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Topological dephasing in the ν = 2/3 fractional quantum Hall regime
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We study dephasing in electron transport through a large quantum dot (a Fabry-Perot interferometer) in the
fractional quantum Hall regime with filling factor 2/3. In the regime of sequential tunneling, dephasing occurs
due to electron fractionalization into counterpropagating charge and neutral edge modes on the dot. In particular,
when the charge mode moves much faster than the neutral mode, and at temperatures higher than the level
spacing of the dot, electron fractionalization combined with the fractional statistics of the charge mode leads to
the dephasing selectively suppressing h/e Aharonov-Bohm oscillations but not h/(2e) oscillations, resulting in
oscillation-period halving.
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I. INTRODUCTION

A fractional quantum Hall (QH) system of filling fraction
ν has edge channels that support fractional charges obeying
fractional braiding statistics [1]. At ν = 2/3, the edge states
are decomposed into a ν

edge
c = 2/3 charge mode and a counter-

propagating neutral mode [2,3]. They originate from renormal-
ization of two counterpropagating charge modes [4,5], νedge

1 =
1 and ν

edge
2 = −1/3, and stabilize at low temperature under

strong disorder. Neutral modes have attracted much attention,
as they are charge neutral and carry energy. They have been
recently detected through shot noise measurements [6], and
their properties such as energy and decay length have been
extensively studied [7–20].

Electron interaction is a dominant source of dephasing
at low temperature [21]. It leads to electron fractionaliza-
tion [22,23] in quantum wires; an electron, injected into a
wire, splits into constituents (spin-charge separation, charge
fractionalization), showing reduction of interference visibility
or dephasing [24]. Interestingly, when the wire is finite, the
constituents recombine after bouncing at wire ends, resulting
in coherence revival [25]. Fractionalization was detected [26]
in a nonchiral wire, and studied in the integer QH edge [27–32].

Coherent transport, as well as dephasing, can be tackled
through the study of low energy dynamics at the edge.
This is particularly important in the context of the fractional
QH regime. The present study implies that the presence of
neutral modes could be a dominant source of dephasing.
Note that neutral modes have been observed in almost all
fractional QH systems [16]. At the same time, there is no
uncontested observation of anyonic interference oscillations
in the pure Aharonov-Bohm regime of a fractional QH
interferometer [33].

The present study of the ν = 2/3 QH regime emphasizes
two dephasing mechanisms by fractionalization of an electron
into charge and neutral components, plasmonic dephasing, and
topological dephasing. Concerning the plasmonic dephasing
mechanism, the overlap between the plasmonic parts of the
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charge and neutral components decreases with time, as the two
components propagate with different velocities in the opposite
directions. The resulting dephasing is similar to the plasmonic
dephasing that takes place in a quantum wire or in integer QH
edges. On the other hand, the topological dephasing is a new
mechanism unnoticed so far. It occurs because the zero-mode
parts of the components, satisfying fractional statistics, may
braid with thermally excited anyons. Thermal average of the
resulting braiding phase leads to dephasing that occurs only in
the interfering processes characterized by particular values of
topological winding numbers.

Our analysis addresses the AB oscillation of differential
conductance G through a quantum dot (QD) in the ν = 2/3
QH regime. We focus on linear response of electron sequential
tunneling into the QD. G is decomposed into the harmonics of
the AB flux � in the QD,

G = e2

h

∑
δp=0,1,2,···

Gδp cos

(
2πδp

�

�0

)
, (1)

where �0 ≡ �c/|e| is a flux quantum, see Fig. 1. Semiclassi-
cally, δp represents the relative winding number of a fraction-
alized charge component, around the circumference L of the
QD, between two interfering paths: an electron, after tunneling
into the QD, fractionalizes into charge and neutral components,
see Fig. 1. The charge (neutral) component has propagation
velocity vc(n), spatial width LT,c(n) ≡ �vc(n)/(2πkBT δc(n)) at
temperature T , level spacing Ec(n) ≡ 2π�vc(n)/L, and scaling
dimension δc = 3/4 (δn = 1/4) in the electron tunneling
operator at low temperatures.Gδp is determined by the overlaps
of the components of the same kind between two interfering
paths of relative charge winding δp.

We find two mechanisms suppressing Gδp �=0, the plasmonic
dephasing, and the topological dephasing; the former (latter)
involves plasmon (zero-mode) parts of the components. In
the plasmonic dephasing, Gδp is contributed from the two
interfering paths whose charge components overlap maximally
between the paths. However, their neutral components overlap
only partially between the interfering paths, reducing Gδp;
similar dephasing occurs in other fractionalizations [24,25].
The topological dephasing additionally occurs, but depending
on δp, in contrast to the other known mechanisms. When vc �
vn [34,35], the first harmonics Gδp=1 is suppressed at kBT >
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FIG. 1. (Color online) A large quantum dot (Fabry-Perot inter-
ferometer) in the fractional QH regime of ν = 2/3, coupled to lead
edge states of ν = 2/3 (black solid lines) through quantum point
contacts (QPCs) at xL,R. Electron (rather than fractional quasiparticle)
tunneling occurs through the QPCs (dotted lines). Following the
tunneling, each electron (and the hole left behind in the lead edge)
fractionalizes into a charge component propagating at velocity vc

(solid blue arrow) and a neutral component counterpropagating at
velocity vn (dashed red). The magnetic flux in the dot area is �.

En/(4π2δn) (namely, L > LT,n). It is because the charge com-
ponent gains thermally fluctuating fractional braiding phase
of πNc (leading to eiπNc = ±1), while it winds once (δp = 1)
around Nc electronic or anyonic thermal excitations on the QD
edge or in the bulk. By contrast, the second harmonics Gδp=2

is not affected by the topological dephasing (as braiding phase
πNcδp and (±1)δp = 1 are trivial) and dominates G, resulting
in h/(2e) AB oscillations. These above findings occur in both
the regimes of strong disorder and weak disorder in the edge
of the QD. Note that the topological dephasing does not occur
in the Coulomb dominated regime [33,36] where Coulomb
interactions between the bulk and edge of the QD is strong, as
discussed later.

II. SETUP AND HAMILTONIAN

The ν = 2/3 QD is coupled to two lead edges via quantum
point contacts (QPCs) [37], see Fig. 1. The Hamiltonian is
H = HD + HL + HR + HT. HD describes the edge of the
QD, while HL(R) the ν = 2/3 left (right) lead edge. Each
edge consists of the bosonic mode φ1 (νedge

1 = 1) and the
counterpropagating φ2 (νedge

2 = −1/3). φi=1,2 supports charge
eν

edge
i and satisfies [φi(x),φi ′(x ′)] = iπν

edge
i sgn(x − x ′)δii ′ at

positions x,x ′. Introducing the charge mode φc ≡ √
3/2(φ1 +

φ2) (supporting charge 2e/3) and the neutral mode φn ≡
(φ1 + 3φ2)/

√
2, one writes [2,3]

HD = �

4π

∫ L

0
dx[vc(∂xφc)2 + vn(∂xφn)2 + v∂xφc∂xφn]

+
∫ L

0
dx[ξ (x) exp(i

√
2φn) + H.c.]. (2)

Disorder-induced tunneling amplitude ξ (x) between φ1 and
φ2 is modeled by a Gaussian random variable with mean zero
and variance ξ ∗(x)ξ (x) = Wδ(x − x ′). For a finite range of
bare parameters, φc and φn decouple [2] at low temperatures,
rendering v irrelevant. HL,R is written similarly to HD, except∫ L

0 → ∫∞
−∞ in Eq. (2). Note that we ignore the Coulomb

interaction between the bulk and edge of the QD, considering
that the QD size is large enough [36].

