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Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages
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The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent
voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an
impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the
applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath
modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced
which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly
simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In
particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for
the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard
dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating
voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark
of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current
by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by
alternating voltages.
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I. INTRODUCTION

The dynamical Coulomb blockade (DCB) was one of the
first phenomena revealing the quantum nature of electrical
impedances. The theory of the DCB [1–3], also called P (E)
theory, explains the experimentally observed suppression of
the low-voltage conductance of tunneling elements [4–6] as
an effect of photon exchange between the tunneling element
and its electromagnetic environment. It has found numerous
applications to problems as diverse as atomic-sized contacts
[7], artificial atoms [8], Josephson and Majorana qubits
[9,10], current sources [11], and the quantum measurement
of work [12]. While standard P (E) theory [1–3] considers
circuits with constant voltage bias, more recent work [13–18]
has addressed nanostructures driven by alternating voltages
inspired by nanoelectronic experiments in the GHz range and
above [19–21].

In this paper we extend P (E) theory to tunnel junctions
driven by alternating voltages. The modes of the environmental
impedance, which play a crucial role for the conventional
DCB effect, also cause significant effects in ac driven devices.
Since an external voltage is applied via the environmental
impedance and not directly to the junction electrodes, the
voltage drives the modes of the environment. Driven bath
modes can strongly influence the dynamics of a system [22].
For an ac driven tunnel junction this implies additional DCB
effects investigated in the sequel.

The paper is organized as follows. In Sec. II we recall the
Hamiltonian for standard DCB theory. The model Hamiltonian
is based on a representation of the environmental impedance
as a collection of LC circuits. We also introduce the relevant
current operators of the circuit. In the presence of a time-
dependent voltage the tunneling current and the current
flowing in the leads need to be distinguished. Section III
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presents the perturbation theory in the tunneling Hamiltonian,
and we derive a general expression for the current flowing
through the environmental impedance valid up to second
order. We also give the unperturbed equations of motion of
the circuit variables in the absence of tunneling. Results on
the time evolution of the mean values provide the connection
between the microscopic parameters in the Hamiltonian and
phenomenological circuit theory.

Due to the external driving, the unperturbed Hamiltonian
is time dependent which complicates the evaluation of the
perturbation-theoretical results. In particular, an applied
time-dependent voltage also drives the modes of the
electromagnetic environment so that standard techniques
for ac driven circuits fail. In Sec. IV we introduce a
unitary transformation involving also the variables of the
environmental modes which allows us to split off the time
dependence arising from the external voltage.

In Sec. V we then analyze the perturbation-theoretical result
of Sec. III for the average current flowing in the leads. The
relevant averages over unperturbed quantities factorize into
averages over the quasiparticles in the junction leads and
averages over the degrees of freedom of the environmental
Hamiltonian. The quasiparticle averages are shown to reduce
to those known from standard P (E) theory. The averages
over the environmental degrees of freedom can be reduced to
averages over operators depending only on the phase operator
which is conjugate to the junction charge. Employing the
unitary transformation introduced previously and using the
Gaussian nature of phase fluctuations in an undriven circuit
in the absence of tunneling, all quantities can be expressed
in terms of the phase-phase correlation function familiar from
standard DCB theory.

In Sec. VI we study the average current in the presence of
an applied voltage which is the sum of a constant dc part and
a sinusoidal ac part. We determine the effective voltage across
the tunnel junction which differs from the applied voltage
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because of a renormalization of the ac amplitude and a phase
shift caused by the electromagnetic environment. The average
current is also periodic and can be written as a Fourier series.
We obtain a general expression for the Fourier coefficients. For
the case of a constant applied voltage the results of standard
P (E) theory are recovered. The time-averaged current in the
presence of sinusoidal driving is derived and related to the dc
current for constant driving. The higher harmonics of the cur-
rent are also determined and shown to be influenced by the
environmental impedance implying a novel DCB effect in the
ac range.

Finally in Sec. VII we present our conclusions and discuss
the experimental observability of the predictions made in the
previous sections. It is shown that for a tunnel junction driven
through an LC resonator the ac Coulomb blockade effect leads
to a strong suppression of higher harmonics of the average
current. This effect should be readily observable with state-of-
the-art setups.

II. MODEL AND HAMILTONIAN

We consider a tunnel junction with capacitance C and
tunneling conductance GT driven by a voltage source Vext(t)
via an environmental impedance Z(ω). The circuit diagram of
the system is displayed in Fig. 1. For a constant applied voltage
Vext(t) = Vdc this model coincides with the standard model for
the DCB in tunnel junctions [1–3].

A. Hamiltonian

The Hamiltonian of the circuit may be written as

H = Hel + HT + Henv (2.1)

FIG. 1. Circuit diagram of a voltage biased tunneling element.
(a) General setup showing a tunnel junction with capacitance C

and tunneling conductance GT coupled to a voltage source Vext

via an external impedance Z(ω). The current Ienv flowing through
the environmental impedance and the tunneling current IT are also
indicated. (b) Representation of the impedance Z(ω) as a collection
of LC circuits.

where

Hel =
∑
k,σ

εkσ a
†
kσ akσ +

∑
q,σ

εqσ a†
qσ aqσ (2.2)

describes the conduction electrons of the leads on either side of
the tunnel junction. Here akσ is the annihilation operator of an
electron state with energy εkσ where k denotes the longitudinal
wave number and σ denotes the transversal and spin quantum
numbers. Likewise, aqσ is the annihilation operator of an
electron state with energy εqσ in the other electrode, where q

denotes the longitudinal wave number. The quantum number
σ is conserved during tunneling transitions described by the
tunneling Hamiltonian

HT = �e−iϕ + �†eiϕ (2.3)

with the quasiparticle tunnel operator

� =
∑
k,q,σ

tkqσ a
†
kσ aqσ (2.4)

where the tkqσ are tunneling amplitudes. Furthermore, we have
introduced the phase operator ϕ conjugate to the junction
charge Q. These operators obey the canonical commutation
relation [1] [ϕ,Q] = ie. Accordingly, the charge shift operator
e−iϕ transfers one electronic charge across the junction. The
last term in Eq. (2.1) describes the junction capacitance C and
the environmental impedance Z(ω) and may be written in the
form [3]

Henv(t) = Q2

2C
+

∑
n

{
Q2

n

2Cn

+ 1

2Ln

(
�

e

)2

[ϕ − ϕn − ϕext(t)]
2

}

(2.5)

where the first term is the charging energy of the tunnel
junction with capacitance C and the second term represents the
impedance Z(ω) in terms of a Caldeira-Leggett model [23,24]
as a collection of LC circuits. These environmental modes
represent a thermal bath causing dissipation and fluctuations
and lead to the DCB effect. The charge operators Qn are
conjugate to the phase operators ϕn with the commutators
[ϕn,Qn] = ie. The phase ϕext(t) describes the external driving
and is defined by

ϕ̇ext(t) = e

�
Vext(t) (2.6)

where Vext(t) is the voltage applied to the circuit in Fig. 1.
Hence the Hamiltonian Henv depends on time t . The connection
between the microscopic parameters in the Hamiltonian (2.5)
and the impedance Z(ω) of the circuit will become clear from
the following.

