]. While m = 0 was used
in the original Bogolyubov model, we will treat m as a free
parameter in the analysis below. (Note that the m �= 0 case is of
interest not only from a theoretical viewpoint, but could be also
investigated experimentally in a more general class of Dirac
semimetals/metals, e.g., such as a bismuth alloy Bi1−xSbx at
small concentrations of antimony [52,53], where the Dirac
gap is nonzero.) For a good review of bag models in hadron
physics, see Ref. [54]. Generically, in all such models, the
hadrons are described as bags with massless fermions (quarks)
confined inside. In order to prevent massless fermions from
leaving the bag, one requires that the normal components
of the momenta and hence the currents across the surface
vanish. Such boundary conditions necessarily break the chiral
symmetry for fermions [54]. From the physics viewpoint,
this is unavoidable because massless quasiparticles experience
a helicity flip (and, thus, a chirality change) whenever the
directions of their momenta change due to scattering from the
boundary. This fact will be crucial for our analysis below. In
particular, in the Bogolyubov model with the vanishing gap in
the bulk, m → 0, the chiral symmetry is explicitly broken by
the inclusion of the (infinitely) large vacuum gap parameter M .

III. CHIRAL SEPARATION EFFECT

In this section, we calculate the axial current density and
study the CSE in a Dirac semimetal with a slab geometry.
By making use of Hamiltonian (1), the ground state of the
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system will be obtained by filling all quasiparticle states with
the energies less than the Fermi energy EF = μ, where μ is
the chemical potential.

Let us start by determining the energy spectrum and
the electron wave functions for a Dirac semimetal slab in

a constant magnetic field. Before proceeding to the slab case,
however, it is instructive to start from presenting the Landau-
level wave functions in an infinite space. By making use of the
chiral representation (2), we derive the following results for
the wave functions (see Appendix A for details):

ψ(r)n=0 = C0 eipzz+ipyy

⎛
⎜⎜⎝

0
Y0(ξ )

0
− m

E0−vF pz
Y0(ξ )

⎞
⎟⎟⎠, (3)

ψ(r)n>0 = eipzz+ipyy

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C+

⎛
⎜⎜⎜⎜⎝

−i
m2+2nε2

L

(En−vF pz)
√

2nε2
L

Yn−1(ξ )

Yn(ξ )

i m√
2nε2

L

Yn−1(ξ )

0

⎞
⎟⎟⎟⎟⎠+ C−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
m
√

m2+2nε2
L

(En−vF pz)
√

2nε2
L

Yn−1(ξ )

0

i

√
m2+2nε2

L√
2nε2

L

Yn−1(ξ )
√

m2+2nε2
L

En−vF pz
Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where l = 1/
√|eB| is the magnetic length, εL = vF

√
eB is the Landau energy scale, and ξ = x/l + pyl. For convenience,

here, we fixed the sign of electric charge so that sgn(eB) = +1. Additionally, we introduced the following harmonic oscillator

wave functions: Yn(ξ ) = e−ξ2/2√
2nn!

√
π
Hn(ξ ), where Hn(ξ ) are the Hermite polynomials. (For the Landau-level wave functions

in the standard representation of the Dirac matrices, see Ref. [55].) The corresponding Landau-level energies are given by
En = ±

√
v2

F p2
z + m2 + 2nε2

L.
Now, in the case of a slab with a finite extent in the z direction, for every plane wave with a wave vector pz, propagating in the

positive z direction, there should be also a plane wave with a wave vector −pz, propagating in the opposite direction. Therefore,
the general solution for the nth-Landau-level wave function in the slab is given by a superposition of two counterpropagating
plane waves, or equivalently, a standing wave:

�slab(r)n=0 = C0 eipzz+ipyy

⎛
⎜⎜⎝

0
Y0(ξ )

0
− m

E0−vF pz
Y0(ξ )

⎞
⎟⎟⎠+ C̃0 e−ipzz+ipyy

⎛
⎜⎜⎝

0
Y0(ξ )

0
− m

E0+vF pz
Y0(ξ )

⎞
⎟⎟⎠, (5)

�slab(r)n>0 = eipzz+ipyy

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C+

⎛
⎜⎜⎜⎜⎝

−i
m2+2nε2

L

(En−vF pz)
√

2nε2
L

Yn−1(ξ )

Yn(ξ )

i m√
2nε2

L

Yn−1(ξ )

0

⎞
⎟⎟⎟⎟⎠+ C−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
m
√

m2+2nε2
L

(En−vF pz)
√

2nε2
L

Yn−1(ξ )

0

i

√
m2+2nε2

L√
2nε2

L

Yn−1(ξ )
√

m2+2nε2
L

En−vF pz
Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ (pz → −pz,C± → C̃±).

(6)

These wave functions inside the slab should be matched to
the corresponding solutions in the vacuum. This is done in
Appendix B using the Bogolyubov bag model, in which wave
functions outside the semimetal satisfy the Dirac equation with
an infinitely large vacuum gap parameter M . By enforcing the
boundary conditions, we also find that the wave vector pz

should satisfy the following spectral equation:

vF pz cos (2apz) + m sin (2apz) = 0, (7)

where pz �= 0. The final expressions for the Landau-level wave
functions in the slab are given in Eqs. (B7), (B15), and (B16).
In essence, they have the form of standing waves with discrete
wave vectors pz that satisfy Eq. (7). It is important to note that,
while there are two independent solutions for each wave vector
in the higher Landau levels, there is only one independent
solution for each wave vector in the LLL.

A. Axial current density

In this subsection, we calculate the axial current density
inside the slab. In terms of the Landau-level wave functions,
the corresponding ground-state expectation value is given by

〈
j 3

5

〉 = ∫
dpy

2π

∑
pz

(
f (pz) vF �

†
slab(r)n=0γ

0γ 3γ 5�slab(r)n=0

+
2∑

i=1

∞∑
n=1

f (pz) vF �
(i) †
slab (r)nγ

0γ 3γ 5�
(i)
slab(r)n

)
, (8)

where the contributions of quasiparticles from both valence
and conduction bands are taken into account via the use of the
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following generalized distribution function:

f (pz) = 1

e(
√

v2
F p2

z+m2+2nε2
L−μ)/T + 1

− 1

e(
√

v2
F p2

z+m2+2nε2
L+μ)/T + 1

. (9)

Here μ is the chemical potential (Fermi energy) measured
from the Dirac point. This distribution function accounts for
the fact that the quasiparticles of the conduction and valence
bands carry opposite charges. In the zero-temperature limit,
which we use in the following, this function simplifies:

lim
T →0

f (pz) = sgn(μ)θ
(
μ2 − v2

F p2
z − m2 − 2nε2

L

)
, (10)

where θ (x) is the unit step function.
When calculating the axial current density, it is instructive to

separate the contribution of the spin-polarized lowest Landau
level from the contributions of the higher Landau levels (n >

0). The LLL contribution is obtained by making use of the
wave function in Eq. (B7). The zero-temperature result reads

〈
j 3

5

〉
n=0 =

∫
dpy

2π

∑
pz

f (pz) vF �
†
slab(r)n=0γ

0γ 3γ 5�slab(r)n=0

= −eBvF sgn(μ)

2aπ

∑
pz

θ
(
μ2 − v2

F p2
z − m2

)

×
(
m2 + v2

F p2
z

)
[1 − cos (2pzz) cos (2pza)]

2
(
m2 + v2

F p2
z

)+ mvF /a
, (11)

where we also made use of the spectral equation in Eq. (7). As
we see, in a general case when m �= 0, the LLL contribution
to the axial current density has a nontrivial dependence on the
z coordinate. Here it may be appropriate to mention that the
axial current density is well defined even in the gapped case
when the axial charge is not conserved. In fact, even in the
extreme nonrelativistic limit, it has a clear physical meaning
as a spin polarization.