The QPCs are almost closed, so electron tunneling
is facilitated. Renormalization group analysis [2,3] indi-
cates four equally most relevant electron tunneling op-
erators between the electron field operators, 	±(xα) =
ei

√
3/2φc(xα )e±iφn(xα )/

√
2/

√
2πa at xα=L,R on the QD, and

	α,±(0) on lead edge α; a is an ultraviolet cutoff and 	α,±
has the same form as 	±. So the tunneling Hamiltonian is
HT =∑α=L,R

∑
i,j=±[tαij	

†
α,i(0)	j (xα) + H.c.], where tαij

is the tunneling strength.

III. TOPOLOGICAL DEPHASING

We show that at ν = 2/3, fractionalization and fractional
statistics cause the topological dephasing. We address the
number operator Nc(n) of charge (neutral) mode at the QD
edge,

1
3Nc = N1 − 1

3N2, Nn = N2 − N1, (3)

defined through the zero-mode parts of φ1,2 (see Appendix B).
The number operator N1(2) of φ1(2) is an integer since e and
−e/3 are the elementary charges of φ1,2; Nc is an integer
measuring charge excitations in the units of e/3 (Nc = 1 for a
quasiparticle of charge e/3; Nc = 3 for an electron).

A quasiparticle of charge e/3 at position x on the QD
edge is written as eiφc(x)/

√
6e±iφn(x)/

√
2 [10]. Consider clockwise

exchange of two such quasiparticles. Since [φc(x),φc(x ′)] =
iπsgn(x − x ′), the exchange of the two charge components
results in statistical phase π/6,

e
i√
6
φc(x)

e
i√
6
φc(x ′) = e±i π

6 sgn(x ′−x)e
i√
6
φc(x ′)

e
i√
6
φc(x)

. (4)

So, after the charge component of the electron operator 	±
winds once clockwise around Nc charge-mode excitations on
the edge, a phase 3 × Nc × 2 × π/6 = πNc is gained [38].
Here, 3 means the number of charge components forming
	±(x), and 2 refers to braiding (double exchanges). Sim-
ilarly, the exchange of the neutral components of the two
quasiparticles leads to exchange phase −π/2. So the neutral
component of 	±(x) gains ±1 × Nn × 2 × (−π/2) = ∓πNn,
after winding once around Nn neutral-mode excitations; the
number of the neutral components of 	± is ±1.

This has implications on the dynamics of an electron which
enters into the QD and then fractionalizes. When vc � vn,
there is a process where the charge component of the electron
winds once around the QD, while the neutral component moves
very little. In terms of the winding numbers of the charge
and neutral components, p and q, this process is denoted
by (p,q) = (1,0). This process interferes with that of no
winding (p′,q ′) = (0,0), contributing to the h/e harmonics
Gδp=1, see Fig. 2. The relative winding numbers between the
two interfering paths are (δp = p − p′ = 1,δq = q − q ′ =
0), and the net braiding phase gained from that winding
around Nc charge and Nn neutral excitations on the edge
is π (Ncδp ∓ Nnδq) = πNc. Since Nc is an integer, thermal
fluctuations of quasiparticle (or electron) excitations on the
edge give rise to fluctuations of the braiding phase factor
eiπNc = ±1 [+ (−) for even (odd) Nc], suppressing the h/e

harmonics. This topological braiding-induced dephasing also
occurs due to thermal quasiparticle or electron fluctuations in
the bulk, see Appendix F for quasiparticle fluctuations in the
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FIG. 2. (Color online) Dynamical processes involving different
winding numbers of the charge (p) and neutral (q) components.
(a) (p,q) = (0,0): an electron injected at xL fractionalizes into
charge (moving along blue solid arrows) and neutral (red dashed)
components. (b) (p,q) = (1,0). For vc � vn, the charge (neutral)
component arrives at xL, after winding once around the QD, p = 1
(almost once, q = −1). The interference of relative winding numbers
(δp,δq) = (1, − 1) between (a) and (b) contributes to Gδp=1. Reduced
overlap between the neutral components of (a) and (b) leads to
plasmonic dephasing. For vc � vn, the dynamics is depicted for (c)
(p,q) = (1,0) and (d) (p,q) = (2,0). The charge component winds
once in (c) and twice in (d), while the neutral component moves
little by �L in (c) and 2�L in (d) (hence mainly q = 0). The
interference between (a) and (c) suffers from topological dephasing
with odd δp + δq. The interference between (a) and (d) is immune to
topological dephasing.

bulk. Note that this topological dephasing is utterly different
from a dephasing mechanism at zero temperature, arising when
quasiparticles traveling along an edge change internal degrees
of freedom within the bulk (e.g., Ref. [39]).

By contrast, the main contribution to the h/(2e) harmonics
Gδp=2 comes from (δp,δq) = (2,0). In this case, the braiding
phase factor eπi(Ncδp∓Nnδq) = 1, regardless of Nc being even
or odd. Hence Gδp=2 is immune to the topological dephasing.
In general, such dephasing occurs only with odd δp + δq,
since the fluctuating Nc ± Nn is always even [see Eq. (3)].
When vc � vn, the topological dephasing does not occur, since
δp = −δq and Nc ± Nn is even.

The above arguments hold for the pure AB regime (or
for the intermediate regime between pure AB and Coulomb-
dominated regimes). An apt question is to what extent this
analysis holds for the Coulomb dominated regime. When
an electron of a given energy enters the QD by the process
of sequential tunneling, it occupies a certain orbital state of
the QD edge, satisfying energy conservation. In the pure AB
regime, the area enclosed by the orbit (hence, the AB phase
assigned to the orbit) is not modified when the number of
quasiparticles or electrons in the bulk of the QD fluctuates
thermally: edge-bulk interactions are negligible. Hence such
thermal fluctuations affect only the braiding phase gained by
the electron, leading to topological dephasing. By contrast,
in the Coulomb-dominated regime, the fluctuations are fully
screened by the edge, reflecting the effect of edge-bulk
interaction. This screening leads to modification of the area

of the orbit, hence it modifies the AB phase of the orbit.
This change of the AB phase exactly cancels out the change
of the braiding phase caused by the thermal fluctuations. It
follows that topological dephasing disappears in the Coulomb-
dominated regime.

IV. SEQUENTIAL TUNNELING

We computeG in Eq. (1) to the order of sequential tunneling,

G � e2

�
cgγ̃ kBT

∑
j=±,α

∫ 0

−∞
dtF (t)Im Gj (xα,xα; t), (5)

where γ̃ = γLγR/(γL + γR), γα ∝ |tαij |2 is the (renormalized)
electron tunneling rate between the QD and lead edge α =
L,R, Gj (xα,xα; t) ≡ 〈[	†

j (xα,t),	j (xα,0)]〉 is the Green func-
tion describing the time (t) evolution of the fractionalized com-
ponents of an injected electron described by 	j (xα,t = 0), and
cg is a constant. The start and end positions of the Green func-
tion Gj (xα,xα; t) coincide, since the Green function describes
the sequential tunneling. The injection leaves a hole behind
on the lead edge. F (t) = (πkBT t/�) sinh−2(δc+δn)(πkBT t/�)
accounts for the fractionalization of the hole. For the detailed
derivation of Eq. (5), see Appendix C.

