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Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity:
Tunable interaction between two Bose-Einstein condensates
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Exciton-polariton modes arising from interaction between bound excitons in monolayer thin semiconductor
sheets and photons in a Fabry-Perot microcavity are considered theoretically. We calculate the dispersion curves,
mode lifetimes, Rabi splitting, and Hopfield coefficients of these structures for two nearly 2D semiconductor
materials, MoS2 and WS2, and suggest that they are interesting for studying the rich physics associated with the
Bose-Einstein condensation of exciton polaritons. The large exciton binding energy and dipole allowed exciton
transitions, in addition to the relatively easily controllable distance between the semiconductor sheets, are the
advantages of this system in comparison with traditional GaAs or CdTe based semiconductor microcavities. In
particular, in order to mimic the rich physical properties of the quantum degenerate mixture of two bosonic species
of dilute atomic gases with tunable interspecies interaction, we put forward a structure containing two semiconduc-
tor sheets separated by some atomic-scale distance (l) using a nearly 2D dielectric (e.g., h-BN), which offers the
possibility of tuning the interaction between two exciton-polariton Bose-Enstein condensates. We show that the
dynamics of this structure are ruled by two coupled Gross-Pitaevskii equations with the coupling parameter ∼ l−1.
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I. INTRODUCTION

Placing a semiconductor structure into a microcavity yields
a number of interesting and potentially useful effects related to
resonant coupling between the confined light and elementary
excitations in the semiconductors, such as excitons [1]. Since
the pioneering work of Purcell [2] it was realized that the
emission properties of a light-emitting structure in a cavity are
changed because of the back action of the reflected light on
the emitter. In the strong coupling regime between microcavity
(MC) photons modes and semiconductor excitons, collective
excitations named exciton polaritons are formed [1]. Studies
of these excitations in structures consisting of a quantum
well placed in a semiconductor microcavity (two superlattices
acting as Bragg mirrors) have been an area of active research in
recent years [1,3–5]. Among the most interesting achievements
are the polariton laser [6,7] and Bose-Einstein condensa-
tion of exciton polaritons [8,9] with collective dynamics
of the condensed phase consistent with superfluidity [10].
Experiments in this field are quite demanding in terms of
quality of the samples, typically based on GaAs or CdTe
multilayer epitaxial structures, which must be grown with very

high precision in order to achieve the desired light-exciton
coupling.

Recently developed atomically thin layers of semicon-
ducting transition metal dichalcogenides with chemical for-
mula MX2 (M = Mo, W and X = S, Se) present strong
light-matter interactions owing to their direct band gaps
and dipole-allowed interband transitions, which can yield
relatively high light absorption and intense photoluminescence
despite their ultimately small thickness [11,12]. In these
materials conduction and valence bands are both dominantly
d type, and the band extrema are located at the K and
K ′ points of the Brillouin zone (BZ) [13]. The simplest
effective Hamiltonian contains one hopping parameter t , a
band gap parameter �, and a spin-orbit (SO) interaction
energy λ [14]. Without SO splitting the spectrum is sym-
metric with respect to the midpoint between the top of the
valence band (VB) and the bottom of the conduction band
(CB),

Ec,v(q) = −�

2
±

√
�2

4
+ a2t2q2, (1)
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where a is the lattice constant and q is the in-plane wave vector
with respect to the K (K ′) point of the BZ. For small q the
spectrum (1) is parabolic, and one can introduce an effective
mass

mc,v = �
2�

2a2t2
. (2)

The spin-orbit (SO) interaction splits the valence band into two
with different spin orientations permutating between the K and
K ′ valleys; the splitting is equal to 2λ. The effective masses
of the three bands (one spin-degenerate CB and two VB’s)
become unequal, although the difference is not too large [15].

The symmetry group of the wave vector at the K and
K ′ points is C3h. Although both conduction and valence
band states at these points are composed of d orbitals of
the transition metal, those near the bottom of the conduction
band have zero angular momentum projection onto the z axis
perpendicular to the layer (M = 0), while the valence band
states near its top correspond to M = ±1 and, consequently,
optical transitions in the vicinity of either the K or K ′ point
are dipole allowed [13,14,16]. For the effective Hamiltonian
of Ref. [14] the transition matrix element is [16]

Pcv(q ≈ 0) = m0v(τex + iey), (3)

where τ = ±1 for the K and K ′ points, m0 is free electron
mass, ex and ey are unit vectors, and the “velocity” v is defined
(in analogy with graphene) through the hopping parameter and
the lattice constant as v = at/� (note that 2mcv

2 = �). The
value of this velocity can be estimated from the DFT results,
for instance, for MoS2 v ≈ (5 − 6) × 107 cm/s. Therefore
we can estimate |Pcv(0)|2/(2m0) = m0v