As expected, in the chiral (gapless) limit, the axial current
density is independent of the z coordinate and the explicit
result reads〈

j 3
5

〉
n=0,m→0 = −eBvF sgn(μ)

4aπ

∑
pz

θ
(
μ2 − v2

F p2
z

)

= −eBvF sgn(μ)

4aπ
kmax, (12)

where we took into account the spectral equation (7), which
reduces down to cos (2apz) = 0 in the gapless case. The
latter also implies that the allowed values of the wave vector
are p

(0)
z,k = (2k − 1)π/(4a), where k is a positive integer.

Because of the unit step function in Eq. (12), the result
of the sum is given by kmax = [2a|μ|/(vF π ) + 1/2] where
[. . .] represents the integer part. As expected, in the limit of
a → ∞, the above result reduces to the well-known relation
for the chiral separation effect in an infinite system, i.e.,
〈j 3

5 〉 = −|eB|μ/(2π2).
The result in Eq. (12) shows that, in a slab of finite thickness

a, the axial current density is quantized. This is a qualitatively
new feature that did not exist in an infinite system. It is a

natural outcome of having the wave functions in the form of
standing waves and the quantization of the wave vector in a
slab geometry. As is easy to see from Eq. (12), the height of
the steps in the axial current is proportional to the magnetic
field and inversely proportional to the thickness of the slab,
i.e., δ〈j 3

5 〉 = eBvF /(4aπ ). When 〈j 3
5 〉 is plotted as a function

of aμ/vF , the widths of the steps are given by π/2. It would
be interesting to explore whether such a quantization can be
observed in experiment.

In the case of higher Landau levels (n > 0), there are
separate contributions to the axial current density from each
of the two independent modes in the slab, i.e., �

(1)
slab(r)n and

�
(2)
slab(r)n. By making use of the explicit expressions for the

corresponding wave functions in Eqs. (B15) and (B16), we
find that, for each pz, the two contributions have opposite
signs, i.e.,∫

dpy

2π
vF �

(1) †
slab (r)nγ

0γ 3γ 5�
(1)
slab(r)n

= −eB

2π

vF pz

(
m2 + v2

F p2
z

)
[1 − cos (2pzz) cos (2pza)]

2apzE2
n + vF pzm − nε2

L sin (4apz)
,

(13)∫
dpy

2π
vF �

(2) †
slab (r)nγ

0γ 3γ 5�
(2)
slab(r)n

= eB

2π

vF pz

(
m2 + v2

F p2
z

)
[1 − cos (2pzz) cos (2pza)]

2apzE2
n + vF pzm − nε2

L sin (4apz)
.

(14)

Therefore, there is no net contribution to the axial current
density due to higher Landau levels. In other words, just like
in the case of an infinite space [36], the axial current density
in a semimetal slab is determined exclusively by the LLL
contribution (11).

Our numerical results for the axial current density (11)
in a slab geometry are presented in Figs. 1, 2, and 3. For
comparison, in Figs. 1 and 2 we also show the results for
an infinite space. The dependence of the dimensionless axial
current density 2π2〈j 3

5 〉al2/vF , in the middle of the slab
(z = 0), as a function of the chemical potential is presented
in Fig. 1. [Recall that the axial current density in Eq. (11)
is not uniform in space when m �= 0.] The three panels
show the results for three representative values of the band
gap: am/vF = 0 (left panel), am/vF = 2 (middle panel),
and am/vF = 6 (right panel). To plot the figure, we used
vF /a = 25 meV. As expected, a nonzero current density is
obtained only when μ > m, i.e., when the chemical potential
is larger than the size of the band gap. In agreement with the
earlier observation, we also see that the axial current density
is quantized in the slab.

The dependence of the dimensionless axial current density
2π2〈j 3

5 〉l2/μ, in the middle of the slab (z = 0), as a function
of the width is shown in Fig. 2. The three panels show the
results for the following three values of the band gap: m/μ =
0 (left panel), m/μ = 0.25 (middle panel), and m/μ = 0.75
(right panel). To plot the figure, we used vF /μ = 12.5 Å. As
we find, the functional dependence of the current density on
the width of the slab has a sawtooth shape. This is rather
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FIG. 1. (Color online) The dimensionless axial current density in an infinite space (red dashed line) and in the middle of the slab (blue
solid line) plotted as a function of chemical potential for the three values of the band gap: am/vF = 0 (left panel), am/vF = 2 (middle panel),
and am/vF = 6 (right panel). To plot the figure, we fixed vF /a = 25 meV.

natural consequence of the quantization of the wave vector.
When the size a becomes large, the finite-size effects quickly
decrease and the result approaches the limit of an infinite
system. We also see that a nonzero gap has a damping effect
in the dependence on a. (Notice the difference in the vertical
scales in the three panels of Fig. 2.)

It is interesting to note that, in the gapped case (m �= 0),
the steps in the axial current density have different heights;
see Fig. 1. This is pronounced the most in the lowest few
steps of the current density. (Note, at the same time, that the
widths of the steps in aμ/vF remain nearly, although not
exactly, the same.) The corresponding steps are determined
by the low-energy quasiparticle states with the smallest few
wave vectors, i.e., the wave vectors which are modified the
most by a nonzero gap. This can be checked explicitly in the
limit of a small but nonzero band gap. In such a limit, an
analytical expression for the wave vectors can be obtained
approximately by solving the spectral equation (7). The result
reads p

(m)
z,k 	 (2k − 1)π/(4a) + 2m/[πvF (2k − 1)] where k is

a positive integer. By making use of this, one can check that the
contributions from the states with small k vary a lot because
of great variations in the values of cos(2p

(m)
z,k a); see Eq. (11).

(Away from the middle point in the slab, the heights of the steps
also vary. This is clear from Fig. 3.) With increasing the value
of a|μ|/vF , on the other hand, the effect of the gap diminishes
and the functional dependence of the axial current density
gradually approaches the result in the gapless limit. This is
understandable since the states with large wave vectors, which
dominate the result in such a regime, are insensitive to the size
of the gap.