B. Current operators

We first consider the electric currents flowing in the circuit.
Using the Hamiltonian (2.1), we find for the time rate of change
of the junction charge

Q̇ = i

�
[H,Q] = i

�
[Henv,Q] + i

�
[HT ,Q]. (2.7)

Inserting the explicit form of H , one obtains

Q̇ = Ienv − IT (2.8)
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where [25]

Ienv = −�

e

∑
n

ϕ − ϕn − ϕext

Ln

(2.9)

is the current flowing through the environmental impedance
Z(ω) which on average charges the junction capacitance in
case of an applied voltage, while

IT = i
e

�
[�e−iϕ − �† eiϕ] (2.10)

is the tunneling current which on average discharges the
capacitance (see Fig. 1). For constant voltage bias Vdc the
average currents 〈Ienv〉 and 〈IT 〉 coincide. However, for time-
dependent driving the two currents differ due to displacement
currents flowing in the circuit and only Ienv is experimentally
observable. Note that Ienv has an explicit time dependence via
ϕext(t).

III. PERTURBATION THEORY IN
THE TUNNELING HAMILTONIAN

P (E) theory treats tunneling elements with weak tunneling
conductance GT . Hence we may consider the tunneling
Hamiltonian HT as a small perturbation.

A. Expansion of time evolution operator

To evaluate the time evolution for weak tunneling we write
the total Hamiltonian (2.1) as

H = H0 + HT (3.1)

where

H0 = Hel + Henv (3.2)

is the Hamiltonian for GT = 0. Quite generally, a quantum-
mechanical operator A reads in the Heisenberg representation

A(t) = U †(t,0) AU (t,0) (3.3)

where t0 = 0 is the initial time when driving starts and

U (t,t ′) = T exp

{
− i

�

∫ t

t ′
ds H (s)

}
(3.4)

is the time evolution operator with the time ordering operator
T . Expanding U (t,0) up to second order in HT we have

U (t,0)
.= U0(t,0) − i

�

∫ t

0
ds U0(t,s)HT U0(s,0)

− 1

�2

∫ t

0
ds1

∫ s1

0
ds2

×U0(t,s1)HT U0(s1,s2)HT U0(s2,0) (3.5)

where the symbol
.= means equal apart from terms of higher

order in HT and

U0(t,t ′) = T exp

{
− i

�

∫ t

t ′
ds H0(s)

}
(3.6)

is the time evolution operator for GT = 0.
Introducing the interaction representation of operators

Ǎ(t) = U
†
0 (t,0) AU0(t,0) (3.7)

and inserting the result (3.5) into Eq. (3.3), we find for the
Heisenberg operator A(t) in second order in HT the result

A(t)
.= Ǎ(t) + i

�

∫ t

0
ds [ȞT (s),Ǎ(t)]

− 1

�2

∫ t

0
ds1

∫ s1

0
ds2 [ȞT (s2),[ȞT (s1),Ǎ(t)]]. (3.8)

This general expression can now be used to obtain an explicit
result for the current Ienv in second order in HT . Inserting the
form (2.3) of the tunneling Hamiltonian, we find

Ienv(t)
.= Ǐenv(t)

+ i

�

∫ t

t0

ds [�̌(s) e−iϕ̌(s) + H.c. ,Ǐenv(t)]

− 1

�2

∫ t

t0

ds1

∫ s1

t0

ds2 [�̌(s2) e−iϕ̌(s2)

+ H.c.,[�̌(s1) e−iϕ̌(s1) + H.c.,Ǐenv(t)]]. (3.9)

Here the operators �̌(t), ϕ̌(t), and Ǐenv(t) are in the interaction
picture. Hence, their time dependence is governed by the
Hamiltonian H0 = Hel + Henv in the absence of tunneling.

Since the circuit described by Henv and the electrodes
described by Hel are decoupled for vanishing tunneling, the
time evolution operator (3.6) factorizes according to

U0(t,t ′) = Uenv(t,t ′) e− i
�

Hel(t−t ′) (3.10)

into the time evolution operator

Uenv(t,t ′) = T exp

{
− i

�

∫ t

t ′
ds Henv(s)

}
(3.11)

of the electrodynamic environment and the time evolution
operator of the quasiparticles which takes a simple form since
Hel is independent of time also in the presence of driving.

B. Heisenberg equations of motion in the absence of tunneling

The evaluation of the perturbative results requires an
explicit solution of the unperturbed problem. The Heisenberg
equations of motion

˙̌A = i

�
[H0,Ǎ] (3.12)

of the circuit variables in the interaction picture are found to
read

˙̌ϕ = e

�

Q̌

C
, (3.13)

˙̌Q = −�

e

∑
n

ϕ̌ − ϕ̌n − ϕext

Ln

(3.14)

and

˙̌ϕn = e

�

Q̌n

Cn

, (3.15)

˙̌Qn = �

e

ϕ̌ − ϕ̌n − ϕext

Ln

. (3.16)
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Introducing the frequencies

ωn = 1√
LnCn

(3.17)

of the LC circuits of the Caldeira-Leggett model and combin-
ing Eqs. (3.15) and (3.16) we readily obtain

¨̌ϕn + ω2
nϕ̌n = ω2

n(ϕ̌ − ϕext). (3.18)

This evolution equation can easily be solved to yield

ϕ̌n(t) = ϕn(0) cos(ωnt) + e

�

Qn(0)

ωnCn

sin(ωnt)

+ωn

∫ t

0
ds sin[ωn(t − s)][ϕ̌(s) − ϕext(s)]. (3.19)

When this is combined with Eqs. (3.13) and (3.14) we obtain
after a partial integration

C ¨̌ϕ(t) +
∫ t

0
dsY (t − s) ˙̌ϕ(s) = e

�
iN (t)+

∫ t

0
ds Y (t − s)ϕ̇ext(s)

(3.20)

where we have introduced the temporal response function [3]

Y (t) =
∑

n

1

Ln

cos(ωnt) (3.21)

of the electromagnetic environment. Furthermore, the evolu-
tion equation (3.20) includes a quantum noise current

iN (t) =
∑

n

1

Ln

{
�

e
[ϕn(0) − ϕ(0) + ϕext(0)] cos(ωnt)

+ Qn(0)

ωnCn

sin(ωnt)

}
(3.22)

depending on the initial state of the environmental modes.
For later purposes we also note that in the absence of

tunneling the current (2.9) may be written as

Ǐenv(t) = ˙̌Q(t) = �

e
C ¨̌ϕ(t) (3.23)

as is readily seen by combining Eqs. (2.9), (3.13), and (3.14).