2 = �(m0/2mc) ≈
1.5–2 eV. Even though this value may look rather small (for
comparison, this parameter is about 20 eV for the II-VI bulk
semiconductors), as we shall see below, the oscillator strength
is comparable to usual semiconductor MC materials because
of the very small exciton Bohr radius characteristic of the MX2

materials.
Excitonic states in the MX2 2D semiconductors (2DSCs)

have been studied both theoretically and experimentally
[12,13,16–20]. In both absorption and photoluminescence
spectra, two strong exciton resonances are observed, com-
monly labeled A and B. They are associated with electronic
transitions involving an electron and a hole (from the upper
VB for A states and from the lower one for B states), with
parallel spins. Since the hole possesses an angular momentum
(perpendicular to the plane)M = ±1, the excitons couple
directly to circular polarized light [19], however, because of
the alternation of the left-hand and right-hand polarizations
between the K and K ′ points the light can have any polarization
within the plane. The lowest energy A and B excitons are
analogous to the 1s states of a two-dimensional hydrogen
model [13], even though the higher energy states do not
follow the 2D Rydberg series [18]. The exciton binding energy
is quite large in these materials, of the order of hundreds
of meV [12,13,16–20], which makes them interesting for
studying exciton physics; in particular, many effects can be
studied at higher temperatures. Indeed, the observation of
strong coupling between excitons and photons using a MoS2

monolayer embedded in a dielectric microcavity with the
formation of exciton-polariton states at room temperature

was recently reported [21]. Another potential advantage is
that 2DSCs are rather tolerant in terms of assembling into
heterostructures. Because of the van der Waals-type bonding
between layers, restrictions related to lattice matching are
relaxed [11,22] compared to traditional semiconductors where
molecular beam epitaxy is required to produce high quality
heterostructures. Also, one can mimic multiple quantum well
structures by combining MX2 layers with a monolayer thin
dielectric, h-BN [23]. Excitation with circular-polarized light
in resonance with, e.g., A exciton state will create excitons
only in either the K or K ′ valley. Using linear polarized light
one can generate excitons in both valleys, where they will have
opposite spin orientations [12]. This is different from standard
zinc-blend type semiconductors, where both spin states occur
in the same point in k space. It has been demonstrated [24]
that optical excitation with circular-polarized light can be used
to control the exciton populations in different valleys.

Bose-Einstein condensates (BECs) are many-particle sys-
tems demonstrating quantum phenomena at macroscopic
level, which are determined by the microscopic interparticle
interactions. The adjustability of these interactions is important
for the understanding of the macroscopic properties of such
complex systems. The realization of BECs containing two
bosonic species of ultracold dilute alkali atomic gases has
provided an extraordinary physical scenario to study a range
of quantum phenomena [25–28], since magnetic-field induced
Feshbach resonances provide a tunable interaction between
different types of atoms within two-species BECs, which can
be made either positive or negative [29,30]. This effect allows
for the control of phase separation [28] in such BECs as
well as for the study of a number of interesting quantum
phenomena, such as the miscibility of superfluids [25], the
superfluid-to-Mott-insulator transition [26], and glassy phases
in bosonic mixtures [31]. Some similar effects can also occur
in so-called spinor BECs where an external magnetic field can
lead to the formation of (interacting) spin domains within the
condensate [32].

As far as exciton-polariton BECs are concerned, in prin-
ciple, similar quantum systems can be realized by designing
appropriate heterostructures and excitation conditions. Exciton
polaritons possess the distinctive spin-polarization degree
of freedom (spin of the exciton and polarization of the
coupled photon) [5] which has been revealed in experiments
demonstrating ballistic propagation of the excited polaritons
accompanied by polarization beats due to redistribution of
the emission intensity between two crossed polarizations
[33] and the optical spin Hall effect, which consists of
separation of differently polarized polaritons both in real
space and momentum space [34]. Recently, spontaneous
symmetry-breaking bifurcations in the polarization state of
two-component exciton-polariton condensates were demon-
strated [35]. Here one can also expect spinor BECs with
an interplay between spin-dependent dynamics and Bose-
Einstein condensation [5] and distinct Bogolyubov-type el-
ementary excitations [36], experimental studies of which
could be performed at much higher temperatures compared to
atomic condensates. Yet, exciton-polariton systems with two
possible polarization projections onto the growth axis of the
hosting semiconductor heterostructure cannot be considered as
strictly two-species condensates because of the presence of a
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spin-flipping exciton-exciton scattering [37]. In this respect
a structure composed of MX2 layers placed in a planar
microcavity could provide interesting possibilities for studying
the MC exciton polaritons. First, as mentioned above, the
spin-flipping exciton-exciton scattering should be improbable
by virtue of the specific band structure of these materials.
Secondly, it seems to be suitable for studying interactions be-
tween two distinct Bose-Einstein condensates by creating them
in two nearby identical 2DSC layers separated by a precisely
controlled distance (using an atomic-thin dielectric layer).

In this paper we present calculated results for dispersion
curves, mode lifetimes, Rabi splittings, and Hopfield
coefficients for such structures with the purpose to stimulate
experiments in this direction. We also derive a system of
coupled Gross-Pitaevskii equations for a structure consisting
of two parallel 2DSC sheets in a microcavity and evaluate the
separation-dependent cross-interaction for such a system. In
the following two sections we describe the linear properties of
the exciton polaritons in a microcavity with one and two MX2

layers. Section IV is devoted to the nonlinear regime due to
polariton-polariton interaction owing to the exciton-exciton
coupling within and across the layers, and we conclude in
Sec. V.

II. EXCITON-POLARITON DISPERSION CURVES

A. Microcavity with one 2DSC sheet

First we consider the case of one 2DSC sheet placed in the
symmetry plane of a Fabry-Perot microcavity [see Fig. 1(a)].