Gδp comes from the interference between two processes
of relative charge winding number δp. At kBT > Ec/(2π2),
the charge component has spatial width LT,c < L. Then,
Gj (xα,xα; t) contributes to Gδp mainly around the times
δpL/vc, at which the charge component arrives at the initial
injection point xα after winding δp times around L; the neutral
component winding times δqL/vn are much less important,
because of the scaling dimensions δc = 3δn > δn. We focus
on Gδp=1 and Gδp=2, as they involve the shorter times of
δpL/vc, are more robust against the dephasing discussed
below, hence are much larger than Gδp�3 at kBT � Ec. At
kBT � Ec, we compute Gδp=1 and Gδp=2 analytically in the
absence of disorder and interaction (W = 0, v = 0), and
also in the strong-disorder regime, based on a finite-size
bosonization [25,40–44] and a semiclassical approximation
(see Appendix E).

V. CLEAN REGIME

We first deal with the regime of W = 0 and v = 0 [see
Eq. (2)] and then discuss the regime of weak disorder and
weak intermode interaction. We treat various contributions
to dephasing quantitatively for the two cases of vc � vn and
vc � vn.

When vc � vn and kBT � Ec, only the plasmonic de-
phasing is important. The dominant contribution to G comes
from the h/e harmonics. With the additional condition of
kBT � �vn/(L − �L), we obtain

Gδp=1 ∝ γ̃ L(kBT )3 exp

(
− L

LT,c

− �L

LT,n

− L − �L

LT,n

)
, (6)

where �L = Lvn/vc. We explain two processes, whose inter-
ference dominatesGδp=1. In one process [Fig. 2(a)], an electron
tunnels from lead edge L into the QD and fractionalizes at xL
at time t ′1 = 0, while at t ′2 = −L/vc in the other [Fig. 2(b)].
The charge components of the two processes interfere at
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xL at t = 0, contributing to Gδp=1, after respective windings
p = 0 and 1. At that time, the distance between the neutral
components is L − �L, leading to partial overlap, hence, to
the third factor exp(−(L − �L)/LT,n) ofGδp=1. The tunneling
leaves a hole behind onL, which also fractionalizes into charge
and neutral components (not shown in Fig. 2). The partial
overlap at t = 0 between the two charge components from the
holes created at t ′1 and t ′2, and that between the two neutral
components, lead to the first two exponential factors of Gδp=1

in Eq. (6), respectively.
In the other limit of vc � vn, both plasmonic and topologi-

cal dephasings are crucial. There are two interfering processes
for Gδp=1 shown in Figs. 2(a) and 2(c), and for Gδp=2 in
Figs. 2(a) and 2(d). When kBT � Ec, we obtain

Gδp=1 ∝ γ̃ L(kBT )3 exp

(
− L

LT,c

− �L

LT,n

− �L

LT,n

+ (�L)2

LLT,n

)

× exp

[
− (L − �L)2

LLT,n

]
(7)

Gδp=2 ∝ γ̃ L(kBT )3 exp

[
−2

(
L

LT,c

+ �L

LT,n

+ �L

LT,n

)]
. (8)

The first three exponential factors of Gδp=1 and Gδp=2 result
from plasmonic dephasing, as those of Eq. (6). The third
factor has a form different from that of Eq. (6) of vc � vn,
as the interfering neutral components in the QD are now
�L apart in space. The factor 2 in the arguments of Gδp=2

arises from the double winding. Another exponential factor
exp[(�L)2/(LLT,n)] of Gδp=1 comes from the plasmonic part
of the neutral component; it is canceled out with zero-mode
contributions in Eqs. (6) and (8) and also in other cases [25].

The last suppression factor in Eq. (7), exp[−(L −
�L)2/(LLT,n)], represents the topological dephasing, arising
from the zero-mode parts of Gj (xα,xα; t). The process in
Fig. 2(c) (where the center of the neutral component hardly
moves, while the charge component winds once around L)
interferes with that of Fig. 2(a), contributing to (δp,δq) =
(1,0). As discussed around Eq. (4), this interference with δp +
δq = 1 is suppressed by the thermally fluctuating braiding
phase factor of eiπ(δpNc+δqNn) = ±1. The suppression factor is
interestingly determined by the spatial tail (or finite LT,n) of
the zero-mode part of the neutral component. The tail indicates
that the neutral component can quantum mechanically wind
once more than the semiclassical number q of the center; the
quantum-mechanical winding is well defined by the Poisson
formula (see Appendix D). Hence, from the processes in
Figs. 2(a) and 2(c), interference with the total relative winding
number of δp + (δq + 1) can occur. As δp + δq + 1 is even,
this interference avoids the topological dephasing, dominantly
contributing to Gδp=1, but it is reduced by the separation
L − �L of the neutral components of δq + 1 relative wind-
ings. This explains the factor exp[−(L − �L)2/(LLT,n)]; the
exponent is quadratic in L − �L, since it originates from the
zero-mode part [25].

We point out that the topological dephasing occurs when
L > LT,n [kBT > En/(4π2δn)], as seen in the last exponential
factor in Eq. (7). In contrast, the plasmonic dephasing occurs
when kBT � Ec. Note that we choose the condition of kBT �

(a) = 0.9  

Φ/ Φ  
-2 -1 0 1 2 

×10-2 

2.171 

2.174 
2.173 
2.172 

(b) = 0.1  

Φ/ Φ  
-2 -1 0 1 2 

×10-2 

1.254  

1.258  

1.262  

1.266  

� 

FIG. 3. (Color online) Topological dephasing and period halv-
ing. Shown are Aharonov-Bohm oscillations of G for (a) vn = 0.9vc

(period �0) and for (b) vn = 0.1vc (period �0/2) at kBT = Ec/20
(blue curve). G is measured in units of e2γ̃ a/(h2v3/4

c v1/4
n ) and

L = 200a.

Ec for the derivation of Eq. (7), to show both of the plasmonic
dephasing and the topological dephasing simultaneously.

Because of the topological dephasing, Gδp=2 is much larger
than Gδp=1 when vc � vn; exp(−(L − �L)2/LLT,n) is much
smaller than the other factors. As a result, G shows h/(2e) AB
oscillations. In Fig. 3, we numerically compute G for both
vc � vn and vc � vn without employing the semiclassical
approximation. The result for vc � vn demonstrates the
topological dephasing and consequent period halving even at
kBT < Ec.