C. Time evolution of mean values in the absence of tunneling

Let us assume that the system has reached the equilibrium
state in the absence of driving at time t = 0 and is then driven
out of equilibrium for times t > 0. Then ϕext(t) = 0 for t � 0,
and from the Hamiltonian (2.5) with ϕext(t) = 0 we see that in
the initial equilibrium state

〈Qn(0)〉 = 0 (3.24)

and

〈ϕn(0) − ϕ(0)〉 = 0. (3.25)

This implies in view of Eq. (3.22) and ϕext(0) = 0

〈iN (t)〉 = 0. (3.26)

From Eq. (3.20) we thus obtain for the average motion

C〈 ¨̌ϕ(t)〉 +
∫ t

0
ds Y (t − s)〈 ˙̌ϕ(s)〉 =

∫ t

0
ds Y (t − s) ϕ̇ext(s).

(3.27)

Using now Eqs. (2.6) and (3.13) this may be written as

〈 ˙̌Q(t)〉 =
∫ t

0
ds Y (t − s)

[
Vext(s) − 〈Q̌(s)〉

C

]
. (3.28)

The evolution equation (3.28) describes the circuit of Fig. 1
for GT = 0 phenomenologically. Since in the absence of
tunneling 〈 ˙̌Q〉 is the current in the circuit and Vext − 〈Q̌〉/C is
the voltage across the environmental impedance, Eq. (3.28)
is just the current-voltage relation of the environmental
impedance. Accordingly, the admittance

Y (ω) = 1/Z(ω) =
∫ ∞

0
dt Y (t) eiωt (3.29)

is the Fourier transform of Y (t). Hence, Eq. (3.21) relates
the parameters of the Caldeira-Leggett model with the phe-
nomenological theory of the circuit.

IV. UNITARY TRANSFORMATION

In the presence of an applied voltage the Hamiltonian Henv

is time dependent which complicates perturbation-theoretical
calculations. For constant voltage the time dependence caused
by ϕext(t) can be shifted by a unitary transformation [3] to
a phase factor of the tunneling Hamiltonian HT . A related
unitary transformation of the form U(t) = e−iQ�(t) still exists
[14,15] if a time-dependent voltage is applied directly to the
two electrodes on either side of the tunnel junction. However,
when the external voltage is applied via an environmental
impedance Z(ω), as it is the case for the circuit in Fig. 1, the
voltage also drives the environmental modes as is explicitly
seen from Eq. (3.18). Accordingly, the time dependence can
only be split off by means of a unitary transformation involving
the environmental modes as well.

To find the proper transformation, we make the ansatz

ϕ̌(t) = ϕ̄(t) + ϕ̃(t), (4.1)

Q̌(t) = Q̄(t) + Q̃(t) (4.2)

where

Q̄(t) = �

e
C ˙̄ϕ(t) (4.3)

and

ϕ̌n(t) = ϕ̄n(t) + ϕ̃n(t), (4.4)

Q̌n(t) = Q̄n(t) + Q̃n(t) (4.5)

where

Q̄n(t) = �

e
Cn ˙̄ϕn(t). (4.6)

Inserting this into the equations of motion (3.13)–(3.16),
one finds that the operators ϕ̃, Q̃, ϕ̃n, and Q̃n satisfy the
equations of motion for vanishing driving provided ϕ̄(t) and
ϕ̄n(t) obey

¨̄ϕ +
∑

n

ϕ̄ − ϕ̄n

LnC
=

∑
n

ϕext

LnC
(4.7)
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and

¨̄ϕn + ω2
n(ϕ̄n − ϕ̄) = −ω2

nϕext. (4.8)

The particular solution of Eq. (4.8) with initial conditions
ϕ̄(0) = 0 and ˙̄ϕ(0) = 0 reads

ϕ̄n(t) = ωn

∫ t

0
ds sin[ωn(t − s)][ϕ̄(s) − ϕext(s)].

When this is inserted into Eq. (4.7) one finds after a partial
integration using ϕ̄(0) = 0 and the definition (3.21) of Y (t) the
equation of motion for ϕ̄(t) in the form

C ¨̄ϕ(t) +
∫ t

0
ds Y (t − s)[ ˙̄ϕ(s) − ϕ̇ext(s)] = 0 (4.9)

which coincides with the equation of motion (3.27) for the
average phase 〈ϕ̌(t)〉.

It is now convenient to introduce the unitary transformation

�(t) = exp

{
i

e

[
ϕ̄(t)Q +

∑
n

ϕ̄n(t)Qn

]}

× exp

{
− i�

e2

[
C ˙̄ϕ(t)ϕ +

∑
n

Cn ˙̄ϕn(t)ϕn

]}
. (4.10)

This leads to the following transformation of the circuit
operators:

ϕ̂ = �(t)ϕ �†(t) = ϕ + ϕ̄(t),

Q̂ = �(t)Q�†(t) = Q + �

e
C ˙̄ϕ(t),

ϕ̂n = �(t)ϕn �†(t) = ϕn + ϕ̄n(t),

Q̂n = �(t)Qn �†(t) = Qn + �

e
Cn ˙̄ϕn(t). (4.11)

When we apply this time-dependent change of variables, the
Hamiltonian must be transformed as

Ĥenv = �(t)Henv �†(t) + i�
∂�(t)

∂t
�†(t). (4.12)

From Eq. (4.10) one obtains

i�
∂�(t)

∂t
�†(t) =

(
�

e

)2

C ¨̄ϕ(ϕ + ϕ̄) − �

e
˙̄ϕ Q

+
∑

n

[(
�

e

)2

Cn ¨̄ϕn(ϕn + ϕ̄n) − �

e
˙̄ϕnQn

]
.