For an empty ideal microcavity of width L, the Fabry-Perot
modes are given by [1]

ω
(j )
ph = c

nc

√(π

L
j
)2

+ k2
⊥ ≈ cπ

ncL
j + �k2

⊥
2m

(j )
ph

,

j = 1,2, . . . , (4)

FIG. 1. (Color online) Schematics of a Fabry-Perot microcavity
containing one (a) or two (b) nearly 2D semiconductor layers.
Qualitative electric field profiles (Ey component) are shown for
lowest-order symmetric TE modes, both “bulk” (full curves) and
surface (dashed curves). In (b) it is assumed that the space between
two layers is filled with a material with a dielectric constant ε2 > ε.

where k⊥ is the in-plane wave vector, m
(j )
ph = πnc�

cL
j is the

“photon mass,” and nc = √
ε is the refractive index of the

medium filling the cavity. Excitons are confined in the 2DSC
layer and can be considered here as perfectly two dimensional,
i.e., �ex(r,z) ∼ �2D

ex (r)δ(z − L/2), because the microcavity
width is much larger than the atomic monolayer thickness.
The system possesses translation symmetry in the x-y plane
and k⊥ can be identified with q, the exciton center of mass
wave vector. We choose the x axis along q [see Fig. 1(a)].

To a first approximation, the 2D optical conductivity of a
MX2 layer taking into account the interaction of light with the
lowest energy A and B excitons can be written in the form
[38]:

σ2D(ω,q)

= 4e2v2

πa2
exω

∑
A,B

−i

EA,B + �2q2/(2mex) − �ω − i�γA,B

, (5)

where aex and mex are the exciton Bohr radius and mass,
respectively, taken as equal for A and B excitons, that can
be considered as experimentally obtainable parameters (aex ≈
0.7–1 nm and mex ≈ 0.8–0.9m0 for MoS2) [15,16], as well
as the exciton energies EA and EB . The damping parameters
γA and γB can be rather different, as seems to be the case
for WS2 [18]. Equation (5) includes the contributions of two
valleys (or, equivalently, two spin projections) for each type
of exciton. With the light linearly polarized in the x-y plane,
half of the excitons are created in the K valley and the other
half in the K ′ valley (with the opposite spin orientation).

We shall consider both TE (s polarization) and TM waves
(p polarization). The uncoupled MC modes can be classified
with respect to their parity, and only even modes couple to
the 2DSC excitons in the case of Fig. 1(a). For TE waves, the
electric field has the only Ey component, and its dependence
on x and z for even modes can be written as follows:

Ey = sin(kzz)eiqx, z � L/2, (6)

Ey = sin[kz(L − z)]eiqx, z � L/2, (7)

where we have assumed that MC mirrors are perfect. Here

kz =
√

ε
ω2

c2
− q2. (8)

The transverse electric field is continuous at z = L/2, which
has been taken into account in (7), while the magnetic field
component Hx , proportional to the derivative of Ey with
respect to z is discontinuous and the boundary condition reads
[39]:

Hx |z= L
2 +0 − Hx |z= L

2 −0 = 4πσ2D

c
Ey. (9)

Similarly, for TM waves, the magnetic field has only one
nonzero component, Hy :

Hy = − cos(kzz)eiqx, z � L/2, (10)

Hy = cos[kz(L − z)]eiqx, z � L/2. (11)

The boundary condition (9) holds here with the replace-
ment Hx → Hy and Ey → Ex , and the latter is continuous.
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FIG. 2. (Color online) Exciton-polariton dispersion relations for
a microcavity of width L = 350 nm containing one 2DSC layer: Left
panel: MoS2, right panel: WS2. TE and TM modes are represented
by solid (blue) and dashed (red) curves, respectively. Dash-dotted
(dotted) lines correspond to bare excitons [MC photons, Eq. (4)].
Symbols are the surface modes. Straight dashed line is the light line.

Applying the boundary conditions (which are written explicitly
in the Appendix), the exciton-polariton dispersion relations
for the TE and TM modes are obtained from the following
equations, respectively:

k̃zCotk̃z = πωL

c
χ̃2D(ω,q), (12)

Cotk̃z

k̃z

= 4πc

εωL
χ̃2D(ω,q), (13)

where we have introduced a dimensionless susceptibility,
χ̃2D = iσ2D/c, and wave vector k̃z = 1

2kzL. The dispersion
curves for a microcavity of width L = 350 nm (with ε = 1)
containing a MoS2 or WS2 layer are shown in Fig. 2 (as
usual, the damping parameters were put equal to zero).
In the calculations we employed the following data for
MoS2 [WS2]: EA = 1.9 [2.1] eV, EB = 2.1 [2.5] eV, v =
5.5 [6.9] × 107 cm/s, aex = 0.8 [1.0] nm.

Notice that on the right of the light line, q = nc
ω
c

, the
wave-vector component along z becomes imaginary and
Eqs. (12) and (13) describe states with the fields decreasing
exponentially with the distance at both sides of the 2DSC
layer. While such modes are common in p polarization, their
existence in s polarization is specific for nearly 2D polarizable
systems such as graphene where TE plasmon polaritons can
exist [39]. In fact, they are the limiting case of guided waves in
such an ultimate thin waveguide. We shall call these excitations
surface modes in order to distinguish them from “bulk” ones
(with real kz ), which will be referred to as simply MC exciton
polaritons.