So far, we have discussed the regime of no intermode
interaction (v = 0) and no disorder (W = 0). The argument
of the regime holds also in the regime of weak intermode
interaction and weak disorder, with slight modifications. In this
regime, the plasmonic part of the neutral component decays,
together with the diffusive spreading of the plasmonic part of
the charge component [3]. These slightly modify the plasmonic
dephasing (the first three dephasing factors in Eqs. (6)–(8),
but do not affect the topological dephasing. Note that the
weak-disorder regime is realized when the renormalization
of W stops by temperature T or QD size L before going to
the strong-disorder regime, and a weak intermode interaction
occurs in a dot when the Coulomb interaction between the
charge modes is larger than the confining potential (see
Appendix G and Refs. [15,45]). In recent experiments [12],
neutral modes are measured with QDs of size 4 μm2, implying
that the intermode interaction is sufficiently weak in the QDs.

VI. STRONG-DISORDER REGIME

We show that Eqs. (6)−(8) hold in the strong-disorder
regime of a QD edge without any modification. In this regime,
the neutral component is totally decoupled with the charge
component [v = 0 in Eq. (2)] [2].

We start with the diagonalized form of HDHD =∫ L

0 dx[vc(∂xφc)2/(4π ) + vnψ̃
†i∂xψ̃]. This form is obtained

from Eq. (2), where the effect of disorders is in-
cluded. Here, ψ̃(x) ≡ (ei(χ̃+φ̃n)/

√
2,ei(χ̃−φ̃n)/

√
2)T = U (x)ψ(x),

the unitary matrix U (x) = Tx exp[−i
∫ x

0 dx ′(ξ (x ′)σ+ +
ξ ∗(x ′)σ−)/vn] represents random-disorder scattering, ψ ≡
(ei(χ+φn)/

√
2,ei(χ−φn)/

√
2)T is a two-component fermionic op-

erator, χ is an auxiliary bosonic field, and σ± = σx ± iσy ,
σx and σy are the Pauli matrices. The equal-position correlator
〈[	†

±(xL,t),	±(xL,0)]〉 is replaced by 〈[	̃†
±(xL,t),	̃±(xL,0)]〉

when we choose the global gauge transformation making
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U (xL) = 1. Then, it is readily computed because the Hamilto-
nian is free in the basis of 	̃±, and is the same as Gj (xα,xα; t)
in Eq. (5) that is obtained in the absence of interaction (v = 0)
between the charge and neutral components and disorder
(W = 0). Hence Eqs. (6)–(8) can be also applied to the
strong-disorder regime.

VII. DISCUSSION AND CONCLUSION

We have studied electron dephasing at ν = 2/3. Electron
fractionalization into charge and neutral components leads to
plasmonic dephasing. When vc � vn (which is likely [34,35])
and at kBT > En/(4π2δn), a new type of dephasing addi-
tionally arises. This dephasing is topological, resulting from
the fractionalization and the fractional braiding statistics of
the components, and occurs depending on the topological
sectors characterized by the winding numbers (δp,δq) of
the components; its dependence on the even-odd parity of
δp + δq is mathematical reminiscent of the parity (integer
versus half-integer spin) dependent role of the topological θ

term in antiferromagnetic spin chains [46]. It leads to period
halving of the AB oscillations.

We emphasize that the topological dephasing occurs in
both the regimes of strong and weak disorder when bulk-edge
interactions are not strong. In the case of weak disorder,
which may be realized in high temperatures, weak intermode
interaction causes the decay of the plasmonic part of the neutral
component, accompanied by the diffusive spreading of the
plasmonic part of the charge component [3]. These do not
affect the topological dephasing, hence the emergence of the
h/2e oscillations. On the other hand, in the case of strong
disorder at low temperatures, v renormalizes towards zero [2],
and then does not change the physics of the topological
dephasing. Note that bulk-edge Coulomb interactions become
weaker in QDs of larger area; the pure AB regime (or the
intermediate regime between the pure AB and the Coulomb-
dominated regimes) could be achieved when the edge-to-bulk
capacitance is smaller than other capacitances even when
strong backscattering occurs at QPCs.

We also note that the QH edges at ν = 2/3 may undergo
more complex edge reconstruction at about T > 50 mK
[15,47]. At lower temperature our analysis is applicable, while
at higher temperature different topological dephasing may
occur. Assuming vn ∼ 5 × 104 m/s, vc ∼ 5 × 105 m/s, and
L = 10 μm, we expect that the h/(2e) oscillation will appear
at temperature kBT > �vn/(2πδnL) ∼ 20 mK. In this case,
the oscillation will be suppressed at kBT > �vc/(2πδcL) ∼
60 mK, due to the plasmonic dephasing.

Detection of the period halving supports the topological
dephasing, thus, the fractional statistics of the charge compo-
nent at ν = 2/3. The plasmonic dephasing and the topological
dephasing will occur, with modifications, in other anyon
interferometers or at other ν’s.

It should be mentioned that the known mechanisms yielding
h/(2e) oscillations in other mesoscopic systems do not apply
to our setup. The Altshuler-Aronov-Spivak mechanism [48,49]
employs disorder averaging in multichannel geometries, which
is not present in our setup. Another mechanism for h/2e

oscillations [50,51] relies on integer QH edge modes in an
antidot at temperatures much below the charging energy of the

antidot. Moreover, our setup does not have superconducting
fluctuations that support such periodicity.
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APPENDIX A: QUANTUM-DOT HAMILTONIAN

We derive the Hamiltonian HD [cf. Eq. (2) in the main text].
HD is written in terms of the mode φ1 of filling factor ν1 = 1
and the counterpropagating mode φ2 of ν2 = −1/3, as

HD = �

4π

∫ L

0
dx[v1(∂xφ1)2 + 3v2(∂xφ2)2 + 2v12∂xφ1∂xφ2]

+
∫ L

0
dx[ξ (x) exp(iφ1 + 3iφ2) + H.c.]. (A1)

v1(2) is the velocity of φ1(2) (renormalized by the intra-mode
interactions) and v12 describes the inter-mode interaction. φ1,2

satisfies [φi(x),φi ′ (x ′)] = iπν
edge
i sgn(x − x ′)δii ′ . Each field

φi(x) is decomposed through φi(x) = φ
pl
i (x) + φ0

i (x) into
a plasmonic mode φ

pl
i (x), satisfying the periodic boundary

condition of φ
pl
i (x + L) = φ

pl
i (x), and a zero mode φ0

i (x),

φ0
i (x) = 2πνix

L

(
Ni + 1

2
− �

�0

)
− λi. (A2)

The number operator Ni counts the excess number of
quasiparticles of charge ν

edge
i e. Its canonical conjugate λi

satisfies [λi,Ni ′ ] = iδii ′ , and e±iλi changes Ni by ±1, acting
as a Klein factor. This ensures [φ0

i (x),φ0
i ′(x

′)] = 2iδii ′πν
edge
i

(x − x ′)/L. Combined with the commutation rule of the plas-
monic part [φpl

i (x),φpl
i ′ (x ′)] = iπν

edge
i (sgn(x−x ′)−2(x−x ′)/

L)δii ′ , this leads to [φi(x),φi ′(x ′)]= iπν
edge
i sgn(x−x ′)δii ′ .

The term 1/2 in the bracket of Eq. (A2) is introduced
to impose the boundary condition of electron operators,
exp(iφi(x + L)/νedge

i ) = exp(iφi(x)/νedge
i ) exp(−2πi�/�0).

