
PHYSICAL REVIEW B 92, 245431 (2015)
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We study the effects of strong electron-electron interactions on the surface of cubic topological Kondo insulators
(such as samarium hexaboride, SmB6). Cubic topological Kondo insulators generally support three copies of
massless Dirac nodes on the surface, but only two of them are energetically degenerate and exhibit an energy
offset relative to the third one. With a tunable chemical potential, when the surface states host electron and
hole pockets of comparable size, strong interactions may drive this system into rotational symmetry breaking
nematic and translational symmetric breaking excitonic spin- or charge-density-wave phases, depending on
the relative chirality of the Dirac cones. Taking a realistic surface band structure into account we analyze the
associated Ginzburg-Landau theory and compute the mean-field phase diagram for interacting surface states.
Beyond mean-field theory, this system can be described by a two-component isotropic Ashkin-Teller model at
finite temperature, and we outline the phase diagram of this model. Our theory provides a possible explanation
of recent measurements which detect a twofold symmetric magnetoresistance and an upturn in surface resistivity
with tunable gate voltage in SmB6. Our discussion can also be germane to other cubic topological insulators,
such as ytterbium hexaboride (YbB6) and plutonium hexaboride (PuB6).
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I. INTRODUCTION

It was realized in the past decade that the band structure
of a strongly spin-orbit coupled three-dimensional solid with
preserved time-reversal and inversion symmetries can be
associated with a topological Z2 index [1,2]. A system with
such nontrivial topological index, also known as a strong Z2

topological insulator, belongs to class AII in the tenfold way
of classification [3]. These materials ideally have an insulating
bulk but host an odd number of metallic surface states which
are protected against time-reversal invariant perturbations.
Typical topological insulators (such as Bi2 Se3) are often
only very weakly correlated. Our theoretical understanding
of these materials is thus based on a noninteracting electronic
band structure picture that is not affected by the presence of
electron-electron interactions. Within the same class (AII), a
strongly correlated topological Kondo insulator (TKI) was
predicted to exist in Ref. [4], in which the hybridization
between localized f and conduction d electrons opens up a
topologically nontrivial bulk-insulating gap below the Kondo
temperature. Indeed, a number of recent experiments strongly
suggest that samarium hexaboride (SmB6) possibly supports
a TKI below the Kondo temperature (50 K) [5–13]. The bulk
topological invariant can be computed within the mean-field
description of this system, yielding a nonzero Z2 index. These
recent findings motivate the search for effects where both
interactions and topological details play a crucial role at low
temperatures [14–16].

Motivated by the possibility that TKIs can be a fertile
ground to support novel interplay of topology and corre-
lations, we here consider the effect of strong electronic
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interactions on the surface of TKIs and demonstrate that
gapless surface states in these systems can be susceptible
towards nematic and excitonic density-wave phases. We also
show that our theoretical analysis can be germane to two
recent experiments [17,18], which could be indicative of
interaction-induced instabilities on the surface of a TKI:
First, magnetoresistance measurements on SmB6 report a
C2- and C4-symmetric magnetoresistance at low and high
temperatures, respectively [17]. These findings indicate a
rotational symmetry breaking nematic ordering on the surface
of a TKI. Second, Ref. [18] reports a measurement of the
surface resistivity in SmB6 where the resistivity increases with
varying gate voltage, which may, for example, arise due to
an underlying excitonic ordering. In this work we develop
a theory for the interacting surface states in TKIs, which
provides possible explanations to these observations.

Consider the typical surface band structure of a cubic
topological insulator (for example, SmB6): these systems are
strong Z2 topological insulators and thus support an odd
number of metallic surface states. In the cubic environment
of SmB6, the band inversion takes place at the three X

points of the bulk Brillouin zone (BZ) [19,20]. Hence, an
interface of a cubic TI with the vacuum supports three copies
of massless Dirac cones at the �, X, and Y points of the
surface BZ, as illustrated in Figs. 1(a) and 1(b) [throughout
the paper, we assume that the surface is cleaved along a
high-symmetry axis, such as (001)]. The underlying cubic
symmetry enforces equal energies EX and EY of the Dirac
nodes at the X and Y points, respectively, which manifests
a fourfold rotational C4 symmetry on the surface. The �

Dirac point is, however, not constrained by this symmetry
and generically displays an offset with respect to the X and Y

points, i.e., E� �= EX/Y (we set E� > EX/Y in the remainder
to be definite), which can be as large as ∼10–12 meV [21,22].
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FIG. 1. (Color online) Top row: Two possible chiralities of elec-
tron (blue) and hole (red) pockets on the surface of cubic TKIs,
leading to an excitonic instability in the (a) SDW and (b) CDW
channels, respectively. (c) Offset among the Dirac points near the
� and X/Y points, and (d) deviation from perfectly nesting, due to
(e) unequal sizes of the pockets, (f) ellipticity in the electron pocket,
parametrized by μ and δ, respectively.