(4.13)

We now insert Eq. (4.13) and the Hamiltonian (2.5) into
Eq. (4.12). One then finds by virtue of the transformation
laws (4.11) and by exploiting Eqs. (4.7) and (4.8) satisfied by
ϕ̄ and ϕ̄n after some algebra

Ĥenv = H 0
env + G(t) (4.14)

where

H 0
env = Q2

2C
+

∑
n

[
Q2

n

2Cn

+ 1

2Ln

(
�

e

)2

(ϕ − ϕn)2

]
(4.15)

is the Hamiltonian of the electromagnetic environment in the
absence of driving and

G(t) =
(

�

e

)2[
Cϕ̄ ¨̄ϕ + 1

2
C ˙̄ϕ2

]
+

∑
n

(
�

e

)2[
Cnϕ̄n ¨̄ϕn

+ 1

2
Cn ˙̄ϕ2

n + 1

2Ln

(ϕ̄ − ϕ̄n − ϕext)
2

]
. (4.16)

Hence, apart from the time-dependent function G the Hamil-
tonian Henv has been transformed to the time-independent
Hamiltonian (4.15) of an undriven circuit.

Regarding the time evolution operator (3.11) of the driven
circuit, we can now employ the unitary transformation (4.10)
to obtain

Uenv(t,t ′) = �†(t) e− i
�

H 0
env(t−t ′)�(t ′) eiδ(t,t ′) (4.17)

where

δ(t,t ′) = −(1/�)
∫ t

t ′
ds G(s) (4.18)

is a phase factor.

V. AVERAGE CURRENT

After the preparations in the previous sections the average
current 〈Ienv(t)〉 can be evaluated. When we determine the
average current from Eq. (3.9), only terms involving a product
of the quasiparticle tunnel operator � and its adjoint �†

give a nonvanishing contribution, since all other terms do not
conserve the number of quasiparticles in each electrode. We
thus obtain for the average current

〈Ienv(t)〉 .= 〈Ǐenv(t)〉 − 1

�2

∫ t

0
ds1

∫ s1

0
ds2

×{〈[�̌(s2) e−iϕ̌(s2),[�̌†(s1) eiϕ̌(s1),Ǐenv(t)]]〉+c.c.}.
(5.1)

These averages factorize into a quasiparticle average and an
average of the electromagnetic environment. In view of the
factorization (3.10) of the unperturbed time evolution operator,
the interaction representation of the operators in Eq. (5.1) reads

�̌(t) = e
i
�

Helt � e− i
�

Helt , (5.2)

�̌†(t) = e
i
�

Helt �† e− i
�

Helt , (5.3)

ϕ̌(t) = U †
env(t,0) ϕ Uenv(t,0), (5.4)

and

Ǐenv(t) = U †
env(t,0) Ienv Uenv(t,0). (5.5)

Using now the representation (4.17) of Uenv(t,t ′), we obtain
by virtue of Eq. (4.11)

ϕ̌(t) = e
i
�

H 0
envt ϕ e− i

�
H 0

envt + ϕ̄(t) (5.6)

where we have taken into account that at time t0 = 0 the
transformation (4.10) is trivial, i.e., �(0) = 1, since driving
is absent for t � 0. Introducing the Heisenberg operators of
the undriven electromagnetic environment

Ã(t) = e
i
�

H 0
envt A e− i

�
H 0

envt (5.7)
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Eq. (5.6) simply reads

ϕ̌(t) = ϕ̃(t) + ϕ̄(t). (5.8)

Likewise we find for the interaction representation of the
current operator (2.9)

Ǐenv(t) = Ĩenv(t) + Īenv(t) (5.9)

where

Ĩenv(t) = −�

e

∑
n

ϕ̃(t) − ϕ̃n(t)

Ln

= ˙̃Q(t) = �

e
C ¨̃ϕ(t) (5.10)

is the current operator in the absence of driving and tunneling
and

Īenv(t) = −�

e

∑
n

ϕ̄(t) − ϕ̄n(t) − ϕext(t)

Ln

= ˙̄Q(t) = �

e
C ¨̄ϕ(t) (5.11)

is the average displacement current flowing in a driven circuit
in the absence of tunneling. The relations of the components
Ĩenv and Īenv of Ǐenv to those of Q̌ and ϕ̌ follow in analogy to
Eq. (3.23).

A. Quasiparticle averages

The quasiparticle averages contributing to the average
current (5.1) are easily evaluated. Introducing the function

α(t − s) = 〈�̌(t) �̌†(s)〉 (5.12)

and inserting the explicit form of the tunnel operator (2.4) one
obtains

α(t) =
∑
k,q,σ

|tkqσ |2〈ǎ†
kσ (t)ǎqσ (t)a†

qσ akσ 〉. (5.13)

Here, the average is over the quasiparticle equilibrium state
ρel

β = (1/Zel) exp(−βHel) of the electrodes where β = 1/kBT

is the inverse temperature. The evaluation of the quantity (5.13)
for a tunnel junction is familiar [3,26]. In the wide band limit
the tunneling amplitudes squared |tkqσ |2 may be replaced by an
average t

2. Inserting then the quasiparticle Green’s functions
one obtains

α(t) = t
2

∑
k,q,σ

e
i
�

(εkσ −εqσ )t

(1 + eβεkσ )(1 + e−βεqσ )
. (5.14)

The index σ labels a large number N � 1 of channels, and the
sums over k and q may be replaced by integrals over energy
when we introduce the densities of states ρ and ρ ′ of the two
electrodes. One then finds

α(t) = t
2Nρρ ′

∫ ∞

−∞
dE

E e− i
�

Et

1 − e−βE
. (5.15)

Now, the tunneling conductance GT is given by [3]

GT = 2πe2

�
t

2Nρρ ′ (5.16)

in terms of which the result (5.15) takes the form

α(t) = 1

2π

�

e2
GT

∫ ∞

−∞
dE

E e− i
�

Et

1 − e−βE
. (5.17)

The other quasiparticle averages in Eq. (5.1) can be evaluated
in the same way. One obtains

〈�̌†(t)�̌(s)〉 = α(t − s) (5.18)

and

〈�̌(s)�̌†(t)〉 = 〈�̌†(s)�̌(t)〉 = α∗(t − s). (5.19)

Hence, the arising quasiparticle averages coincide with those
known from standard P (E) theory.