B. Microcavity with two 2DSC sheets

Now we will consider the case of two 2DSC layers sepa-
rated by a distance l, placed symmetrically in the microcavity
of width L [see Fig. 1(b)]. As we saw in the previous section,
the dispersion curves of TE and TM waves are rather similar, so
here we will focus only on the TE modes. We can anticipate that

FIG. 3. (Color online) The same as Fig. 2 for TE waves in a
microcavity containing two 2DSC layers separated by a distance l =
3.5 nm. The symmetric and antisymmetric modes are represented by
blue solid and purple dash-dotted lines, respectively. Dashed curves:
TE modes for a MC with a single layer. We assumed ε = 1 everywhere
in the cavity.

for each mode of the system with one 2DSC layer considered
above, there will be two modes, one symmetric and one
antisymmetric. Therefore we can choose the solutions for
Ey in the different MC regions according to this symmetry.
Following the same procedure of the previous section (see
Appendix for details), we find that the symmetric modes are
governed by the equation:

k̃z{Cot[(1 − α)k̃z] − Tan[αk̃z]} = πωL

c
χ̃2D(ω,q) (14)

with α = l
L

. The corresponding equation for the antisymmetric
modes reads:

k̃z{Cot[(1 − α)k̃z] + Cot[αk̃z]} = πωL

c
χ̃2D(ω,q). (15)

The dispersion curves determined by Eqs. (14) and (15)
are shown in Fig. 3. While the symmetric (S) modes are
qualitatively similar to those of one-2DSC-layer structure, the
antisymmetric (AS) modes are almost dispersionless with the
frequency almost coinciding with that of the corresponding
uncoupled exciton (A or B).

Taking as reference the MC of Fig. 3, the overall splitting
�31(q) between the upper and lower branches with frequencies
ω3(q) (mode 3, B-exciton-like for q → 0 and photonlike
for cq � 2) and ω1(q) (mode 1, photonlike for q → 0 and
A-exciton-like if cq � 1.8), respectively, is shown in Fig. 4
for several microcavities with ratio α = 0.01, 0.1, 0.3, 0.5,
and 0.7. From the figure it can be seen that (i) the frequency
splitting shows a minimum at certain q = qmin, which depend
on the ratio α, and (ii) the value of �ω(qmin) decreases
as α increases. Also, the splitting between the S and AS
modes increases for smaller interlayer distances (not shown),
however, we found that it almost saturates for α � 0.1.
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FIG. 4. (Color online) Overall frequency splitting �31 = ω3 −
ω1 versus q between the uppermost, ω3, and the lowest, ω1, exciton-
polariton symmetric branches of Fig. 3 for several values of the ratio
α = l/L.

III. LIFETIME, RABI SPLITTING, AND HOPFIELD
COEFFICIENTS

A. Exciton-polariton lifetime

So far, we solved Eqs. (12), (13), (14), and (15) neglecting
the imaginary part of χ̃2D that yielded the dispersion curves
shown in Figs. 2 and 3. Now let us consider the same
equations keeping the imaginary part. Each of them links
three parameters: ω, q, and kz. In Eq. (8) we set q as a real
independent parameter, therefore we have four equations for
the real and imaginary parts of ω and kz. The inverse of the
imaginary part of ω is the exciton-polariton lifetime, which we
shall denote by τ . For the case of one 2DSC layer, assuming
that �ω 	 
ω, the following simple formula can be derived
for the lowest order mode:

τ = γ −1
A

(
1 + πLωLT

c

)
, (16)

where

ωLT = 4e2v2

πa2
excEA

(17)

is the oscillator strength of the exciton transition, also known
as the longitudinal-transverse exciton splitting [1]. According
to Eq. (16), the exciton-polariton lifetime is higher than that
of pure exciton (τ0 = γ −1

A ). This is also demonstrated, in the
case of two layers, by the results of numerical solution of the
dispersion approximations, shown in Fig. 5. We see that for
the photonlike mode 3 the lifetime tends to infinity, because
pure photons do not decay or escape from the microcavity in
our model. In contrast, for the case of MoS2 the middle branch
in Fig. 3 (B-exciton-like if cq > 1.8 eV, mode 2) is essentially
a bare exciton [see Fig. 7(b) below where a discussion of
the Hopfield coefficients is given] and the lifetime is almost
equal to τ0. In the case of WS2 we observe a maximum near
cq = 1.4 eV, which is explained by the fact that the mode 2
presents a stronger coupling to the electromagnetic field [see
Fig. 7(b), right panel].

FIG. 5. (Color online) Calculated lifetimes (in units of τ0 = γ −1
A )

for three lowest exciton-polariton modes in a MC containing two
2DSC layers. In the calculation we chose �γA = 0.00001 eV
corresponding to the exciton radiative lifetime of 70 ps.