As is clear from Eq. (11), in the case of a nonzero band
gap, the axial current density is not uniform: it depends

on the position z inside the semimetal. The corresponding
dependence is shown explicitly in Fig. 3, where we present
the results for the gapless case am/vF = 0 (left panel)
alongside the results for the two cases with nonzero band gaps:
am/vF = 2 (middle panel) and am/vF = 6 (right panel). The
fact that the axial current density is constant inside the slab
in the gapless case is consistent with the continuity equation.
Indeed, in the case of the vanishing gap and in the absence of
electric fields, the axial current is conserved inside the slab.
In contrast, there are clearly visible oscillations of the axial
current density in the other two cases when m �= 0 (see the
middle and right panels in Fig. 3). Taking into account that
the axial current is not conserved in the gapped case, such
oscillations are not forbidden. Moreover, as we see, the larger
is the gap, the more pronounced are the oscillations. When the
gap is fixed, we also find that the local amplitude of the axial
current density oscillations is not the same across the whole
sample: it decreases with the increasing distance from the slab
boundaries.

It may be interesting to emphasize that, in a finite-
thickness slab, the axial current density originates from
helicity-correlated standing waves. Of course, the underlying
roots of this are (i) finite thickness of the slab and (ii) the
spin-polarized nature of the LLL. This can be seen explicitly
from the structure of the LLL wave function in Eq. (B7), which
takes the following simple form in the gapless limit:

�slab(r)n=0 = −eipyy−(lpy+x/l)2/2

2π1/4
√

al

⎛
⎜⎝

0
ie2iapz−ipzz

0
eipzz

⎞
⎟⎠. (15)

FIG. 2. (Color online) The dimensionless axial current density in an infinite space (red dashed line) and in the middle of the slab (blue solid
line) plotted as a function of the width of the slab a for the three values of the band gap: m/μ = 0 (left panel), m/μ = 0.25 (middle panel),
and m/μ = 0.75 (right panel). To plot the figure, we fixed vF /μ = 12.5 Å.
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FIG. 3. (Color online) The dimensionless axial current density plotted as a function of the chemical potential and z/a for the three values of
the band gap: am/vF = 0 (left panel), am/vF = 2 (middle panel), and am/vF = 6 (right panel). To plot the figure, we fixed vF /a = 25 meV.

Such a standing wave is made of a pair of counterpropagating
plane waves carrying opposite chiralities or helicities. This
is clear since, in the chiral representation used, see Eq. (2),
the upper (lower) two components of the wave function
describe right-handed (left-handed) modes. The configuration
in Eq. (15) can be interpreted as follows: the helicity of each
plane wave propagating to the boundary flips the sign after
the reflection. This is indeed expected for the spin-polarized
LLL states. A nontrivial helicity correlation of the LLL
standing waves remains even in the gapped case, but it is
not as transparent. Such a correlation is the key feature that is
responsible for the axial current density in a semimetal slab.

Before concluding this subsection, let us briefly discuss
the implications of the chiral separation effect in a slab
of finite thickness. Naively, one may expect that the axial
current density in the bulk of the semimetal should lead to an
accumulation of positive chiral charge on one side of the slab,
and negative chiral charge on the other. As is easy to check,
however, this does not occur. In fact, the axial charge density
is identically zero everywhere, 〈j 0

5 〉 ≡ 0.

B. Axial current in the vacuum with finite band gap

As the results in the previous subsection show, in a slab
geometry, there is a nonzero axial current density in the bulk

of semimetal. However, the current should be vanishing in the
vacuum because of the imposed boundary conditions. Then,
the current density should presumably go to zero in the surface
layer. In order to clarify this issue, in this subsection, we
investigate the continuity equation for the axial current density
at the vacuum side of the slab.

In the absence of an electric field, the axial charge
and current densities should satisfy the following continuity
equation [7]:

∂0j
0
5 + ∇ · j5 = 2m(z)iψ†γ 0γ 5ψ, (16)

in all regions of space, including at the boundary of the
slab. Note that, in order to have the continuity equation well
defined, we will assume that the vacuum band gap M is
large, but finite. The corresponding results for the LLL wave
functions are derived in Appendix B 3; see Eqs. (B22), (B23),
and (B24). Also, in the same Appendix, we derive a modified
version of the spectral equation for the wave vector pz; see
Eq. (B21).

By making use of the wave functions in Eqs. (B23)
and (B24), we can also compute the axial current density
outside the slab. In the region z > a, the corresponding result
is given by

〈
j 3

5

〉
n=0,z>a

= −|eB|vF sgn(μ)

2πa

∑
pz

θ
(
μ2 − v2

F p2
z − m2

)

× v2
F p2

zMe−2(z−a)
√

M2−v2
F p2

z−m2/vF

2
(
v2

F p2
z + m2

)
(M − m) + mvF

√
M2−
(
v2

F p2
z+m2

)
a

+ v3
F p2

zM

a

√
M2−
(
v2

F p2
z+m2

)
, (17)

where the sum is performed over the discrete values of the wave vectors that satisfy Eq. (B21). The result in the region z < −a

is similar, but one should replace −(z − a) → (z + a).
In order to check the continuity equation in the regions outside the slab, let us calculate the ground-state expectation value of

the quantity that appears on right-hand side of Eq. (16). It is straightforward to show that

2iM〈ψ†
z>aγ

0γ 5ψz>a〉 = |eB| sgn(μ)

2πa

∑
pz

θ
(
μ2 − v2

F p2
z − m2)2√M2 − v2

F p2
z − m2

× v2
F p2

zMe−2(z−a)
√

M2−v2
F p2

z−m2/vF

2
(
v2

F p2
z + m2

)
(M − m) + mvF

√
M2−
(
v2

F p2
z+m2

)
a

+ v3
F p2

zM

a

√
M2−
(
v2

F p2
z+m2

)
. (18)
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In the region z < −a, the corresponding quantity is obtained
by replacing −(z − a) → (z + a) and flipping the overall sign.

By taking the derivative of Eq. (17) with respect to z

and making use of Eq. (18), we check that the continuity
equation (16) is indeed satisfied in the regions outside the slab.
Therefore, the axial current flows to the boundary, where, due
to the presence of the large vacuum mass M , it exponentially
vanishes. Moreover, as claimed earlier, this happens without
any chiral charge accumulation at the boundaries.

IV. CHIRAL MAGNETIC EFFECT IN THE SLAB

In this section, we will study the chiral magnetic effect in
a slab geometry (for simplicity, only the case of the chiral
limit will be considered here). In order to do this, we need
to introduce a nonzero chiral chemical potential μ5 into our
model of a semimetal. In the chiral limit, one might try to
introduce μ5 by just replacing the fermion number chemical
potential μ with μ ± μ5 in the distribution function (10) for
the right- and left-handed particles, respectively. By recalling,
however, that in the presence of the boundaries the chiral
symmetry is broken even in the case of gapless Dirac fermions
in the bulk, we know that μ5 does not correspond to a conserved
quantity. In such a situation, it is more convenient to treat
μ5 as a phenomenological parameter that modifies the model
Hamiltonian, i.e.,

H =
∫

d3r �†(r)[vF α · (−i∇ + eA) − μ − μ5γ
5]�(r).