B. Phase averages

The phase averages required for a circuit driven by a
time-dependent voltage are more involved since Ienv is of
order zero in the quasiparticle tunneling operator � while for
standard P (E) theory [3] it suffices to compute the average
of IT which is explicitly of first order in �. Writing the
quasiparticle averages in terms of the function α(t), the average
current (5.1) reads

〈Ienv(t)〉 .= 〈Ǐenv(t)〉 − 1

�2

∫ t

t0

ds1

∫ s1

t0

ds2 {α(s1 − s2)

× (〈[Ǐenv(t),eiϕ̌(s1)]e−iϕ̌(s2)〉
+ 〈[Ǐenv(t),e−iϕ̌(s1)]eiϕ̌(s2)〉) + c.c.} (5.20)

where we have rewritten the result for an arbitrary initial time t0
when driving starts. What remains to be evaluated are averages
of phase operators in the interaction representation.

We are interested in the current when the driving has been
acting for a long time. Then, we may let the initial time tend
to −∞ and find

〈Ienv(t)〉 .= 〈Ǐenv(t)〉 − 1

�2

∫ ∞

0
du

∫ ∞

0
dv {α(v)

× (〈[Ǐenv(t),eiϕ̌(t−u)]e−iϕ̌(t−u−v)〉
+ 〈[Ǐenv(t),e−iϕ̌(t−u)]eiϕ̌(t−u−v)〉) + c.c.}. (5.21)

We now take advantage of the unitary transformation (4.10)
which leads to the representations (5.8) and (5.9) of the phase
operators in the interaction representation. Inserting these
formulas we obtain

〈Ienv(t)〉 .= Īenv(t) − 1

�2

∫ ∞

0
du

∫ ∞

0
dv {α(v)

×〈[Ĩenv(t),eiϕ̃(t−u)]e−iϕ̃(t−u−v)〉
× (ei[ϕ̄(t−u)−ϕ̄(t−u−v)] − c.c.) + c.c.} (5.22)

where all expectation values are now reduced to averages to
be determined for the undriven electromagnetic environment
described by the Hamiltonian H 0

env introduced in Eq. (4.15).
We also have taken advantage of the fact that the Hamiltonian
H 0

env is invariant under the parity transformation � with the
properties

� = �†, �2 = 1, (5.23)

�ϕ � = −ϕ, �ϕn � = −ϕn, (5.24)

�Q� = −Q, �Qn � = −Qn. (5.25)
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This implies �H 0
env � = H 0

env and the relations

〈e−iϕ̃(t) eiϕ̃(t−s)〉 = 〈eiϕ̃(t) e−iϕ̃(t−s)〉 (5.26)

and

〈[Ĩenv(t),eiϕ̃(t−u)]e−iϕ̃(t−u−v)〉
= −〈[Ĩenv(t),e−iϕ̃(t−u)]eiϕ̃(t−u−v)〉. (5.27)

This latter relation has been used to simplify the result (5.22).

C. Phase correlation function

The evaluation of phase averages is familiar from the
standard theory of the DCB [1–3]. Since the process of phase
fluctuations of the undriven environment is stationary and
Gaussian, one has

〈e−iϕ̃(t) eiϕ̃(t−s)〉 = e〈[ϕ̃(s)−ϕ̃(0)]ϕ̃(0)〉 = eJ (s) (5.28)

where

J (t) = 〈[ϕ̃(t) − ϕ̃(0)]ϕ̃(0)〉 (5.29)

is the phase-phase correlation function of the undriven circuit
which takes the form [3]

J (t) = 2
∫ ∞

0

dω

ω

Re[Zt (ω)]

RK

{
coth

(
1

2
β�ω

)

× [cos(ωt) − 1] − i sin(ωt)

}
(5.30)

where RK = h/e2 is the resistance quantum and

Zt (ω) = 1

Y (ω) − iωC
(5.31)

is the total impedance of the circuit consisting of the environ-
mental impedance and the junction capacitance.

To determine the average current of a circuit driven by
a time-dependent voltage one needs to evaluate the phase
average

〈[Ĩenv(t),eiϕ̃(u)]e−iϕ̃(v)〉 = �

e
C〈[ ¨̃ϕ(t),eiϕ̃(u)]e−iϕ̃(v)〉 (5.32)

where we have used Eq. (5.10). Due to the Gaussian statistics
of phase fluctuations in the absence of tunneling we have

〈ϕ̃(t) eiϕ̃(u) e−iϕ̃(v)〉
= i[〈ϕ̃(t)ϕ̃(u)〉 − 〈ϕ̃(t)ϕ̃(v)〉]〈eiϕ̃(u) e−iϕ̃(v)〉
= i[J (t − u) − J (t − v)]eJ (u−v) (5.33)

and

〈eiϕ̃(u) ϕ̃(t) e−iϕ̃(v)〉
= i[〈ϕ̃(u)ϕ̃(t)〉 − 〈ϕ̃(t)ϕ̃(v)〉]〈eiϕ̃(u) e−iϕ̃(v)〉
= i[J (u − t) − J (t − v)]eJ (u−v) (5.34)

which gives

〈[ϕ̃(t),eiϕ̃(u)]e−iϕ̃(v)〉 = i[J (t − u) − J (u − t)]eJ (u−v)

= −2J ′′(t − u) eJ (u−v) (5.35)

where we have used the symmetry

J (−t) = J ∗(t) (5.36)

obeyed by the phase-phase correlation function (5.30) and
have introduced the imaginary part J ′′(t) of J (t) with the
second-order time derivative

J̈ ′′(t) = e2

π�

∫ ∞

0
dω ω Re[Zt (ω)] sin(ωt). (5.37)

By virtue of Eq. (5.35) we now obtain

〈[Ĩenv(t),eiϕ̃(u)]e−iϕ̃(v)〉 = −2�C

e
J̈ ′′(t − u) eJ (u−v). (5.38)

Inserting this result into Eq. (5.22), we find for the average
current

〈Ienv(t)〉 .= Īenv(t) + 2C

�e

∫ ∞

0
du

∫ ∞

0
dv {α(v)J̈ ′′(u) eJ (v)

× (ei[ϕ̄(t−u)−ϕ̄(t−u−v)] − c.c.) + c.c.}. (5.39)

Here Īenv(t) is the average displacement current flowing in the
absence of tunneling and the additional terms of second order
in HT contain the correlator α(t) from the average over the
quasiparticles, the correlator J (t) from the phase averages in
the absence of driving, and exponential factors taking account
of the applied voltage (6.1) which has been split off from the
averages by means of the unitary transformation (4.10).