B. Rabi splitting and Hopfield coefficients

Rabi splitting (RS) is a measure of strength of the coupling
between the exciton and the microcavity modes [1]. In our
case its definition is not straightforward because there are
two anticrossings not far from each other (see Figs. 2 and
3), and all three oscillators are coupled, at least, in a certain
range of q. In Fig. 6 we present the minimum values of
the splittings, �31 (whose q dependence is shown in Fig. 4)
and �21 = ω2 − ω1. The latter can be considered as the Rabi
splitting in a common sense (minimum separation between two
lowest energy polariton features observed experimentally). For
the MC width L = 350 nm (corresponding to a detuning of
−126 meV with respect to A exciton for MoS2) the RS value
is �min

21 ≈ 0.16 eV for both MoS2 and WS2 (see Fig. 6), which
is comparable to traditional QWs placed in a semiconductor
microcavity. [1] In earlier experimental work on exciton
polaritons in a MC with an embedded MoS2 layer [21], a Rabi
splitting of ≈ 50 meV was reported for a smaller detuning
of −40 meV. Our calculations for that case (taking ε = 2 and
L = 236 nm yields a −40 meV detuning) give �min

21 ≈ 0.16 eV.
This approximately 2.5-fold discrepancy can be partially un-
derstood because of the nonideality of the real microcavity and
can also be explained by uncertainty of the input parameters.
For instance, considerably larger values of the exciton Bohr
radius (aex = 1.35 nm for A excitons in MoS2) have been
suggested in the literature [40]. If we used this value as an
input parameter, the splitting would be decreased by a factor
of two. Finally, we would like to point out that for structures
with two 2DSC layers, RS can be modulated by ±30% by
varying the separation between the layers (see Fig. 6).

Now we proceed to the quantum-mechanical description of
the exciton polaritons. Let us consider a microcavity with one
2DSC layer. The Hamiltonian describing the interaction of A

and B excitons with cavity photons reads:

H =
∑

q

[
Ec(q)P †

qPq + EA(q)A†
qAq + EB(q)B†

qBq

+ gA-ph(q)P †
qAq + gB-ph(q)P †

qBq + H.c.
]
, (18)
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FIG. 6. (Color online) Minimal mode separations �31 (overall
splitting) and �21 (Rabi splitting for A exciton polaritons neglecting
B excitons) vs distance between two 2DSC layers. Dashed lines
indicate the corresponding values for one 2DSC layer placed in the
MC symmetry plane.

where Aq(A†
q), Bq(B†

q), and Pq(P †
q ) are annihilation (creation)

operators for the two types of excitons and the cavity photons,
respectively, and E

A
(q),E

B
(q) and Ec(q) are the energies

of the decoupled excitons and photons. The photon-exciton
interaction energies are represented by gA-ph(q) and gB-ph(q).
We include into consideration only the lowest MC mode with
j = 1, because the other modes have much higher energies
and nearly do not interact with the A and B exciton states.

The Hamiltonian (18) is diagonalized by using the polari-
tonic basis with the unitary transformation [41]

α(i)
q = κ

(i)
ph(q)Pq + κ

(i)
B (q)Bq + κ

(i)
A (q)Aq, i = 1, 2, 3,

(19)

where α
(i)
q are the annihilation operators for exciton polaritons

of three branches (which will be labeled by i = 1, 2, 3) and
κ

(i)
j, (j = 1ph, A, B) are the Hopfield coefficients (HC). [1]

The quantity (κ (i)
j )2 represents the contribution of the exciton,

A or B, or the photon mode 1 to the polariton mode i. The
first two of them determine the polariton-polariton interaction,
which occurs through the excitonic part of these composite
excitations and will be considered in the next section. The
Hopfield coefficients fulfill the normalization condition,

(
κ

(i)
ph(q)

)2 + (
κ

(i)
B (q)

)2 + (
κ

(i)
A (q)

)2 = 1. (20)

The transformation matrix of Eq. (19) can be expressed
through the eigenvectors of the Hamiltonian (18), and its
columns are orthogonal. Together with the normalization
conditions (20), there are six relations for the coefficients
κ

(i)
j , i.e., only three of them are independent (for each q).

We can use the polariton dispersion curves calculated in
the previous section (plus those of bare excitons and MC
photons) to determine these coefficients, thus avoiding an
explicit definition of the interaction parameters gA-ph, etc. and
achieving the correspondence between the quasiclassical and
quantum-mechanical pictures.

FIG. 7. (Color online) Hopfield coefficients for exciton polaritons in a microcavity with one 2DSC layer placed in the symmetry plane.
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The solution for the HCs is given by:

κ
(i)
ph(q) = �

(i)
A (q)�(i)

B (q)√
�

(i)2
A (q)�(i)2

B (q) + �
(i)2
B (q)g2

A-ph(q) + �
(i)2
A (q)g2

B-ph(q)
,

κ
(i)
A (q) = − �

(i)
B (q)gA-ph(q)√

�
(i)2
A (q)�(i)2

B (q) + �
(i)2
B (q)g2

A-ph(q) + �
(i)2
A (q)g2

B-ph(q)
,

κ
(i)
B (q) = − �

(i)
A (q)gB-ph(q)√

�
(i)2
A (q)�(i)2

B (q) + �
(i)2
B (q)g2

A-ph(q) + �
2(i)
A (q)g2

B-ph(q)
, (21)

where �
(i)
A,B(q) = EA,B − Ei is the energy difference between the exciton A, B, and the ith polariton mode (notice that the

system is isotropic in the x-y plane). The exciton-photon interaction parameters are expressed through the energies of the coupled
and uncoupled modes as follows [42]:

g2
A-ph(q) = �

(1)
A (q)�(2)

A (q)
�

(1)
B (q)[Ec(q) − E1(q)] − �

(2)
B (q)[Ec(q) − E2(q)]

�
(1)
B (q)�(2)

A (q) − �
(2)
B (q)�(1)