This surface band structure is also in agreement with recent
ARPES measurements [8–12,23–25]. Due to such large energy
offset among the Dirac points, it is natural to anticipate that
surface chemical potential is tuned in between E� and EX,Y ,
giving rise to electron and hole pockets that can be conducive
for excitonic condensation. If, on the other hand, all the pockets
are electron- or hole-like such configuration can be achieved
through external gating, for example [18].

It is therefore conceivable to place the chemical potential in
between E� and EX/Y [18], yielding one hole pocket around
the � point and two electron pockets near the X, Y points,
as shown in Fig. 1(c). Now, if interactions on the surface
are included, electrons in the X/Y pockets can pair via the
so called Keldysh-Kopaev mechanism with holes in the �

pockets [26], giving rise to an excitonic condensate, i.e., a
density wave, which is modulated by half the reciprocal lattice
vector of the surface BZ. This paper discusses the phase
diagram of this effective interacting surface theory.

Since the underlying bulk theory is strongly spin-orbit
coupled, spin (planar components) and momentum of the
surface Dirac cones will be locked as shown in Figs. 1(a)
and 1(b). Therefore, only the z component of the spin remains
free and participates in the ordering. However, in principle,
two distinct possible types of excitonic instabilities can occur
on the surface of TKIs depending on the relative chirality of
the Dirac cones at the X/Y and � points. When all Dirac cones
on the surface have identical chirality [Fig. 1(a)], the excitonic
condensate is formed by electrons and holes with opposite
spin projection, giving rise to triplet spin-density wave (SDW)
order. If, on the other hand, the Dirac points at the � and
X,Y points carry opposite chirality [Fig. 1(b)], pairing occurs
between particles and holes with equal spin projection, leading

to singlet charge-density wave (CDW) order. Here singlet and
triplet orders are defined in terms of total angular momentum.
Our discussion is, however, insensitive to the exact nature of
the excitonic ordering, and we thus assume equal chirality
for all Dirac cones and discuss the SDW instability in the
following.

Currently there is an ongoing debate on the effective
model for bulk insulating state in SmB6 that can lead to
different spin texture on the surface [22,27]. However, the
nature of the excitonic order only depends on the relative
chirality of electron- and hole-like Dirac surfaces. Recent
theoretical works [28,29] have demonstrated that depending
on the relative strength of nearest-neighbor and next-nearest-
neighbor hybridization among d and f electrons, one can
realize either of the two scenarios we presented in Fig. 1.
Therefore, our classification exhausts all possibilities for the
excitonic order and the following discussion is insensitive to
the details of the bulk band structures (since the SDW and the
CDW orders give identical phase diagrams).

If the Fermi surfaces are perfectly nested [as shown in
Fig. 1(d)], the Keldysh-Kopaev mechanism dictates that
an excitonic instability sets in for arbitrarily weak repulsive
interactions. It turns out, however, that a realistic surface band
structure deviates from perfect nesting in two ways: First,
generically the chemical potential will not be exactly placed
in the middle between E� and EX/Y [as illustrated in Fig. 1(e)].
This Fermi surface mismatch reduces the propensity for
excitonic pairing, analogous to the Clogstron-Chandrasekhar
effect in standard BCS theory where the chemical potential
imbalance is induced by a Zeeman term. Second, recent
band structure calculations [21] indicate that only the �

Dirac cone is isotropic while both X and Y Dirac cones
can be anisotropic [see Fig. 1(f)], in agreement with ARPES
measurements [8–12,23–25]. We take these realistic effects
into account, finding that the overall structure of the phase
diagram is not strongly affected by these effects, although they
may reduce the transition temperature of various orderings.

We note that the surface band structure shown in Fig. 1
exhibits strong resemblance to the band structure of the
iron-based superconductors. We discuss both the similarities
and the differences between these systems at the end of
the paper (see Sec. VI). The excitonic ordering due to
weak repulsive interactions, known as the Keldysh-Kopaev
mechanism [26], has also been exploited to address the SDW
instability in Cr [30] and iron-based superconductors [31–33],
antiferromagnetic ordering for weak Hubbard repulsion in
monolayer [34,35] and bilayer [36] graphene, 2D Kondo
insulators [37] when placed in an in-plane magnetic field, and
in the context of possible excitonic instability in topologically
trivial calcium hexaboride (CaB6) [38].