VI. AVERAGE TUNNELING CURRENT
FOR PERIODIC DRIVING

We focus now on the important case of a circuit driven by
the voltage

Vext(t) = Vdc + Vac cos(�t) (6.1)

comprising a dc voltage Vdc and an ac voltage Vac of frequency
�. From Eq. (2.6) we find for the phase ϕext(t) associated with
the voltage drive (6.1) apart from an arbitrary additive constant

ϕext(t) = e

�

[
Vdct + Vac

�
sin(�t)

]

= e

�

[
Vdct − Re

{
Vac

i�
e−i�t

}]
. (6.2)

Combining this with the evolution equation (4.9) for ϕ̄(t) we
obtain

ϕ̄(t) = e

�

[
Vdct − Re

{
Y (�)

Y (�) − i�C

Vac

i�
e−i�t

}]
(6.3)

when the periodic driving (6.2) has been acting for a suffi-
ciently long time so that a steady oscillatory state has been
reached. We split ϕ̄(t) into

ϕ̄(t) = e

�
Vdct + ϕ̄ac(t) (6.4)

with the ac component

ϕ̄ac(t) = − e

�
Re

{
Y (�)

Y (�) − i�C

Vac

i�
e−i�t

}
. (6.5)

Since ϕ̄(t) coincides with the average phase 〈ϕ̌(t)〉 in the
absence of tunneling, we find by virtue of Eq. (3.13) for the
average charge 〈Q̌(t)〉 the result

〈Q̌(t)〉 = CVdc + Re

{
CY (�)

Y (�) − i�C
Vac e−i�t

}
(6.6)
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where Y (ω) = 1/Z(ω) is the admittance of the electrodynamic
environment. In the absence of tunneling the junction charge
〈Q̌(t)〉 oscillates with an amplitude proportional to Vac

about the time-averaged charge CVdc. Introducing the polar
decomposition

Y (�)

Y (�) − i�C
= �(�) eiη(�) (6.7)

of the admittance ratio into modulus � and phase η, Eq. (6.6)
simply reads

〈Q̌(t)〉 = C[Vdc + V� cos(�t − η)] (6.8)

which shows that the ac voltage across the junction has a
renormalized amplitude

V� = � Vac (6.9)

and is shifted by the phase η due to the electromagnetic
environment.

Making use of the polar decomposition (6.7) and the
effective ac voltage (6.9) across the junction, the phase (6.5)
takes the form

ϕ̄ac(t) = eV�

��
sin(�t − η). (6.10)

Accordingly, we find

ϕ̄(t) − ϕ̄(t − s) = e

�
Vdcs + a sin(�t − η)

− a sin[�(t − s) − η] (6.11)

where we have introduced the amplitude

a = eV�

��
. (6.12)

The phase difference (6.11) can now be inserted into Eq. (5.39)
to give for the average current 〈Ienv(t)〉 the result

〈Ienv(t)〉 .= Īenv(t) + 2C

�e

∫ ∞

0
du

∫ ∞

0
dv {α(v)J̈ ′′(u) eJ (v)

× (e
i
�

eVdcveia sin[�(t−u)−η]e−ia sin[�(t−u−v)−η] − c.c.)

+ c.c.}. (6.13)

This result has the same periodicity in time as the ac driving
voltage.

A. Fourier components of average current

To evaluate the expression (6.13) for the average current
further, we employ the Jacobi-Anger expansion [27] of
exponentials of trigonometric functions. One has

eia sin(�t) =
∞∑

k=−∞
Jk(a) eik�t (6.14)

where Jk(z) is the Bessel function of the first kind of order k.
For real a and integer k the Bessel functions are real and obey

J−k(a) = (−1)kJk(a) = Jk(−a). (6.15)

Using the series representation (6.14), one obtains for the
average current (6.13)

〈Ienv(t)〉 .= Īenv(t) + 2C

�e

∞∑
k,l=−∞

∫ ∞

0
du

∫ ∞

0
dv {α(v)J̈ ′′(u)

× eJ (v)Jk(a)Jl(a)(e
i
�

eVdcvei(k−l)[�(t−u)−η]

× eil�v − c.c.) + c.c.}. (6.16)

This can be written as a Fourier series:

〈Ienv(t)〉 =
∞∑

n=−∞
In e−in(�t−η). (6.17)

The Fourier coefficients may be decomposed into

In = Īn + În (6.18)

where the Īn describe the current Īenv(t) which coincides with
the displacement current in the absence of tunneling, while the
coefficients În arise from tunneling. From Eq. (6.8) we obtain
for the displacement current Īenv(t) = 〈Ǐenv(t)〉 = 〈 ˙̌Q(t)〉 the
expression

Īenv(t) = −�CV� sin(�t − η) (6.19)

from which we see that Īenv gives only a contribution to the
coefficients I±1 of the form

Ī1 = −Ī−1 = − i

2
�CV�. (6.20)

The Fourier coefficients În due to tunneling transitions can be
read off from Eq. (6.16) with the result

În
.= 2C

�e

∞∑
k=−∞

∫ ∞

0
du J̈ ′′(u) ein�u

∫ ∞

0
dv {α(v) eJ (v)(Jk−n(a)

× Jk(a) e
i
�

(eVdc+k��)v − Jk+n(a)Jk(a) e− i
�

(eVdc+k��)v)

+α∗(v) eJ ∗(v)(Jk+n(a)Jk(a) e− i
�

(eVdc+k��)v

− Jk−n(a)Jk(a) e
i
�

(eVdc+k��)v)}. (6.21)

To evaluate this further we make use of the representation
(5.37) of J̈ ′′(t) which implies∫ ∞

0
du J̈ ′′(u) ein�u

= e2

π�

∫ ∞

0
du

∫ ∞

0
dω ω Re[Zt (ω)] sin(ωu) ein�u

= e2

2π�

∫ ∞

0
du

∫ ∞

−∞
dω ω Zt (ω) sin(ωu) ein�u (6.22)

where we have used the symmetry Z∗
t (ω) = Zt (−ω) of the

total impedance (5.31) to obtain the last line. With the
help of∫ ∞

0
du sin(ωu) ein�u = 1

2i
[πδ(ω + n�) − πδ(ω − n�)]

+ 1

2
P

[
1

ω + n�
+ 1

ω − n�

]
(6.23)
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where P denotes the Cauchy principal value, the result (6.22)
simplifies to read∫ ∞

0
du J̈ ′′(u) ein�u = e2

2�C
+ i

n�e2

2�
Zt (n�)

= e2

2�C

Y (n�)

Y (n�) − in�C
(6.24)

where we have inserted the explicit form (5.31) of the total
impedance to obtain the last expression. The result (6.24) can
now be used to write the Fourier coefficients (6.21) in the form

În
.= e

�2

Y (n�)

Y (n�) − in�C

∞∑
k=−∞

∫ ∞

0
ds

×{α(s) eJ (s)(Jk−n(a)Jk(a) e
i
�

(eVdc+k��)s

− Jk+n(a)Jk(a) e− i
�

(eVdc+k��)s)

+α∗(s) eJ ∗(s)(Jk+n(a)Jk(a) e− i
�

(eVdc+k��)s

− Jk−n(a)Jk(a) e
i
�

(eVdc+k��)s)}. (6.25)

These coefficients obey

Î ∗
−n = În (6.26)

which in conjunction with Eq. (6.20) ensures that the current
(6.17) is real.