The magnetic flux � enclosed by the QD edge states causes
the shift of Ni → Ni − �/�0 in Eq. (A2); as � increases
(decreases) by �0, the edge state with filling factor ν

edge
i

is energetically stabilized by removing (adding) its own
quasiparticle of charge ν

edge
i e.

Combining φi’s, one introduces the charge mode φc =√
3/2(φ1 + φ2) and the neutral mode φn = √

1/2(φ1 +
3φ2), satisfying [φc/n(x),φc/n(x ′)] = ±iπsgn(x − x ′) and
[φc(x),φn(x ′)] = 0. Putting this into Eq. (A1), we derives
Eq. (2).

APPENDIX B: DERIVATION OF Nc AND Nn

We derive Eq. (3) in the absence of disorder (W = 0). The
charge (neutral) mode is decomposed into the zero-mode part
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φ0
c (x) (φ0

n(x)) and the plasmonic part φpl
c (x) (φpl

n (x)). The latter
describes edge plasmonic excitations, while the former anyon
number excitations. The zero-mode parts are determined from
Eq. (A2) as

φ0
c (x) =

√
1

6

2πx

L

(
Nc + 1 − 2

�

�0

)
−

√
6λc,

φ0
n(x) = −

√
1

2

2πNnx

L
−

√
2λn. (B1)

We impose [λc(n),Nc(n)] = i, [λc(n),Nn(c)] = 0, and
[φpl

c(n)(x),φpl
c(n)(x

′)] = ±iπsgn(x−x ′) ∓ 2πi(x−x ′)/L. These
ensure [φ0

c/n(x),φ0
c/n(x ′)] = ±2πi(x − x ′)/L and [φc/n(x),

φc/n(x ′)] = ±iπsgn(x − x ′). Comparing Eqs. (B1) with (A2),
one gets Eq. (3).

APPENDIX C: DERIVATION OF DIFFERENTIAL
CONDUCTANCE

In this Appendix, we derive G in Eq. (5). The electron
current IR along the right lead edge is given by IR,

〈IR〉 = e
d〈nR〉

dt
= i

e

�
〈[HT,nR]〉

= − ie

�

∑
i,j=±

〈
Tt exp

(
i

�

∫ 0

−∞
dtĤT(t)

)[
tRij 	̂

†
R,i(0,t ′ = 0)	̂j (xR,t ′ = 0) − H.c.

]
Tt exp

(
− i

�

∫ 0

−∞
dtĤT(t)

)〉
, (C1)

nR counts electron number in the right lead edge, Tt is the time ordering, the operators with (without) caret are in the interaction
(Heisenberg) picture, and 〈·〉 is the thermal average. We set t = 0 at which IR is measured. To second order in the tunneling
strengths, 〈IR〉 is calculated as

〈
I (2)
R
〉 = e

�2

∑
i,j=±

∫ 0

−∞
dt
〈[
ĤT(t),(tRij 〈	̂†

R,i(0,0)	̂j (xR,0)〉 − H.c.)
]〉

= e

�2

∑
i,j=±

|tRij |2
∫ 0

−∞
dtRe

[
exp

(
− i

�
(μR − μD)t

)(
GK

D,j(−t)
(
GR

R,i − GA
R,i

)
(t) − (GR

D,j − GA
D,j

)
(−t)GK

R,i(t)
)]

. (C2)

GR

α(D),±, GA

α(D),± and GK

α(D),± are the retarded, advanced, and Keldysh Green’s functions of lead edge α = L,R (QD),

(
GR

α,± − GA
α,±
)
(t) ≡ −i〈{	̂α,±(0,t),	̂†

α,±(0,0)}〉, GK
α,±(t) ≡ −i〈[	̂α,±(0,t),	̂†

α,±(0,0)]〉,
(C3)(

GR
D,± − GA

D,±
)
(t) ≡ −i〈{	̂±(xα,t),	̂†

±(xα,0)}〉, GK
D,±(t) ≡ −i〈[	̂±(xα,t),	̂†

±(xα,0)]〉,

and μα (μD) is the chemical potential for lead edge α (the QD). μD is assumed to be uniform over the entire region of the QD,
which is valid in the linear response regime. The expression 〈I (2)

L 〉 of electron current in the left lead edge is similar to that of
〈I (2)

R 〉. To second order in the tunneling strengths, the current I through the QD is written as I = −〈I (2)
L 〉 = 〈I (2)

R 〉.
Applying the current conservation condition of 〈I (2)

R 〉 + 〈I (2)
L 〉 = 0, we write the symmetrized form of I as

I = γL
〈
I (2)
R
〉− γR

〈
I (2)
L
〉

γL + γR

⎡
⎣γL/R =

∑
i,j=±

|tR/Lij |2/
(
�av3/4

c v1/4
n

)⎤⎦

= e

4�
av3/4

c v1/4
n

γLγR
γL + γR

∑
i,j=±

∫ 0

−∞
dtRe

[(
e− i

�
(μR−μD)t − e− i

�
(μL−μD)t

)
× (

GK
D,j(−t)

(
GR

R,i − GA
R,i

)
(t) − (GR

D,j − GA
D,j

)
(−t)GK

R,i(t)
)]

. (C4)

In the second equality, we used the simplification that the left and right lead edges are symmetric (HL = HR), namely, GR
L,± =

GR
R,±, GA

L,± = GA
R,±, and GK

L,± = GK
R,±. We also used the fact that the Green’s functions are independent of the index i = ± of

the electron field operators in HT. The differential conductance G = dI/dV |V →0 is written as

G = − e2

8�2
av3/4

c v1/4
n

γLγR
γL + γR

∑
i,j

∑
α=R,L

∫ 0

−∞
dtIm

[
t
(
GK

D,j (−t)
(
GR

α,i − GA
α,i

)
(t) − (GR

D,j − GA
D,j

)
(−t)GK

α,i(t)
)]

,
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where eV ≡ μL − μR. The Green’s functions for the lead edges are computed as

(
GR

α,i − GA
α,i

)
(t) = − i

πa
Re

⎡
⎣( sinh

(
iπakBT

�vc

)
sinh

(
πkBT
�vc

(ia − vct)
)
) 3

2
(

sinh
(

iπakBT
�vn

)
sinh

(
πkBT
�vn

(ia − vnt)
)
) 1

2

⎤
⎦,

(C5)

GK
α,i(t) = 1

πa
Im

⎡
⎣( sinh

(
iπakBT

�vc

)
sinh

(
πkBT
�vc

(ia − vct)
)
) 3

2
(

sinh
(

iπakBT
�vn

)
sinh

(
πkBT
�vn

(ia − vnt)
)
) 1

2

⎤
⎦.

The Green’s functions are independent of the index α = L,R, because of the imposed symmetry between the left and right lead
edges. Since (GR

α,i − GA
α,i)(t) � GK

α,i(t) at |t | > a/vn, and since the processes of |t | < a/vn do not contribute to the interference
in G, we can ignore GK

α,i(t) in the expression of G. Then, a simplified form of G is obtained as

G = e2

4�2

γLγR
γL + γR

a2kBT

�v
3/4
c v

1/4
n

∑
j=±

∑
α=R,L

∫ 0

−∞
dtF (t)ImGj (xα,xα; t) = e2

�
cgγ̃ kBT

∑
j=±

∑
α=R,L

∫ 0

−∞
dtF (t)Im Gj (xα,xα; t).