(19)

It is worth noting that in the model under consideration μ5 de-
termines the relative energy shift of the left- and right-handed
Weyl nodes. We calculate the ground-state expectation values
by using the Schwinger prescription, where the summation
over energy eigenvalues is performed with the distribution
function f0(E) = −sgn(E)/2. [Note that, in this case, the
effective distribution function f0(E−) + f0(E+), where E± =
−μ ±

√
v2

F p2
z + 2nε2

L, gives the same distribution as Eq. (10)
in the gapless limit.]

For Hamiltonian (19), we find the following LLL wave
function inside the semimetal:

�slab(r)n=0 = Y0(ξ )eipyy

⎧⎪⎨
⎪⎩eipzzC0

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠+ eip̃zzC̃0

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠
⎫⎪⎬
⎪⎭,

(20)

where pz = −(E + μ + μ5)/vF and p̃z = (E + μ − μ5)/vF .
The corresponding wave functions outside the slab are given by
Eqs. (B1) and (B2). By making use of the matching conditions
in Eqs. (B3) and (B4), we derive the spectral equation for the
wave vectors, cos [a(pz − p̃z)] = 0. By solving this equation,
we find that the energy parameter E can take only the following
discrete values:

Ek = −μ + πvF

2a

(
k − 1

2

)
, (21)

where k is a positive integer. After enforcing the boundary
conditions, we also derive the following final expression for
the wave function inside the slab:

�slab(r)n=0 = Y0(ξ )eipyy

2
√

al

⎛
⎜⎝

0
eipzz

0
−ieipza+ip̃z(z−a)

⎞
⎟⎠, (22)

and find that the corresponding LLL contribution to the electric
current vanishes,

〈j 3〉 =
∞∑

k=1

f (Ek)vF �
†
slab(r)n=0γ

0γ 3�slab(r)n=0 = 0. (23)

Although this result is natural in the Bogolyubov model, it may
appear surprising because it is precisely the LLL contribution
that saturates the CME in an infinite system. To complete the
analysis of the CME in a finite slab, however, we should still
analyze the contributions of higher Landau levels (n > 0). For
a semimetal described by Hamiltonian (19), the wave functions
in higher Landau levels are given by

�slab(r)n = eipyy

⎡
⎢⎢⎢⎢⎢⎣C1e

iPzz

⎛
⎜⎜⎜⎜⎜⎝

−ivF

(√
P 2

z + 2nε2
L

v2
F

+ Pz

)
Yn−1(ξ )√

2nε2
LYn(ξ )
0
0

⎞
⎟⎟⎟⎟⎟⎠+ C2e

iP̃zz

⎛
⎜⎜⎜⎜⎜⎝

0
0

ivF

(√
P̃ 2

z + 2nε2
L

v2
F

− P̃z

)
Yn−1(ξ )√

2nε2
LYn(ξ )

⎞
⎟⎟⎟⎟⎟⎠

+C3e
−iPzz

⎛
⎜⎜⎜⎜⎜⎝

−ivF

(√
P 2

z + 2nε2
L

v2
F

− Pz

)
Yn−1(ξ )√

2nε2
LYn(ξ )
0
0

⎞
⎟⎟⎟⎟⎟⎠+ C4e

−iP̃zz

⎛
⎜⎜⎜⎜⎜⎝

0
0

ivF

(√
P̃ 2

z + 2nε2
L

v2
F

+ P̃z

)
Yn−1(ξ )√

2nε2
LYn(ξ )

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦, (24)

where Pz = v−1
F

√
(E + μ + μ5)2 − 2nε2

L and P̃z = v−1
F

√
(E + μ − μ5)2 − 2nε2

L.
The corresponding spectral equation is obtained by matching the wave functions in the bulk with those in the vacuum; see

Eqs. (B3) and (B4). Its explicit form reads

(1 − e4iaPz )(1 − e4iaP̃z )
[
(E + μ)2 − μ2

5 − 2nε2
L

]+ v2
F PzP̃z(1 + e4iaPz + e4iaP̃z + 4e2ia(Pz+P̃z) + e4ia(Pz+P̃z)) = 0. (25)
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When μ5 �= 0, we could solve this equation only numerically.
By making use of the spectral equation, we can write down
the formal solution for the semimetal wave function in the
slab. The corresponding expression is bulky and not very
informative. Therefore, we do not present it here. Instead,
by making use of the numerical solutions to Eq. (25), we
calculate the contribution of the higher Landau levels to the
electric and axial current densities. Both results vanish within
the numerical precision used.

Thus, unlike the axial current density of the CSE, the
electric current density of the CME is absent in the slab. This
result might have been expected from general considerations.
Because of the Bogolyubov bag model boundary conditions
(with an infinite band gap in vacuum), there should be no
electric current across the boundary. Taking into account that
the electric current is not anomalous, this means that the
continuity equation for the electric current can be satisfied
only if the electric current vanishes inside the slab. This is
exactly what the direct calculations give. Moreover, in the
model at hand, the electric current will remain vanishing even
in the limit a → ∞. This fact is consistent with the case of
infinite systems in equilibrium considered in Refs. [56–58].

In passing, let us briefly discuss the simplest case of a
Weyl semimetal. The corresponding model Hamiltonian will
be similar to that in Eq. (19), but will include an additional
term, −vF

∫
d3r �†(r)(α · �)γ 5�(r). The value of � ≡ �ez,

which is often called the chiral shift parameter, determines
the separation between the Weyl nodes in momentum space.
Here, for simplicity, we assume that � points in the +z

direction. This may be sufficient because the components of
the chiral shift parallel to the slab surface are not expected
to modify the currents in the slab. When � �= 0, we find
that the LLL wave functions in the bulk have the same form
as in Eq. (20), but with pz = −(E + μ + μ5)/vF + � and
p̃z = (E + μ − μ5)/vF − �. Then, by making use of the
wave functions outside the slab, see Eqs. (B1) and (B2), and
enforcing the boundary conditions in Eqs. (B3) and (B4), we
find that the energy can take only the following discrete values:

Ek = −μ + vF � + πvF

2a

(
k − 1

2

)
, (26)

where k is a positive integer. Compared to the result in Eq. (21),
the only difference here is the change μ → μ − vF �. This
finding is in agreement with the result in an infinite system,
obtained in Ref. [42]. The calculation of the higher Landau
level contributions to the axial current is more challenging in
the general case μ5 �= 0. Therefore, we restrict our discussion
to the simpler case, μ5 = 0. In contrast to the case of an infinite
system, we find that the contributions of higher Landau levels
to the axial current density vanish. Therefore, our results for
the axial and electric current densities in a Dirac semimetal
slab, see Eqs. (12) and (23), remain qualitatively the same also
in the case of a Weyl semimetal slab, but with the replacement
μ → μ − vF �.