B. Time-averaged current

Let us first consider the case Vac = 0. Then a = 0 and
since Jk(0) = 0 for k 	= 0 while J0(0) = 1 only the Fourier
coefficient I0 is nonvanishing and we obtain for the stationary
current I0 in the presence of a dc voltage only

Idc(Vdc)
.= e

�2

∫ ∞

−∞
ds α(s) eJ (s)(e

i
�

eVdcs − c.c.) (6.27)

where we have made use of the symmetry (5.36) of J (t) and
the relation

α∗(t) = α(−t) (6.28)

following from Eq. (5.17). Inserting the representation (5.17)
of α(t) into Eq. (6.27) we obtain

Idc(Vdc)
.= GT

2π�e

∫ ∞

−∞
dE

E

1 − e−βE

∫ ∞

−∞
ds

× e− i
�

Es eJ (s)(e
i
�

eVdcs − e− i
�

eVdcs). (6.29)

Introducing now the familiar P (E) function [1,3]

P (E) = 1

2π�

∫ ∞

−∞
dt eJ (t)+ i

�
Et (6.30)

which gives the probability to exchange the energy E with
the environmental modes during a tunneling transition, the
expression (6.29) takes the form

Idc(Vdc)
.= GT

e

∫ ∞

−∞
dE

E

1 − e−βE

× [P (eVdc − E) − P (−eVdc − E)] (6.31)

which is the standard result of dynamical Coulomb blockade
theory [1–3].

Let us now turn again to the case of an ac drive and consider
the time-averaged current I0 = Î0. From Eq. (6.25) we obtain
the result

I0
.= e

�2

∞∑
k=−∞

∫ ∞

−∞
ds α(s) eJ (s)J 2

k (a)(e
i
�

(eVdc+k��)s − c.c.).

(6.32)

We can now combine Eqs. (6.27) and (6.32) to obtain

I0 =
∞∑

k=−∞
J 2

k

(
e�Vac

��

)
Idc(Vdc + k��/e). (6.33)

This corresponds to the result of Tien-Gordon theory [28] for
the photon assisted dc tunneling current but it includes the
lead impedance causing a renormalization of the effective ac
voltage by the factor �. The result (6.33) shows that the dc
current of the circuit driven by a dc and a sinusoidal ac voltage
can be determined from the current-voltage characteristics of
the device driven by a dc voltage only [14,15,21,29].

C. Higher harmonics of average current

Let us now consider the alternating part of the average
current for sinusoidal driving. The time-dependent part of
〈Ienv(t)〉 is described by the Fourier coefficients (6.20) and
(6.25) for n 	= 0. It is convenient to write the result (6.25) for
the Fourier coefficients În in the form

În
.= e

2�2

Y (n�)

Y (n�) − in�C

∞∑
k=−∞

∫ ∞

−∞
ds{α(s) eJ (s)[Jk+n(a)

+ Jk−n(a)]Jk(a)(e
i
�

(eVdc+k��)s − c.c.)

+ sign(s) α(s) eJ (s)[Jk−n(a) − Jk+n(a)]Jk(a)

× (e
i
�

(eVdc+k��)s + c.c.)} (6.34)

where we have decomposed the integrand into real and
imaginary parts by making use of the symmetries (5.36) and
(6.28) of J (t) and α(t), respectively. It can now readily be seen
that the real part of the integral in Eq. (6.34) can be expressed
in terms of the current Idc(Vdc) in the presence of a dc voltage
only. Using Eq. (6.27) we find

e

2�2

∞∑
k=−∞

∫ ∞

−∞
ds α(s) eJ (s)[Jk+n(a) + Jk−n(a)]Jk(a)

× (e
i
�

(eVdc+k��)s − c.c.)

= 1

2

∞∑
k=−∞

[Jk+n(a) + Jk−n(a)]Jk(a)Idc(Vdc + k��/e).

(6.35)

To express also the imaginary part of the integral in Eq. (6.34)
in terms of the dc current we introduce

IKK(Vdc) = ie

�2

∫ ∞

−∞
ds sign(s) α(s) eJ (s)(e

i
�

eVdcs + c.c.)

(6.36)
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in terms of which we have

e

2�2

∞∑
k=−∞

∫ ∞

−∞
ds sign(s) α(s) eJ (s)[Jk−n(a) − Jk+n(a)]

×Jk(a)(e
i
�

(eVdc+k��)s + c.c.)

= i

2

∞∑
k=−∞

[Jk+n(a) − Jk−n(a)]Jk(a)IKK(Vdc + k��/e).

(6.37)

IKK(V ) is the Kramers-Kronig transform of Idc(V ) and can be
determined by the relation [29]

IKK(V ) = P

∫ ∞

−∞

dU

π

Idc(U ) − GT U

U − V
. (6.38)

To see this one inserts the representation (6.27) of Idc(V ) into
Eq. (6.38) and makes use of

P

∫ ∞

−∞

dU

π

e
i
�

eUs − c.c.

U − V
= i sign(s)(e

i
�

eV s + c.c.) (6.39)

to recover the expression (6.36). Furthermore, we note that
the Fourier coefficients are not affected by a constant shift
of IKK(V ). The definition (6.38) of the Kramers-Kronig
transformed current IKK(V ) removes the asymptotic behavior
of Idc(V ) and leads to a well-behaved principal value integral.