A (q)
, (22)

and g2
B-ph is obtained from Eq. (22) by permutating the indices

A and B. The q dependence of the Hopfield coefficients for
the present case is shown in Fig. 7. It can be observed that
the lowest exciton-polariton mode is practically uncoupled
from the B exciton for both materials. Exactly at the crossing
point (cq ≈ 0.85 eV for MoS2) these polaritons are half
photons, half A excitons, while for larger q they become
nearly bare A excitons. It means that one can disregard B

excitons when focusing on this polariton branch, which would
simplify the analysis. We notice that the values and the q

dependence of the coefficients κ
(1)
A and κ

(1)
ph for MoS2 are quite

similar to those extracted from the experimentally measured
angle-resolved reflectivity spectra [21]. The second polariton
branch [Fig. 7(b)] is mostly a composition of A and B excitons,
with an admixture of photons near the crossing point, and the
third branch [Fig. 7(c)] is photonlike for large wave vectors.
The Hopfield coefficients will be used in the next section to
determine the polariton-polariton interaction parameters in the
high excitation regime.

IV. NONLINEAR REGIME

Bose-Einstein condensates of exciton polaritons have been
experimentally realized in semiconductor microcavities (see
Refs. [8–10]). The theoretical description of their dynamics is
based on the Gross-Pitaevskii (GP) equation [43], which can
be derived from the following many-body Hamiltonian [44]:

H =
∫

dr�̂†(r)

[
− �

2

2mp

∇2
r + Vc

]
�(r)

+ 1

2

∫
drdr′�̂†(r)�̂†(r′)V (r − r′)�̂(r)�̂(r′), (23)

where mp is the polariton mass (which is determined by the
second derivative of the polariton dispersion curve at q = 0),
Vc(r) is a confinement potential, and V (r − r′) describes two-
particle interactions. In the standard procedure one assumes
that the operator �̂(r,t) can be approximated by its expectation
value �(r,t), and the two-particle potential is approximated
by a δ function V (r − r′) = �δ(r − r′), which yields the GP

equation with � denoting the particle-particle self-interaction
parameter [44]. In our case r should be considered as a two-
dimensional vector in the x-y plane.

The polariton-polariton interaction potential is the exciton-
exciton coupling renormalized due to the change of the basis
(from excitons and photons to polaritons), projected onto
the polariton branch i which we are interested in. It can be
shown (see, e.g., Ref. [45]) that the renormalization involves
an integral of the form:

1

(2π )4

∫
dr′′dr′′′

∫
dk1dk2dqṼ ex−ex(q)κ (i)

ex (k1)
�
κ (i)

ex (k2)
�

× κ (i)
ex (k1 − q)κ (i)

ex (k2 + q)

× exp {i[q(r′′ − r′′′) + k1(r − r′′) + k2(r′ − r′′′)]},
where r′′, r′′′, and all wave vectors are two dimensional, and
Ṽ ex−ex(q) is the Fourier transform of the exciton-exciton inter-
action potential; here ex = A or B. The Hopfield coefficients
are almost independent of the wave vector when its modulus
is relatively small (see Fig. 7), so the usual approximation
[1,45,46] is to replace all four of them in the above integral by
X ≡ κ (i)

ex (0), which yields a dramatic simplification,

V (r − r′) = |X|4
∫

dqṼ ex−ex(q)eiq(r−r′). (24)

If Ṽ ex−ex(q) only weakly depends on q, the integral in Eq. (24)
gives a δ function, and thus the necessary step for obtaining
the GP equation is justified.

Under excitation with a circular-polarized light, all the
A-type excitons have the same spin polarization, and their
condensate can be described by a scalar order parameter. The
particle-particle interaction within such a condensate is due to
both Coulomb and exchange interaction between the excitons
with parallel spins, which has been considered in a number
of works [37,47] showing that indeed Ṽ ex−ex(q) ≈ const for
qaex 	 1, and the polariton-polariton interaction parameter
can be approximated as [47]

� = 6RAa2
ex |X|4, (25)
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where RA is the A-exciton Rydberg constant [48]. Linear-
polarized light can be considered as a superposition of left-
hand and right-hand polarized photons and, theoretically, can
create a condensate consisting of two differently polarized
polariton species within a 2DSC layer. Such condensates are
described by a spinor order parameter [5],

�(r,t) =
[
�1(r,t)
�2(r,t)

]
. (26)

Its components obey a system of two coupled GP equations:

i�
∂

∂t
�(r,t) = L�(r,t), (27)

where L is a 2 × 2 nonlinear operator given by

L=
[
− �

2

2mp
∇2

r + Vc + �|�1|2 �12�1�
�
2

�21�
�
1�2 − �

2

2mp
∇2

r + Vc + �|�2|2
]
.

(28)

Here �12 = ��
21 is a parameter representing the interaction of

excitons with opposite spins.
As mentioned above, excitons with different spin polariza-

tions occupy different valleys in the Brillouin zone of the
2DSC material, so there is no particle exchange between
two subsystems and each component �i satisfies a separate
normalization condition,∫

|�i(r,t)| = Ni, i = 1,2,

where Ni denotes the number of polaritons in the ith
condensate. Usually for QW excitons the interaction is much
stronger for parallel spins [5,45], so one can expect |�12| 	 �

and a rather weak coupling between two BECs. However, some
further mechanisms can operate. As known, the orientation
of the condensate polarization can be pinned along one of
the crystallographic axes of the sample, which manifests a
difference between two perpendicular directions in the x-y
plane and can be due to some anisotropy in the microcavity
[5]. Such a condensate with a certain polarization state can
be characterized by a scalar order parameter and an effective
interaction parameter (a combination of � and �12) [49].