V. WORK FUNCTION, ELECTRIC FIELDS, AND
CONTINUITY EQUATION FOR AXIAL CURRENT

The work function of a solid is defined as the energy
needed to remove an electron from the solid to vacuum (see,

e.g., [59]). Microscopically, it can be thought of as the result
of a “confining” electric field E near the surface, resulting
from the electron density leaking slightly out of the material.
In the problem at hand, we consider a semimetal slab with
a nonzero magnetic field perpendicular to its surface. This
means that E · B �= 0 near the surfaces. As we know, such a
field configuration has a nontrivial (anomalous) contribution
to the continuity equation for the axial current [7], i.e.,

∂0j
0
5 + ∇ · j5 = 2im(z)ψ†γ 0γ 5ψ − e2

4π2
E · B. (27)

Therefore, it is important to investigate the role of this relation
near the surfaces.

Let us assume that the electric field E is perpendicular to
the surface and exists only in a thin layer of depth λE . We can
conveniently describe such a configuration by using a timelike
component of the vector potential, A0, i.e.,

− a − λE < z < −a : A0 = −Ez, (28)

a < z < a + λE : A0 = Ez. (29)

By assumption, A0 vanishes inside the slab (i.e., −a < z < a),
as well as in the vacuum regions outside the thin surface layers
(i.e., for z < −a − λE and z > a + λE).

For the sake of clarity and brevity, we consider the case of
zero gap inside the semimetal, m = 0. Inside the semimetal,
where electric field is absent, the LLL wave function is given by

ψ−a<z<a = e−iEtY0(ξ )eipyy

⎛
⎜⎝

0
C1e

−izpz

0
C2e

izpz

⎞
⎟⎠. (30)

Although the Dirac equation admits exact analytic solutions in
constant electric and magnetic fields [60], we find it more con-
venient and transparent to obtain the corresponding solutions
in the region near the slab boundaries, where electric field is
present, in the first order of the perturbation theory in electric
field E . Since we treat electric field in perturbation theory and
only the LLL modes contribute to the axial current in a mag-
netic field, we begin with the following ansatz [compare with
the LLL wave functions (30) in the absence of electric field]:

ψvac = e−iEtY0(ξ )eipyy

⎛
⎜⎝

0
φ1(z)

0
φ2(z)

⎞
⎟⎠. (31)

Then the Dirac equation in the region a < z < a + λE implies
the following equations for the functions φ1 and φ2:

Eφ1(z) − vF (i∂z + eEz/vF )φ1(z) + Mφ2(z) = 0, (32)

Eφ2(z) + vF (i∂z − eEz/vF )φ2(z) + Mφ1(z) = 0. (33)

We seek solutions of this system of equations as the Taylor
series in E retaining only its two first terms

φ1(z) = f0(z) − eEf1(z), (34)

φ2(z) = g0(z) − eEg1(z). (35)
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By substituting Eq. (35) into Eq. (33), we obtain the solutions

f0(z) = A1e
−p′

zz + A2e
p′

zz,

g0(z) = − 1

M
[A1e

−p′
zz(E + ivF p′

z) + A2e
p′

zz(E − ivF p′
z)],

(36)

f1(z) = 1

4(vF p′
z)

3

(
A1e

−p′
zz
{
i
(
v2

F p′
z + 2M2z

)− 2E3z2/vF

+E[vF + 2vF p′
zz + 2(Mz)2/vF ] − 2iE2z

}
+A2e

p′
zz
{
i
(
v2

F p′
z − 2M2z

)+ 2E3z2/vF

−E[vF − 2vF p′
zz + 2(Mz)2/vF ] + 2iE2z

})
, (37)

g1(z) = − 1

4(vF p′
z)

3M

(
A1e

−p′
zz
{− 2E3z2

(
E + ivF p′

z

)
/vF

+M2[vF + 2vF p′
zz + 2Ez2(E + ivF p′

z)/vF ]
}

+A2e
p′

zz
{
2E3z2(E − ivF p′

z)/vF

−M2[vF − 2vF p′
zz + 2Ez2(E − ivF p′

z)/vF ]
})

,

(38)

where p′
z = v−1

F

√
M2 − E2 and A1 and A2 are constants. By

matching the wave function (30) and the vacuum functions

ψz<−a−λE
= e−iEtY0(ξ )eipyyep′

z(z+a+λE )C ′′
1

⎛
⎜⎝

0
1
0
i

⎞
⎟⎠, (39)

ψ−a−λE<z<−a = e−iEtY0(ξ )eipyy

⎛
⎜⎝

0
f0(z + a)+eEf1(z + a)

0
g0(z + a)+eEg1(z + a)

⎞
⎟⎠,

(40)

ψa<z<a+λE
= e−iEtY0(ξ )eipyy

⎛
⎜⎝

0
f0(z − a) − eEf1(z − a)

0
g0(z − a) − eEg1(z − a)

⎞
⎟⎠,

(41)

ψz>a+λE
= e−iEtY0(ξ )eipyye−p′

z(z−a−λE )C ′
1

⎛
⎜⎝

0
1
0
−i

⎞
⎟⎠, (42)

at z = −a − λE , z = −a, z = a − λE , and z = a, and taking
into account the normalization conditions, we find that the
linear in E terms of the wave functions (40) and (41) do not
contribute to the continuity equation for axial current because

∂3
〈
j 3

5

〉
−a−λE<z<−a

− 2iM
〈
ψ

†
−a−λE<z<−aγ

0γ 5ψ
†
−a−λE<z<−a

〉
= O(e2E2), (43)

∂3
〈
j 3

5

〉
a<z<a+λE

− 2iM
〈
ψ

†
a<z<a+λE

γ 0γ 5ψ
†
a<z<a+λE

〉
= O(e2E2). (44)

This result is quite natural because the anomalous term in the
chiral anomaly is connected with the lack of a chiral symmetry
invariant regularization of the famous linearly divergent
triangle diagram [7]. Thus, it is high-energy modes whose
contribution is divergent and should be regularized which are
responsible for the anomalous term in the continuity equation
for axial current. Consequently, we conclude that the low-
energy modes confined in the semimetal satisfy the continuity
equation for axial current without the anomalous term.

VI. CONCLUSION

In this paper, we studied the chiral separation and chiral
magnetic effects in a Dirac semimetal with a slab geometry
placed in a constant magnetic field perpendicular to its
surfaces. We used the Bogolyubov boundary conditions [48]
at the surfaces of the slab. It is worth mentioning that such
a model was originally used in high-energy physics for the
description of hadrons within the framework of the bag models
of quarks [54]. This model assumes that the quasiparticles have
a large band gap (Dirac mass) in the vacuum regions outside
the slab.

Using this model setup, we derived analytically the spectral
equation and the wave functions for the bulk modes. Further-
more, we calculated the axial current density and found that,
just like in an infinite system, only the LLL modes contribute
to this quantity. We show that the main consequence of a
finite slab thickness is that the axial current density becomes
quantized. The corresponding quantization could be revealed
in its functional dependence on the chemical potential and
the thickness of the slab. The underlying reason for the
quantization is the discretization of the wave vectors and
energy levels in the slab. In other words, the axial current
density originates from helicity-correlated standing waves,
associated with the LLL. It is also interesting to point that
there is no chiral charge accumulation on the semimetal
boundaries, as might have been naively expected. The size of
the quantization steps in the axial current density as a function
of the chemical potential, see Fig. 1, is given by δ〈j 3

5 〉 =
eBvF /(4aπ ). Because the steps are inversely proportional to
the thickness of the slab a, most likely the corresponding
structure can be observed in experiment only if the samples
are sufficiently thin.