Here, γ̃ = γLγR/(γL + γR), cg = a2/(4�
2v

3/4
c v

1/4
n ), the

weight factor F (t) = (πkBT t/�) sinh−2(πkBT t/�), and
Gj (xα,xα; t) ≡ 〈[	†

j (xα,t),	j (xα,0)]〉 represents a Green’s
function of the QD; its starting position xα is the same with the
ending one in the sequential tunneling regime. The weight
factor F (t) decays rapidly as e−2πkBT t/� for t � �/kBT ,
describing the plasmonic dephasing (by partial overlap due
to different positions of the neutral components between the
interfering paths) occuring at lead edge α. The above is the
derivation of Eq. (5) in the main text.

Below, we further compute G in the case of v = 0. We
note that in the absence of disorders (W = 0) and interaction
(v = 0) between the two modes, the Hamiltonian H 0

D of the
zero-mode parts is obtained:

H 0
D = π�vc

6L

(
Nc + 1 − 2

�

�0

)2

+ π�vn

2L
N2

n

= Ec

12

(
Nc + 1 − 2

�

�0

)2

+ En

4
N2

n . (C6)

Here, we define energy scales Ec(n) ≡ 2π�vc(n)/L. Then, the
Green’s function Gj is decomposed into the charge and neutral
components. Then, G is simplified as

G = e2

h

γ̃ akBT

�2v
3/4
c v

1/4
n

∫ ∞

−∞
dtFα(t)ReG0(t)

× Im[Gc(t)Gn(t)e−3πivct/2Le−πivnt/2L], (C7)

where the plasmonic parts Gc(t) and Gn(t) of the charge and
neutral modes and the zero-mode part G0(t) are

Gc(t) = 〈ei
√

3
2 φc(t)e−i

√
3
2 φc(0)〉

=
[

exp

(
iπvct

L

)
θ1
(− iπa

L
,e−γc

)
θ1
(

π(vct−ia)
L

,e−γc

)
] 3

2

,

Gn(t) = 〈ei
√

1
2 φn(t)e−i

√
1
2 φn(0)〉 (C8)

=
[

exp

(
iπvnt

L

)
θ1
(− iπa

L
,e−γn

)
θ1
(

π(vnt−ia)
L

,e−γn

)
] 1

2

,

G0(t) = 〈eiπvct(Nc+1−2�/�0)/Le−iπNnvnt/L〉.

The elliptic-theta function of the first kind is θ1(z,q) =
2q1/4 sin z

∞∏
n=1

(1 − 2q2n cos(2z) + q4n)(1 − q2n), and γc(n) ≡
π�vc(n)/(kBT L) [43]. In the derivation of Eq. (C7), we used
the relations of Gj=+(xα,xα,t) = Gj=−(xα,xα,t), Gc(n)(−t) =
G∗

c(n)(t), and F (t) = −F (−t). The zero-mode part G0(t) will
be calculated in Appendix D.

APPENDIX D: TOPOLOGICAL DEPHASING

We first sketch the topological dephasing in the case of
vc � vn and no disorder, and derive it, by expanding the zero-
mode contribution to G in harmonics of the winding numbers.
The discussion is valid even with strong disorder.

As in the main text, we consider the interference between
the processes in Figs. 2(a) and 2(c). In the semiclassical regime
of L � LT,c/n, counting the winding numbers p and q of the
center of the spatial distributions of the charge and neutral
components, we find that this interference contributes mainly
to (δp,δq) = (1,0), and gains the net phase of θ = π (Nc −
2�/�0)δp from those windings that braid with Nc charge
excitations and Nn neutral excitations. At lower temperature
of L � LT,c/n, the tails (namely, the spatial width LT,c/n) of the
spatial distributions of the components are non-negligible, and
imply that the two processes can also contribute to quantum
mechanical net windings (δpqm,δqqm) that can differ from
(δp,δq). To see the contribution to different windings, we
expand the average of 〈eiθ 〉kBT over the thermal fluctuations of
Nc and Nn in the harmonics of (δpqm,δqqm),

〈eiθ 〉kBT =
∑

δpqm,δqqm∈Z
f (δpqm,δqqm,kBT )

× exp(2πiδpqm�/�0) exp(2πiδqqmϕn), (D1)

where we introduce a fictitious “neutral flux” ϕn in the
mathematical analogy of �/�0 in order to have the expansion;
θ is now generalized to θ = π (Nc − 2�/�0)δp + π (Nn −
2ϕn)δq, and we put ϕn → 0 at the end. The thermal fluctuations
of Nc and Nn are governed by the QD-energy H 0

D = Ec(Nc −
2�/�0 + 1)2/12 + En(Nn − 2ϕn)2/4 [cf. Eq. (C6)]. Notice
H 0

D(�/�0,ϕn)|Nc,Nn
= H 0

D(�/�0 + 1,ϕn + 1)|Nc+2,Nn+2 and
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θ (�/�0)|Nc,Nn
= θ (�/�0 + 1)|Nc+2,Nn+2, meaning that θ and

H 0
D are restored by changing Nc and Nn by 2, when each flux

shifts by one as �/�0 → �/�0 + 1 and ϕn → ϕn + 1.
We decompose the amplitude f (δpqm,δqqm,kBT ) =

fe(δpqm,δqqm,kBT ) + fo(δpqm,δqqm,kBT ) into the average fe

over (even Nc, even Nn) and that fo over (odd Nc, odd Nn); Nc

and Nn should have the same parity, according to Eq. (3) in the
main text. We find a useful relation of fo(δpqm,δqqm,kBT ) =
(−1)δpqm+δqqmfe(δpqm,δqqm,kBT ), obtained from the fact that
the thermal average of 〈eiθ 〉kBT over odd Nc and odd
Nn at (�/�0,ϕn) is identical to that over even Nc and
even Nn at (�/�0 + 1/2,ϕn + 1/2), according to H 0

D. This

relation leads to f (δpqm,δqqm,kBT ) = 0 for odd δpqm + δqqm,
describing the topological dephasing. For the interference
between those in Figs. 2(a) and 2(c), the contribution from
the semiclassical winding of (δp,δq) = (δpqm,δqqm) = (1,0)
vanishes (independent of temperature T !), while Gδp=1 is
contributed dominantly from the quantum mechanical winding
of (δpqm,δqqm) = (1, − 1) of the tail.

We confirm the above discussion mathematically. The flux
dependence of G in Eq. (1) comes from the zero-mode part of
the electron field operator 	±, hence, from the Green’s func-
tion G0 in Eq. (C8). Using Eq. (C6), G0 = 〈exp[iπvct(Nc −
2�/�0 + 1)/L] exp(−iπvntNn/L)〉 is computed as

G0(t) =
⎛
⎝ ∞∑

nc,nn=−∞

⎧⎨
⎩exp

⎛
⎝−

Ec

12

(
2nc + 1 − 2�

�0
+ 1
)2 + En

4 (2nn + 1)2

kBT

⎞
⎠e

i πvc t
L

(2nc+1− 2�
�0

+1)
e−i πvnt

L
(2nn+1)

+ exp

⎛
⎝−

Ec

12

(
2nc − 2�

�0
+ 1
)2 + En

4 (2nn)2

kBT

⎞
⎠e

i πvc t
L

(2nc− 2�
�0

+1)
e−i πvnt

L
(2nn)

⎫⎬
⎭
⎞
⎠

/⎛
⎝ ∞∑

nc,nn=−∞

⎧⎨
⎩exp

⎛
⎝−

Ec

12

(
2nc + 1 − 2�

�0
+ 1
)2 + En

4 (2nn + 1)2

kBT

⎞
⎠+ exp

⎛
⎝−

Ec

12

(
2nc − 2�

�0
+ 1
)2 + En

4 (2nn)2

kBT

⎞
⎠
⎫⎬
⎭
⎤
⎦.