Let us consider now two 2DSC layers in a microcavity,
as shown in Fig. 1(b), where it is possible to create two
condensates (one in each 2DSC layer) separated by a distance
l. Its many-body Hamiltonian can be written as

H2 =
∑
i=1,2

H(i) + 1

2

∫
dr1dr2�̂

†
1(r1)�̂†

2(r2)V12

× (r1 − r2 − lez)�̂1(r1)�̂2(r2), (29)

where H(i) is given by Eq. (23) and V12 describes the inter-
action between two different condensates (we shall consider
each of them as scalar for simplicity). In the mean field
approximation, neglecting the q dependence of the Hopfield
coefficients, the last term in Eq. (29) can be written as

U12 = 1

2
|X|4

∫
dr1dr2|�1(r1)|2V ex−ex

12

× (r1 − r2 − lez)|�2(r2)|2, (30)

where Ṽ12(r1 − r2 − lez) is the exciton-exciton interaction
potential between different 2DSC sheets, and the Hopfield
coefficients have been assumed to be the same for both
condensates. The coupling between the condensates located in
different 2DSC sheets takes place due to the electromagnetic
interaction between the excitons. It is mediated by transient
dipoles associated with resonant exciton transitions and is
similar to the Förster resonant energy transfer process (FRET)
[50]. The energy of the dipole-dipole interaction between two
excitons separated by a radius vector R = r1 − r2 − lez is [50]

V ex−ex
12 (R) = μ1 · μ2 − 3(μ1 · eR)(μ2 · eR)

εR3
, (31)

where μi denotes the dipole moment of the exciton located in
the sheet i = 1,2, and eR = R/R. It has to be averaged over
all possible orientations of μ1,2 in the x-y plane, therefore, if
the dipoles are uncorrelated, the averaging will yield zero,
and there is no direct Coulomb interaction between the
condensates. However, if we consider μ1,2 as transient dipoles
due to exciton transitions coupled to the MC field, they will
be the same for a symmetric MC mode, since the considered
structure is symmetric with respect to the plane z = L/2. If we
consider a TE mode, the electric field has only a y component,
and we have

μ1x = μ2x = 0,

μ1y = μ2y = αE0
y |z= L

2 ± l
2
,

where α is the exciton polarizability and E0
y denotes the electric

field in empty microcavity. In analogy with a quantum dot, the
exciton polarizability can be written as [51]

α(ω) = χ̃2D(ω)a2
exb0, (32)

where b0 is the exciton extension along z (of the order of the
2DSC layer thickness). Therefore we can write:

〈μ1 · μ2〉 = (
αE0

y |z=L/2±l/2
)2

.

Therefore the intercondensate interaction energy is written
as

U12 = 1

2

(
αE0

y |z=L/2±l/2
)2|X|4

∫
dr1|�1(r1)|2

×
∫

dr2K(r1 − r2)|�2(r2)|2, (33)

with the kernel

K(r1 − r2) = K(r12, φ) = r2
12(1 − 3 cos2 φ) + l2(

r2
12 + l2

)5/2
, (34)

where φ is the angle between r12 = r1 − r2 and the y axis.
The variation of Eq. (29) with Eq. (33) with respect to �i leads
to coupled integrodifferential equations. In order to simplify
them to differential GP equations, we shall make the following
(rather crude) approximation:

K(r1 − r2) ≈
{∫

drK(r)

}
δ2D(r1 − r2), (35)

where the term in brackets is the q = 0 Fourier component of
the kernel and δ2D denotes the 2D Dirac function. The integral
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in Eq. (35) is equal to 4π
15l

. Thus, Eq. (30) can be written as

U12 = 2π

15l
|X|4(αE0

y |z=L/2±l/2
)2

∫
dr|�1(r)|2|�2(r)|2,

(36)

and the system under consideration can be described formally
by the same two coupled GP equations (28). The parameter
� is given by Eq. (25), and the intercondensate interaction
constant is

�12 = 4π

15l
|X|4(αE0

y |z=L/2±l/2
)2

. (37)

The dependence of �12 on l (roughly ∼ l−1 for small l)
together with the number of particles N1 and N2 in each
condensate provide a means to control the coupling effect
between the two condensates.

V. CONCLUSION

In summary, we analyzed the properties of exciton po-
laritons in a Fabry-Perot microcavity containing one or two
monolayer-thin semiconductor sheets taking as examples
MoS2 and WS2 and calculated the dispersion curves, mode
lifetimes, Rabi splittings, and Hopfield coefficients. Our results
suggest that they are interesting for studying the rich physics
associated with the Bose-Einstein condensation of exciton
polaritons. Both materials seem appropriate for this purpose;
WS2 may look more attractive because of the larger separation
between the A and B excitons and, consequently, easier
analysis, however, even for MoS2 the fraction of B excitons
in the lowest polariton branch is rather small. One interesting
feature of these materials is the separation of excitons with
opposite spins in k space. If a Bose-Einstein condensate is
created involving both spin orientations, it should be called a
two-species BEC (similar to cold atom systems [25–28]) rather
than a spinor condensate. Maybe it is possible to separately
control the number of particles in each subsystem by using an
elliptically polarized light.