As we show in this study, the dependence of the axial current
density on the thickness of the slab a has a very characteristic
sawtooth shape; see Fig. 2. With increasing the value of a,
the quantization effects become less pronounced and the axial
current density gradually approaches the limit of an infinite
system. Interestingly, the quantization persists even in the case
of Dirac quasiparticles with nonzero gaps. However, a nonzero
gap has a damping effect in the dependence on a.

We also find that, in the case of gapped Dirac fermions,
m �= 0, the axial current density is not uniform across the
semimetal slab, but oscillates as a function of the position; see
Fig. 3. This is in contrast to the chiral limit when the axial
current is constant. In fact, the larger is the gap, the more
pronounced are the oscillations. Formally, such a behavior
is connected with a nonconservation of the axial charge. It
appears that the amplitude of the oscillations decreases with
increasing the distance from the boundaries. To the best of
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our knowledge, the possibility of such oscillations and their
key features have not been reported before. It would be very
interesting to test this scenario in the lattice simulations.
Also, this phenomenon could potentially be investigated
experimentally in a semimetal with a spontaneously generated
gap, e.g., via magnetic catalysis [61], or another mechanism.

By introducing a nonzero chiral chemical potential μ5, we
also analyzed the chiral magnetic effect in a semimetal slab.
In contrast to the axial current density due to the CSE, the
corresponding electric current due to the CME is absent in a
semimetal slab. In retrospect, the vanishing result is a natural
outcome of the nonanomalous continuity equation for the
electric current and the Bogolyubov boundary conditions [54].
Indeed, the latter are equivalent to the requirement of vanishing
electric current from the semimetal to vacuum. It is worth
emphasizing, however, that in this study we limited our
consideration only to static configurations. This automatically
excludes all transient phenomena in which nonzero electric
currents are generated out of equilibrium and evolve in
time. The corresponding generation of the CME in finite-size
samples would be very interesting and should be studied in
the future. Such a problem is beyond the scope of this study
however.

We took into account a nonzero electric field near the
slab surface created by a double charge layer present at the
surfaces of solids. It was found that, because of the presence
of this electric field, the continuity equation for the axial
current is fulfilled for the low-energy modes considered in
this study without taking into account the linear in electric
field anomalous term. In all fairness, the current understanding
of the chiral anomaly in the problem of a finite-size Dirac
semimetal remains incomplete. While it is understood that the
chiral symmetry is explicitly broken by the surface effects, it
is not completely clear whether the model implementation of
the boundary layer used in the present study is sufficient to
capture all relevant physics effects.

One of the limitations of this study is the use of a special
orientation of the magnetic field perpendicular to the slab
surfaces. The main reason for this was that the analysis would
become much more challenging in the case of a tilted magnetic
field. From the physics viewpoint, the complications come
from the need of squeezing the Landau orbits into a finite
thickness of the slab. Nevertheless, here we could speculate
that, in the case of a general orientation of the magnetic field,
one may consider separately the perpendicular and parallel
(with respect to the surface) components of the currents, while
the results for the perpendicular components of the currents
are expected to remain qualitatively the same as in the special
case considered in this paper (except for the replacement
B → B cos θ , where θ is an angle between the direction of the
magnetic field and the normal to the slab surface). The parallel
components of the currents are most likely to be the same as
in an unbounded infinite system, but with B → B sin θ . While
plausible, such a scenario clearly requires a further in-depth
investigation, which is beyond the scope of this study.
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APPENDIX A: DERIVATION OF THE LANDAU-LEVEL
WAVE FUNCTIONS

In this Appendix we derive the Landau-level wave functions
in the model described by the Hamiltonian in Eq. (1). We look
for the solutions of the Dirac equation, Hψ(r) = Eψ(r), in
the form ψ(r) = eipzz+ipyyφ(x). In this case, function φ(x)
satisfies the following equation:

[(−vF pzγ
z − vF pyγ

y + ivF γ x∂x)γ 0

− vF eBxγ yγ 0 + mγ 0]φ(x) = Eφ(x). (A1)

In the case of a constant magnetic field in the +z direction,
assumed here, we choose the vector potential in the Landau
gauge, A = (0,Bx,0). (Clearly, all observables should be
independent of a specific gauge choice.) Instead of the x

coordinate, it is convenient to introduce a new dimensionless
variable,

ξ =
√

|eB|
(

py

eB
+ x

)
, (A2)

and rewrite Eq. (A1) as follows:[
∂ξ + is⊥ξγ yγ x − iγ x

√|eB|

×[pzγ
z + (m/vF ) − (E/vF )γ 0]

]
φ(ξ ) = 0, (A3)

where s⊥ = sgn(eB). By making use of the same approach
as in Ref. [55], let us introduce a set of linearly independent
bispinors u±

s that satisfy the following relations:

iγ yγ xu±
s = ∓u±

s , (A4)

γ yγ x(Eγ 0 − vF pzγ
z)u±

s = s

√
v2

F p2
z − E2 u±

s , (A5)

γ x(γ 0E − γ zvF pz − m)√
E2 − v2

F p2
z − m2

u−
s = u+

s . (A6)

Then, by expressing the wave function φ(ξ ) as a linear
combination of the two bispinors,

φs(ξ ) = �s
+(ξ )u+

s + �s
−(ξ )u−

s , (A7)

and using the relations in Eqs. (A4) through (A6), we rewrite
the equation for the wave function (A3) in the following form:

[∂ξ�
s
±(ξ ) ∓ s⊥ξ�s

±(ξ ) + iκ�s
∓(ξ )] = 0,

(A8)[
∂2
ξ ∓ s⊥ − ξ 2 + κ2

]
�s

±(ξ ) = 0,

where κ =
√

E2 − v2
F p2

z − m2/εL and εL ≡ vF

√|eB|. With-
out loss of generality, let us choose s⊥ ≡ sgn(eB) = +1.
Then, the solutions of Eq. (A8) are given in terms of the
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parabolic cylinder functions [62]:

�s
−(ξ ) = Dκ2/2(

√
2ξ ), �s

+(ξ ) = iκ√
2
Dκ2/2−1(

√
2ξ ).