With the help of the relations (6.35) and (6.37) one obtains
from Eq. (6.34)

În
.= 1

2

Y (n�)

Y (n�) − in�C

∞∑
k=−∞

Jk(a)

×{[Jk+n(a) + Jk−n(a)]Idc(Vdc + k��/e)

+ i[Jk+n(a) − Jk−n(a)]IKK(Vdc + k��/e)} (6.40)

which combines with Eq. (6.20) to give for the Fourier
coefficients In for n > 0 the result

In = 1

2

Y (n�)

Y (n�) − in�C

∞∑
k=−∞

Jk(a)

×{[Jk+n(a) + Jk−n(a)]Idc(Vdc + k��/e)

+ i[Jk+n(a) − Jk−n(a)]IKK(Vdc + k��/e)}
− i

2
δn,1�C�Vac. (6.41)

The last term present for n = 1 only comes from the displace-
ment current flowing already in the absence of tunneling. The
coefficients for n < 0 follow from I−n = I ∗

n .
Equations (6.33) and (6.41) determine the current 〈Ienv(t)〉

caused by a dc and a sinusoidal ac voltage in terms of
the current driven by a dc voltage only and the admittance
of the electromagnetic environment. The components (6.41)
of the alternating current reveal additional effects of the
electromagnetic environment. Compared to previous work
on ac voltages applied directly to the junction electrodes
[14,15,21,29], we find a suppression of the nth harmonic of
the current by the factor Y (n�)/[Y (n�) − in�C].

VII. CONCLUSIONS

We have demonstrated that for ac driven tunneling elements
there are additional effects of the electromagnetic environment
not taken into account in previous work. For alternating volt-
ages it is important to distinguish between the tunneling current
flowing across the tunneling element and the experimentally
observable current flowing in the leads of the tunnel junction.
This distinction is only insignificant for devices driven by a
constant voltage bias when no displacement currents flow in
the circuit.

An applied alternating voltage does not only affect the
leads of the tunnel junction but also drives the modes of the
electromagnetic environment. Therefore, the time dependence
of the Hamiltonian of the circuit arising from the applied
voltage cannot be shifted to the tunneling Hamiltonian by
a unitary transformation leaving the environmental modes
unaffected. We have presented a unitary transformation of
all circuit variables allowing us to reduce the unperturbed
quantities to be evaluated in a perturbative expansion in the
tunneling Hamiltonian to quantities calculable for a circuit in
the absence of tunneling and driving.

Regarding the average current driven by a constant dc
and a sinusoidal ac voltage, the electromagnetic environment
causes the following effects: The time-averaged current (6.33)
is essentially of the form of the photon assisted tunneling
current of Tien-Gordon theory, [28] however, with an effective
ac voltage V� = �Vac. This is natural, since in the absence
of tunneling the average voltage across the tunnel junction
follows from Eq. (6.8) as

VJ = 〈Q̌(t)〉
C

= Vdc + V� cos(�t − η) (7.1)

and thus has an ac amplitude modified by the electromagnetic
environment. More pronounced are the modifications of the
higher harmonics (6.41) of the current. Typically, these
harmonics are suppressed since an alternating component
of the tunneling current must partially be used to charge
the junction capacitance thereby building up an alternating
voltage which can drive the current in the lead circuit.
Treating the average voltage (7.1) across the tunnel junction
in the absence of tunneling formally as an externally applied
voltage, one can determine the average tunneling current 〈IT 〉
perturbatively along the lines of previous work [14,15,21,29].
Subsequently, circuit theory can be employed to decompose
the tunneling current into a displacement current component
and the current 〈Ienv〉 flowing in the leads. This leads to results
fully consistent with our findings. However, the approach
presented here is not restricted to average quantities but treats
tunneling elements driven by ac voltages on the level of current
operators and can therefore likewise be applied to determine
noise properties.

To illustrate the environmental effects let us briefly discuss
two experimentally relevant cases. For a purely Ohmic
environmental impedance, i.e., Z(ω) = R, the ratio between
the total impedance (5.31) and the lead impedance Z(ω) is
given by

Zt (ω)

Z(ω)
= Y (ω)

Y (ω) − iωC
= 1

1 − iωRC
.
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FIG. 2. (a) Circuit diagram of a tunnel junction driven through an
LC resonator with lead resistance R. (b) Suppression factor |Sn| of
amplitude of higher harmonics of order n for driving at the resonance
frequency and a quality factor Qf = 10.

The polar decomposition of this ratio gives for the modulus

�(ω) = 1√
1 + (ωRC)2

(7.2)

and for the phase

η(ω) = arctan(ωRC). (7.3)

Hence the modulus � is always smaller than 1. However, in
particular for a typical lead resistance in the range of 50 �, the
suppression will mostly be moderate.

This changes if we consider a tunnel junction driven through
a resonator as studied recently [21,30]. The circuit diagram
of the setup depicted in Fig. 2(a) shows an environmental
impedance

Z(ω) = R − iωL (7.4)

with an Ohmic lead resistance R and an inductance L. The LC

resonator of the circuit has a resonance frequency

ω0 = 1√
LC

(7.5)

and a characteristic impedance

Zc =
√

L

C
(7.6)

implying a quality factor Qf = Zc/R and accordingly a loss
factor

γ = 1

Qf

= R

Zc

. (7.7)

For this circuit the ratio between the total impedance (5.31)
and the impedance Z(ω) of the leads is given by

Zt (ω)

Z(ω)
= 1

1 − iωRC − ω2LC
= ω2

0

ω2
0 − ω2 − iγ ω0ω

(7.8)

which implies a modulus

�(ω) = ω2
0√(

ω2
0 − ω2

)2 + (γω0ω)2
(7.9)

and a phase

η(ω) = arctan

(
γω0ω

ω2
0 − ω2

)
(7.10)

where the values of arctan are to be chosen in the interval
[0,π ).

The effects of the electromagnetic environment are most
pronounced when the circuit is driven at the resonance
frequency ω0 of the LC resonator. For a voltage of the
form (6.1) with an ac component of amplitude Vac and
frequency � = ω0, we obtain from Eqs. (7.9) and (7.10) for
ω = ω0

� = Qf , η = π

2
. (7.11)

Hence, the effective ac voltage across the junction
reads

VJ = Qf Vac sin(ω0t). (7.12)

The ac-DCB effect alters the Fourier coefficient of the nth
harmonic of the current by the factor

Sn = Y (nω0)

Y (nω0) − inω0C
= 1

1 − n2 − in/Qf

(7.13)

which implies a strong suppression of higher harmonics as
shown in Fig. 2(b). This has not been studied experimentally
so far.

Tunneling elements embedded in electromagnetic envi-
ronments with resonances are currently quite frequently
investigated. For these systems the DCB effects predicted here
for sinusoidal driving can be significant and require attention.
In this paper we have only addressed explicitly the average
current. However, the theory presented has also immediate
consequences for the noise spectrum of the current. This and
other aspects of the extended DCB theory will be studied in
future work.
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