(D2)

The first term of Eq. (D2) comes from odd integers Nc = 2nc + 1 and Nn = 2nn + 1, and the second from even
integers Nc = 2nc and Nn = 2nn. Utilizing the Poisson summation formula of

∑∞
n=−∞ exp[−a(n + δ)2] exp[2bi(n + δ)] =∑∞

p′=−∞ exp(−2πip′δ) exp[−(πp′ + b)2/a] with real constants, a, b and δ, we obtain

G0(t) =
∑∞

δp′,δq ′=−∞(−1)δp
′
(1 + (−1)δp

′+δq ′
) exp(2πiδp′�/�0) exp

[− 3π2kBT
Ec

(
vct

L
− δp′)2] exp

[−π2kBT
En

(
vnt

L
+ δq ′)2]∑∞

δp′′,δq ′′=−∞(−1)δp′′ (1 + (−1)δp′′+δq ′′ ) exp(2πiδp′′�/�0) exp
(− 3π2kBT

Ec
δp′′2) exp

(− π2kBT
En

δq ′′2)

=
∑

δp′+δq ′∈2Z(−1)δp
′
exp(2πiδp′�/�0) exp

[− 3π2kBT
Ec

(
vct

L
− δp′)2] exp

[− π2kBT
En

(
vnt

L
+ δq ′)2]∑

δp′′+δq ′′∈2Z(−1)δp′′ exp(2πiδp′′�/�0) exp
(− 3π2kBT

Ec
δp′′2) exp

(− π2kBT
En

δq ′′2) . (D3)

Here, 2Z is the set of even integers. The denominator is approximated as 1 at high temperature kBT � �vc/L; this condition
of kBT � �vc/L is chosen for simplicity, and it is not a condition for the topological dephasing. Then G0(t) is written by the
harmonics of winding numbers δp′ → δpqm and δq ′ → δqqm,

G0(t) �
∑

δpqm+δqqm∈2Z

(−1)δpqm exp(2πiδpqm�/�0) exp

[
−3π2kBT

Ec

(
vct

L
− δpqm

)2]
exp

[
−π2kBT

En

(
vnt

L
+ δqqm

)2]
. (D4)

Notice that the windings of odd δpqm + δqqm do not contribute
to G0(t), as mentioned in the main text.

APPENDIX E: SEMICLASSICAL APPROXIMATION:
DERIVATION OF EQS. (6)–(8)

In this Appendix, we compute the analytic expression of
Gδp for the two cases vc � vn [Eq. (6)] and vc � vn [Eqs. (7)
and (8)], utilizing a semiclassical approximation such that the
time t in the integrand of Eq. (C7) is replaced by δpL/vc

except for the time argument t in Gc(t). The approximation
is based on the fact that the dominant contribution to the
integrand of Eq. (C7) comes from a peak structure of Gc(t)

near t = δpL/vc; the other peaks from Gn(t) near t = δqL/vn

is more monotonous and less important because the scaling
dimension (δn = 1/4) of the neutral component in the electron
tunneling operator is smaller than that (δc = 3/4) of the charge
component. This approximation is applicable when (i) the
spatial distance between two interfering neutral components
in the QD at t = δpL/vc is much larger than the width
LT,n ∝ �vn/kBT of the neutral components [then Gn(t) is
sufficiently monotonous] and (ii) L � �vc/kBT [then F (t),
coming from the lead edge, is sufficientlly monotonous]. We
focus on the contribution from near t = ±L/vc and near
±2L/vc, since that from larger times t = δpL/vc of |δp| > 2
is much more smaller due to more dephasing.
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We first compute Gδp=1 in the vc � vn case with the semi-
classical conditions of kBT � �vc/L and kBT � �vn/(L −
�L), where �L ≡ Lvn/vc. In Eq. (C7), the main contribution
occurs at t = ±L/vc. Near t = L/vc, we use the following
approximations: (1) for the portion of (δpqm,δqqm) = (1, − 1)
in the zero-mode part, Re[G0] � − cos(2π�/�0) exp(−(L −
�L)2/(LLT,n)); cf. Eq. (C8). (2) For the lead edge part,
F � 4πkBT L exp[−2πkBT L/�vc]/(�vc) = (8L/3LT,c) exp
(−L/LT,c) exp(−�L/LT,n). (3) For the QD plasmon part,

Gc(t)Gn(t) exp

(
−3πivct

2L

)
exp

(
− iπvnt

2L

)

� 2eiπ/4

(
sinh

(
iπkBT a

�vc

)
sinh

(
πkBT (L−vct+ia)

�vc

)
)3/2(

a

LT,n

)1/2

× exp

(
−L − �L

LT,n

)
exp

(
(L − �L)2

LLT,n

)
. (E1)

We have used θ1(u, exp(−γ )) � 2(−1)n
√

π/γ exp[−(u −
nπ )2/γ ] exp(−π2/4γ ) sinh(π (u − nπ )/γ ) for γ � 1.

We compute Eq. (C7), merging together (1)–(3), to get
Eq. (6) in the main text,

Gδp=1 � −g0γ̃ L(kBT )3 exp

(
− L

LT,c

)
exp

(
− �L

LT,n

)

× exp

(
−L − �L

LT,n

)

= −g0γ̃ L(kBT )3 exp

(
− L

LT,c

)
exp

(
− L

LT,n

)
. (E2)

Here, g0 = 16e2
√

2ππ (a/�vc)13/4(a/�vn)3/4(�(3/4))2/(ah)
is a constant, � is the Gamma function, and we have used
the integral formula of

∫ ∞

−∞
dt

[
sinh

(
iπakBT

�vc

)
sinh

(
πkBT
�vc

(ia − vct)
)
] 3

2

= 2a

vc

(
2akBT

�vc

) 1
2

�

(
3

4

)2

.

(E3)

Notice that the factor exp(−(L − �L)2/(LLT,n)) of Re[G0]
(zero-mode part) exactly cancels out exp[(L − �L)2/(LLT,n)]
from Gn(t) (the plasmonic part). This fact was found in a
Luttinger liquid with finite size [25].