(A9)

By requiring that the wave functions are finite at |ξ | → ∞,
one finds that κ2/2 = n where n = 0,1,2, . . . are nonnegative
integers. In this special case, the parabolic cylinder functions
Dn(

√
2ξ ) can be expressed in terms of the Hermite polynomi-

als Hn(ξ ): Dn(
√

2ξ ) = 1√
2n

e−ξ 2/2Hn(ξ ). By making use of the
definition of κ , we also obtain the corresponding Landau-level
energies: E2

n = v2
F p2

z + m2 + 2nε2
L. It should be noted that

function �s
+(ξ ) is not finite at |ξ | → ∞ when n = 0. However,

by using the relation in Eq. (A6), we can express u+
s through

u−
s , i.e.,

u+
s =

−mγ x − γ ys

√
v2

F p2
z − E2

n√
E2

n − v2
F p2

z − m2
u−

s

= −γ x
m + s

√
E2

n − v2
F p2

z√
E2

n − v2
F p2

z − m2
u−

s . (A10)

Then, in the case of the LLL (n = 0), we see that the coefficient
in the last equation vanishes if s = −1. This means that, for
the LLL, only one value of the spin, s = −1, is allowed. For
the higher Landau levels, both spin projections, i.e., s = ±1,
are allowed. The Landau-level wave functions are given by

φs(ξ ) =
⎡
⎣e−ξ 2/2

√
2n

Hn(ξ ) − iγ x
m + s

√
m2 + 2nε2

L√
2ε2

L

× e−ξ 2/2

√
2n−1

Hn−1(ξ )

⎤
⎦u−

s , (A11)

where, according to Eqs. (A4) through (A6),

u−
s =

⎛
⎜⎝

0
χ2

0
χ4

⎞
⎟⎠, u+

s =
m + s

√
E2

n − v2
F p2

z√
E2

n − v2
F p2

z − m2

⎛
⎜⎝

−χ4

0
χ2

0

⎞
⎟⎠,

χ4 =
s

√
E2

n − v2
F p2

z

En − vF pz

χ2. (A12)

Finally, the explicit form of the Landau-level wave functions
reads

ψ(r)n=0 = C0 eipzz+ipyy φ0;s=−1(ξ ), (A13)

ψ(r)n�=0 = eipzz+ipyy[C1φn;s=+1(ξ ) + C2φn;s=−1(ξ )], (A14)

where

φ(ξ )n>0,s=+1 = C1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i

√
m2+2nε2

L

En−vF pz

m+
√

m2+2nε2
L√

2nε2
L

Yn−1(ξ )

Yn(ξ )

i
m+

√
m2+2nε2

L√
2nε2

L

Yn−1(ξ )
√

m2+2nε2
L

En−vF pz
Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A15)

φ(ξ )n>0,s=−1 = C2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i

√
m2+2nε2

L

En−vF pz

m−
√

m2+2nε2
L√

2nε2
L

Yn−1(ξ )

Yn(ξ )

i
m−

√
m2+2nε2

L√
2nε2

L

Yn−1(ξ )

−
√

m2+2nε2
L

En−vF pz
Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A16)

φ(ξ )n=0,s=−1 = C0

⎛
⎜⎜⎜⎜⎝

0

Y0(ξ )

0

− m
E0−vF pz

Y0(ξ )

⎞
⎟⎟⎟⎟⎠. (A17)

Here Yn(ξ ) = e−ξ2/2√
2nn!

√
π
Hn(ξ ) are the harmonic oscillator wave

functions. By making use of Eqs. (A13) through (A17), it is
straightforward to obtain the wave functions (3) and (4) in the
main text.

APPENDIX B: MATCHING SOLUTIONS AT THE
SEMIMETAL BOUNDARIES

In this Appendix, we derive the explicit expressions for
the wave functions in the semimetal with a slab geometry by
matching the general solutions, presented in Eqs. (5) and (6) in
the main text, with the corresponding vacuum solutions. This
is done by making use of the Bogolyubov bag model, in which
the wave functions outside the semimetal satisfy the same type
Dirac equation, but with a large vacuum band gap M .

1. Matching the wave functions of the n = 0 modes

Let us first consider the n = 0 modes. In order to obtain
normalizable solutions outside the semimetal, in the regions
with z > a and z < −a, in Eq. (3) we will replace pz with
ip′

z and −ip′
z, respectively. With such a parametrization of

the vacuum solutions, the energy of the n = 0 modes is
given by E = ±√M2 − (vF p′

z)2. In the limit M → ∞, the
corresponding solutions must have the same (finite) energy
as the n = 0 modes in the bulk. This implies that vF p′

z ≈
M − (m2 + v2

F p2
z )/(2M). Therefore, to leading order in the

inverse powers of M , the corresponding wave functions in the
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vacuum are given by

ψ(r)n=0,z>a = C ′
0Y0(ξ )eipyye−M(z−a)/vF

⎛
⎜⎝

0
1
0
−i

⎞
⎟⎠, (B1)

ψ(r)n=0,z<−a = C ′′
0 Y0(ξ )eipyyeM(z+a)/vF

⎛
⎜⎝

0
1
0
i

⎞
⎟⎠. (B2)

By making use of Eqs. (5), (B1), and (B2), we find that the
matching conditions on the two sides of the semimetal slab,

�slab(x,y,a)n=0 = ψ(x,y,a)n=0,z>a, (B3)

�slab(x,y, − a)n=0 = ψ(x,y, − a)n=0,z<−a, (B4)

lead to the following equation for pz:

vF pz cos (2apz) + m sin (2apz) = 0, (B5)

where pz �= 0. Note that pz = 0 is not allowed because
it corresponds to a trivial solution for the wave function.

Satisfying the boundary conditions also fixes the value of
constant C̃0 in the superposition of two counterpropagating
waves in the bulk solution (5):

C̃0 = −e2ipzaC0
E0(E0 + vF pz)

m(m − ivF pz)
. (B6)

By taking this into account, we derive the following final
expression for the wave function inside the semimetal:

�slab(r)n=0 = C0Y0(ξ )eipyy

×

⎛
⎜⎜⎜⎜⎝

0

2eiapz vF pz cos[pz(z−a)]−(m+iE0) sin[pz(z−a)]
im+vF pz−E0

0

−2ieiapz vF pz cos[pz(z−a)]−(m−iE0) sin[pz(z−a)]
im+vF pz−E0

⎞
⎟⎟⎟⎟⎠,

(B7)

where

|C0|2 = εL[m2 + vF pz(vF pz − E0)]

4vF

[
2a
(
m2 + v2

F p2
z

)+ mvF

] (B8)

is obtained from the condition of the wave function normal-
ization.