We also considered polariton properties and derived a sys-
tem of coupled Gross-Pitaevskii equations for a microcavity
containing two condensates localized in different semicon-
ductor sheets. The Rabi splitting in this structure is enhanced,
compared to the case of a single semiconductor sheet, for small
intersheet distances. It reaches values similar to those charac-
teristic of hybrid organic-inorganic systems with simultaneous
coupling of two degenerate excitons and a microcavity photon
[52]. The (nonlinear) intercondensate interaction is resonant
(similar to FRET) and approximately inversely proportional
to the distance separating two sheets. It can be controlled by
adjusting this distance with a very high precision by using the
atomically thin dielectric h-BN. In principle, it should also
be possible to create two condensates independently by using
two lasers that should lead to different scenarios governed by
the population numbers of both BEC’s. It would also open a
way of extension of experiments with polariton condensates
making use of their interaction with uncondensed polaritons
[53,54]. On the theoretical side, the analysis of coupled GP
equations (28) with adjustable coupling parameter can yield
classes of solutions known in nonlinear optics [55] but so far
unexplored in the field of Bose-Einstein condensates.
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APPENDIX: POLARITON DISPERSION RELATION FOR
MC WITH TWO 2DSC SHEETS

The z coordinates of the 2DSC sheets are z1,2 = (L ∓ l)/2.
The system is symmetric with respect to the z = L/2 plane,
so we can foresee that there are two modes for each polariton
mode of the system with one 2DSC sheet, one symmetric and
one antisymmetric. Here we shall assume that the dielectric
constant of the material filling the regions 0 � z � z1 and
z2 � z � L is ε1, while the space between the semiconductor
layers can be filled with another dielectric with the dielectric
constant ε2.

For TE waves the electric field component is written as
follows:

Ey = sin
(
k(1)
z z

)
eiqx, 0 � z � z1,

Ey =
[
a cos

[
k(2)
z (z − L/2)

]
b sin

[
k(2)
z (z − L/2)

]
]

× eiqx, z1�z � z2, (A1)

Ey = ± sin
[
k(1)
z (L − z)

]
eiqx, z2 � z � L,

where the upper (lower) line or sign corresponds to symmetric
(antisymmetric) mode, a and b are some constants, and

k(i)
z =

√
εi

ω2

c2
− q2, i = 1, 2. (A2)

The magnetic field component Hx is obtained from Eq. (A1)
through the Maxwell equation ∂H/∂t = −c(∇ × E). The
application of boundary conditions, Eq. (9), and continuity
of Ey at z = z1 yields two equations for each case (and
boundary conditions at z = z2 are satisfied automatically since
the symmetry has been taken into account), from which the
constant a or b can be eliminated. Therefore we have, for
symmetric modes:

ck(1)
z

ω
− ck(2)

z

ω
tan

(
k(1)
z z1

)
tan

(
k(2)
z l/2

)
= 4πiσ2D

c
tan

(
k(1)
z z1

)
, (A3)

and for antisymmetric modes:

ck(1)
z

ω
+ ck(2)

z

ω
tan

(
k(1)
z z1

)
cot

(
k(2)
z l/2

) = 4πiσ2D

c
tan

(
k(1)
z z1

)
.

(A4)

If we put k(1)
z = k(2)

z , Eqs. (A3) and (A4) simplify to Eqs. (14)
and (15). For l → 0 the frequency of the symmetric mode tends
to that of a MC containing a single 2D semiconductor layer
with the optical conductivity 2σ2D, while for the antisymmetric
mode we have ω → ω0. The corresponding surface modes are
obtained by substituting k(i)

z = iκi into Eqs. (A3) and (A4).
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Considering now TM waves, the magnetic field component is written as

Hy = − cos
(
k(1)
z z

)
eiqx, 0 � z � z1, Hy =

[
a sin

[
k(2)
z (z − L/2)

]
b cos

[
k(2)
z (z − L/2)

]
]

× eiqx, z1 � z � z2,

Hy = ± cos
[
k(1)
z (L − z)

]
eiqx, z2 � z � L, (A5)

with the same distinction between symmetric and antisymmetric modes as above. Using boundary conditions for Hy at z = z1,

Hy |z=z1+0 − Hy |z=z1−0 = 4πiσ2D

ω

(
1

ε

∂Hy

∂z

)∣∣∣∣
z=z1

, (A6)

1

ε1

∂Hy

∂z

∣∣∣∣
z=z1−0

= 1

ε2

∂Hy

∂z

∣∣∣∣
z=z1+0

, (A7)

we obtain the following dispersion relations:

1 − ε2k
(1)
z

ε1k
(2)
z

tan
(
k(1)
z z1

)
tan

(
k(2)
z l/2

) = 4πiσ2Dk(1)
z

ε1ω
tan

(
k(1)
z z1

)
(A8)

for the symmetric modes, and

1 + ε2k
(1)
z

ε1k
(2)
z

tan
(
k(1)
z z1

)
cot

(
k(2)
z l/2

) = 4πiσ2Dk(1)
z

ε1ω
tan

(
k(1)
z z1

)
(A9)

for the antisymmetric modes.
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