We next move to Gδp=1 in the vc � vn case. The main
contribution to Gδp=1 also occurs near t = ±L/vc. We observe
the followings. (1) Because the portion of (δpqm,δqqm) = (1,0)
in Re[G0] fully vanishes, the dominant contribution comes
from the portion of (δpqm,δqqm) = (1, − 1), which leads to
Re[G0] � − cos(2π�/�0) exp(−(L − �L)2/(LLT,n)). (2)
F � 4πkBT L exp(−2πkBT L/�vc)/(�vc) = (8L/3LT,c) exp
(−L/LT,c) exp(−�L/LT,n). (3) For the QD plasmon part, the
same expression is obtained as Eq. (E1), except that L − �L

is replaced by �L. Merging (1)–(3) and using Eq. (E3), we

obtain Eq. (7) in the main text,

Gδp=1 � −g0γ̃ L(kBT )3 exp

(
− L

LT,c

)
exp

(
− �L

LT,n

)

× exp

(
− �L

LT,n

)
exp

[
− (L − �L)2 − (�L)2

LLT,n

]

= −g0γ̃ L(kBT )3 exp

(
− L

LT,n

)
exp

(
− L

LT,c

)
.

(E4)

In the same way, we obtain Eq. (8),

Gδp=2 � 2g0γ̃ L(kBT )3 exp

(
− 2L

LT,c

)
exp

(
−2�L

LT,n

)

× exp

(
−2�L

LT,n

)

= 2g0γ̃ L(kBT )3 exp

(
− 10L

3LT,c

)
. (E5)

APPENDIX F: THE QUASIPARTICLE FLUCTUATION
IN THE BULK

We consider quasiparticle fluctuations in the bulk, differen-
tiating the QD bulk from the edge. In the limit of bulk charging
energy smaller than temperature, we show that the zero-mode
part G0 has the same expression as Eq. (D3) in the presence
of quasiparticle fluctuations in the bulk, hence, that the period
halving (h/2e oscillation) takes place.

We argue that the zero-mode part of the QD states is
characterized by four numbers (Ne, Nn, Nqp, Nqp,n), when
we additionally consider the bulk degrees of freedom. Ne

and Nn are necessary to describe excess electrons in the QD.
For an additional excess electron, the number Ne of excess
electrons increases by 1. This electron is decomposed into
three additional charge components (Nc → Nc + 3; the charge
of the charge component is e/3) and ±1 additional neutral
component (Nn → Nn ± 1), as discussed in the main text.
Nn counts the number of the neutral components by excess
electrons in the QD, as in the main text. On the other hand, Nqp

and Nqp,n are introduced to describe quasiparticle excitations
in the QD bulk. When an additional quasiparticle excites in
the bulk, the number Nqp of quasiparticles increases by 1.
This quasiparticle is decomposed into 1 charge component
and ±1 neutral component (Nqp,n → Nqp,n ± 1). Nqp,n counts
the number of the neutral components by bulk quasiparticle
excitations.

Taking into account quasiparticle fluctuations in the bulk
and electron fluctuations inside the QD, the zero-mode part of
the QD Hamiltonian H 0

D is expressed as

H 0
D(Ne,Nqp,Nn,Nqp,n)

= Ec

12

(
3Ne + 1 − 2�

�0
− Nqp

)2

+ En

4
(Nn − Nqp,n)2

+ Ebc

(
2�

�0
+ Nqp

)2

, (F1)

where Ebc is the bulk charging energy. The first (second)
term describes the interaction between the charge (neutral)
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components on the edge while the third term describes the
interaction between the charge components in the bulk. The
flux dependence in the bulk-charging energy term describes
charge accumulation in the bulk as the magnetic flux increases.
We ignore the interactions between the neutral components in
the bulk because they are of dipole type hence weaker than
the interaction terms of the total charge. We also assume that
it is in the Aharonov-Bohm regime neglecting electrostatic

coupling between quasiparticles in the bulk and on the
edge.

We consider the case that the relaxation time from the QD
edge to the bulk is much longer than the QD dwell time of an
electron injected from a lead edge, hence, that the electron
enters only into the QD edge. Then, the zero-mode part
exp(i

√
3/2φ0

c ± i
√

1/2φ0
n) of the electron operators 	±(x) is

evolved by Eq. (F1) as

ei
√

3
2 φ0

c (x,t)±i
√

1
2 φ0

n(x,t) = eiH 0
Dt ei

√
3
2 φ0

c (x)±i
√

1
2 φ0

n(x)e−iH 0
Dt

= exp

[
i

√
3

2
φ0

c (x) ± i

√
1

2
φ0

n(x) + iπvct

L

(
3Ne + 1 − 2�

�0
− Nqp

)
± iπvnt

L
(Nn − Nqp,n)

]
. (F2)

And, the zero-mode part G0(t) of the Green’s function 〈	̂†
±(xL,t)	̂±(xL,0)〉 is written as

G0 ∝
〈

exp

[
iπvct

L

(
3Ne − 2�

�0
+ 1 − Nqp

)]
exp

(
± iπvnt

L
(Nn − Nqp,n)

)〉

=
⎧⎨
⎩

∞∑
δpqm,δp′,δqqm=−∞

e−iπδp′/3(1 + (−1)δpqm+δqqm )(1 + (−1)δp
′+δqqm ) exp(2πiδpqm�/�0)

× exp

[
−3π2kBT

Ec

(
vct

L
+ δp′

3

)2]
exp

[
−π2kBT

En

(
δqqm ± vnt

L

)2]
exp

[
−π2kBT

4Ebc

(
δpqm − δp′

3

)2]⎫⎬
⎭

/⎧⎨
⎩

∞∑
δpqm,δp′,δqqm=−∞

e−iπδp′/3(1 + (−1)δpqm+δqqm )(1 + (−1)δp
′+δqqm ) exp(2πiδpqm�/�0)

× exp

[
−3π2kBT

Ec

(
δp′

3

)2]
exp

(
−π2kBT δq2

qm

En

)
exp

[
−π2kBT

4Ebc

(
δpqm − δp′

3

)2]⎫⎬
⎭. (F3)

We applied the Poisson summation formula as in Eq. (D3). At temperature much higher than the bulk-charging energy, the
portion of δp′ = 3δpqm survives, resulting in the same expression as Eq. (D3).

APPENDIX G: CONFINING POTENTIAL AND COULOMB INTERACTION

When the edge potential is smooth enough [15,45], we below show that vc is much larger than vn and v; see Eq. (2) in the main
text. In the absence of Coulomb interaction, the edge Hamiltonian at ν = 2/3 has the form of Hcon = 1

4π

∫
dx[v1,con(∂xφ1)2 +

3v2,con(∂xφ2)2] in terms of the velocities of the original edge modes, v1,con and v2,con, which are solely determined by the edge
confining potential. When the Coulomb interaction is tuned on, it leads to an interaction Hamiltonian Hint = vint

4π

∫
dx(∂x(φ1 +

φ2))2, which counts the interaction by the total charge density ∂x(φ1 + φ2)/(2π ); here, we assume that vint is indepedent of
momentum (which is valid when the Coulomb interaction is short ranged due to the screening by gates). Then, the total
Hamiltonian is HD = Hcon + Hint = 1

4π

∫
dx[vc(∂xφc)2 + vn(∂xφn)2 + v∂xφc∂xφn], where vc = 3v1,con/2 + v2,con/2 + 2vint/3,

vn = v1,con/2 + 3v2,con/2, and v = −√
3(v1,con + v2,con). This shows that v and vn are much smaller than vc, if the edge potential

is smooth enough such that vint � v1,con, v2,con.
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