2. Matching the wave functions of n > 0 modes

Let us now consider the modes with n > 0 outside the slab. As in the case of the n = 0 mode, in order to obtain normalizable
solutions in the z > a and z < −a regions, in Eq. (4) we replace pz with ip′

z and −ip′
z, respectively. The energies of such

solutions are given by En = ±
√

M2 + 2nε2
L − (vF p′

z)
2. In the limit M → ∞, these should coincide with the corresponding

expressions for the Landau-level energies in the bulk. This is satisfied if we choose vF p′
z ≈ M − (m2 + v2

F p2
z )/(2M) in the

vacuum solutions. By taking this into account, we derive the following vacuum wave function in the z > a region:

ψ(r)n,z>a = e−p′
z(z−a)+ipyy

⎡
⎢⎢⎣M(C ′

+ + C ′
−)

Yn−1(ξ )√
2nε2

L

⎛
⎜⎝

1
0
i

0

⎞
⎟⎠+

⎛
⎜⎜⎝

−iEn(C ′
+ + C ′

−) Yn−1(ξ )√
2nε2

L

C ′
+Yn(ξ )

0
iC ′

−Yn(ξ )

⎞
⎟⎟⎠+ O

(
1

M

)⎤⎥⎥⎦, (B9)

where we kept terms up to subleading order in the inverse powers of M . From the normalization of the wave function (B9), we
find that

C ′
± = C ′

1

√
2nε2

L

2M
± C ′

2 + O

(
1

M2

)
. (B10)

Therefore, the final expression for the wave function in the vacuum region z > a is given by

ψ(r)n,z>a = e−M(z−a)/vF +ipyy

⎡
⎢⎣C ′

1Yn−1(ξ )

⎛
⎜⎝

1
0
i

0

⎞
⎟⎠+ C ′

2Yn(ξ )

⎛
⎜⎝

0
1
0
−i

⎞
⎟⎠
⎤
⎥⎦. (B11)

The wave function in the other vacuum region, z < −a, can be obtained in a similar way. The final result reads

ψ(r)n,z<−a = eM(z+a)/vF +ipyy

⎡
⎢⎣C ′′

1 Yn−1(ξ )

⎛
⎜⎝

−1
0
i

0

⎞
⎟⎠+ C ′′

2 Yn(ξ )

⎛
⎜⎝

0
1
0
i

⎞
⎟⎠
⎤
⎥⎦. (B12)

The matching conditions at the boundary of the semimetal are similar to those in Eqs. (B3) and (B4), i.e.,

�slab(x,y,a)n>0 = ψ(x,y,a)n>0,z>a, (B13)

�slab(x,y, − a)n>0 = ψ(x,y, − a)n>0,z<−a. (B14)
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By substituting the wave functions from Eqs. (6), (B11), and (B12) into these matching conditions, we find that pz should satisfy
the same spectral equation (B5) as in the case of the n = 0 modes. By taking into account, however, that the rank of the system of
Eqs. (B13) and (B14) is 2 units less than the dimension of the system, we obtain the following two linearly independent solutions
for each higher Landau level (n > 0) inside the slab:

�
(1)
slab(r)n>0 = C+eipyy

⎛
⎜⎜⎜⎜⎜⎜⎝

−2i

√
2nε2

Le−ipza sin[pz(z+a)]
m+i(vF pz−En) Yn−1(ξ )

2ie−iapz vF pz cos[pz(z+a)]+(m−iEn) sin[pz(z+a)]
m+i(vF pz−En) Yn(ξ )√

2nε2
Le−ipza [m+i(vF pz+En)] sin[pz(z+a)]

m2+ivF pzm+2nε2
L

Yn−1(ξ )

−2e−iapz vF pz cos[pz(z+a)]+(m+iEn) sin[pz(z+a)]
m+i(vF pz−En) Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B15)

�
(2)
slab(r)n>0 = C−eipyy

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2e−iapz
i[m2−im(vF pz+En)] sin [pz(z+a)]+2nε2

L cos [pz(z+a)]+vF pz[vF pz+En]eipz (z+a)√
2nε2

L

√
m2+2nε2

L

Yn−1(ξ )

−2 e−ipza (vF pz+En) sin [pz(z+a)]√
m2+2nε2

L

Yn(ξ )

2i
e−iapz

√
m2+2nε2

L{pz cos [pz(z+a)]+(m−iEn) sin [pz(z+a)]}√
2nε2

L(vF pz−En)
Yn−1(ξ )

2ie−iapz (vF pz+En) sin [pz(z+a)]√
m2+2nε2

L

Yn(ξ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B16)

where the normalization constants are given by

|C+|2 = εLpz

[
m2 + nε2

L + vF pz(vF pz − En)
]

4vF

[
2apzE2

n + mvF pz − nε2
L sin (4apz)

] , (B17)

|C−|2 = nε3
Lpz(vF pz − En)2

4vF

(
m2 + 2nε2

L

)[
2apzE2

n + mvF pz − nε2
L sin (4apz)

] . (B18)

3. Matching of the LLL wave functions in the case of finite vacuum gap

Let us now consider the LLL in the case of large but finite vacuum gap M . In order to derive the tails of the LLL wave
functions in the regions z > a and z < −a outside the slab, we use Eq. (3) with pz replaced with ip′

z and −ip′
z, respectively, i.e.,

ψ(r)n=0,z>a = Y0(ξ )eipyye−p′
z(z−a)A′

0

⎛
⎜⎜⎜⎜⎝

0

1

0

− M
E0−ivF p′

z

⎞
⎟⎟⎟⎟⎠, (B19)

ψ(r)n=0,z<−a = Y0(ξ )eipyyep′
z(z+a)A′′

0

⎛
⎜⎜⎜⎜⎝

0

1

0

− M
E0+ivF p′

z

⎞
⎟⎟⎟⎟⎠. (B20)

Here p′
z = v−1

F

√
M2 − E2

0 . Enforcing the matching conditions at the boundaries of the slab, see Eqs. (B3) and (B4), we find that
the wave vector pz should satisfy the following spectral equation:

−vF pz

√
M2 − E2

0 cos (2apz) + (E2
0 − mM

)
sin (2apz)

M
= 0. (B21)

[As expected, in the limit M → ∞, this equation reduces to Eq. (B5).] The corresponding LLL wave functions inside the
semimetal and outside the slab are given by

�slab(r)n=0 = A0Y0(ξ )eipyy

⎛
⎜⎜⎜⎜⎜⎝

0

eipz(z−a) − e−ipz(z−a) (E0+vF pz)
[
E2

0−mM−ivF pz

√
M2−E2

0

]
mE0(m−M)

0

m
vF pz−E0

[
eipz(z−a) − e−ipz(z−a) (E0−vF pz)

[
E2

0−mM−ivF pz

√
M2−E2

0

]
mE0(m−M)

]

⎞
⎟⎟⎟⎟⎟⎠, (B22)
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ψ(r)n=0,z>a = −A0Y0(ξ )eipyye−
√

M2−E2
0 (z−a)/vF

vF pz

[
m(m − M) + (vF pz + E0)

(
vF pz − i

√
M2 − E2

0

)]
mE0(m − M)

⎛
⎜⎜⎝

0
1
0

− M

E0−i
√

M2−E2
0

⎞
⎟⎟⎠,

(B23)

ψ(r)n=0,z<−a = −2A0Y0(ξ )eipyye
√

M2−E2
0 (z+a)/vF

E0m
[
vF pz cos (2apz) +

√
M2 − E2

0 sin (2apz)
]

(E0 − vF pz)
[
m
(
E0 − i

√
M2 − E2

0

)− M(vF pz + E0)
]
⎛
⎜⎜⎝

0
1
0

− M

E0+i
√

M2−E2
0

⎞
⎟⎟⎠,

(B24)

where the overall constant A0 is obtained from the normalization condition. Its explicit expression is given by

|A0|2 = εL(m − M)E0(E0 − vF pz)

4vF

(
2aE2

0(m − M) − mvF

√
M2 − E2

0 − v3
F p2

zM√
M2−E2

0

) . (B25)
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