This paper is structured as follows: In Sec. II, we introduce
the microscopic description of the interacting surface states
of a cubic TKI. In Sec. III, we discuss the Ginzburg-Landau
theory of the model that is valid in the vicinity of a second-
order phase transition at finite temperature. In particular,
we discover that in the limit of small ellipticity the order
developing on the surface breaks the C4 lattice symmetry down
to C2. We further illustrate that the condensation of excitonic
order parameters (OPs) only breaks discrete symmetries, thus
implying that true long-range order is described accurately by a
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mean-field analysis of our effective surface theory. We present
a full numerical computation of the mean-field phase diagram
in Sec. IV, finding a second-order phase transition for nearly
perfect nesting from a high-temperature paramagnetic phase to
a C2-symmetric state at low temperature in which an excitonic
condensate develops between the � and the either X or Y

pockets, but not both, thus spontaneously breaking the discrete
C4 symmetry of the surface BZ. As is well known, mean-field
theory does not assume correlations in the paramagnetic or
normal phase at high temperature and does not distinguish
between a phase where true long-range order develops in the
form of a nematic phase (with broken rotational symmetry)
where thermal fluctuations dominate, and a density wave
phase (with broken translational symmetry) [39]. These two
distinct transitions, which coincide in mean-field theory, can,
in principle, take place at different temperatures. This occurs
through the proliferation of domain walls in the system. It turns
out that the effective theory describing the dynamics of the
domain walls can be mapped onto a two-component isotropic
Ashkin-Teller model. We exploit such mapping in Sec. V
to elucidate the phase diagram beyond the mean-field level.
Finally, the paper is concluded by a summary and discussion
in Sec. VI. In particular, we comment on similarities as well
as on some differences between our findings and the phase
structure in a completely different class of systems, the iron
pnictides.

II. MICROSCOPIC HAMILTONIAN FOR
INTERACTING SURFACE STATES

This section introduces the microscopic description of the
interacting surface states. The appropriate spinor basis is
chosen to be �j = (�↑,j ,�↓,j ), near j = �,X,Y points of the
surface BZ, where �σ,j is composed of linear superposition
of d and f electrons with spin projection σ = ↑,↓. The
relative weight among d and f electrons in the surface
states is set by the bulk band parameters, such as hopping
amplitudes and hybridization matrix elements [21]. Recent
transport measurements in SmB6 with different thicknesses
clearly establish that at low temperatures (sufficiently below
the Kondo temperature) surface states are decoupled from the
bulk and the transport properties are essentially determined
by the former ones [6]. Furthermore, spin-resolved ARPES
has established the helical spin texture of the surface states,
and quantum oscillation has observed the signature of Dirac
Landau levels up to 45 teslas [40]. Also, recent thermoelectric
measurements captured the signature of heavy Dirac fermions
on the surface, even after mechanically damaging the sur-
face [41]. These observations strongly indicate that despite
small bulk gap (∼15 meV) and large number of bulk states,
the surface and the bulk states are effectively decoupled in
SmB6, which in turn allows us to treat the gapless surface
states separately [42]. Notice that in YbB6 the bulk gap is
∼100 meV and one can safely neglect any coupling between
bulk and surface states.

The noninteracting Hamiltonians describing the helical
Dirac fermionic excitations near the �,X, and Y points take
the form (setting � = 1)

Hj = vj
xkxσx − vj

ykyσy, (1)

where j = �,X,Y , with v�
x = v�

y = v as the Fermi velocity of
the isotropic Dirac cone near the � point. The underlying C4

symmetry of the surface BZ implies vX
x = vY

y and vX
y = vY

x .
The ellipticity of the Dirac cones near the X and Y points
is captured by defining vX

x = v(1 + δ) and vX
y = v(1 − δ).

The parameter δ in SmB6 ranges from 0.1 to 0.4 [8,9,11,12].
The above form of the Hamiltonians is restricted by the bulk
topological invariant and in momentum space they represent
antivortices near the �,X,Y points of the surface BZ, capturing
the signature of nontrivial topological invariant of the bulk
insulating state on the surface.

Excitonic SDW ordering arises from a repulsive interaction
between fermions with opposite spin projections in the �

and X,Y pockets. Such a particle-hole pairing instability can
be taken into account by adding a repulsive short-ranged
interaction

Hint = −U0

2

∑
j=X,Y

∫
d2q

(2π )2
s
†
j,qsj,q (2)

to the free Hamiltonian (Hj ), where U0 > 0 and

sj,q =
∫

d2k

(2π )2
c
†
�,k+qα(σ3)αβcj,kβ (3)

is the spin operator. c
†
j,kα creates a fermion in the j = �,X,Y

pocket with momentum k and spin α. The momentum of
the X and Y excitation is measured relative to the nesting
vectors QX = (π,0) and QY = (0,π ). In Eq. (3), a summation
over the spinor indices α and β is implied. Within the same
framework, CDW ordering can be studied by simply replacing
the Pauli matrix σ3 by σ0 in Eq. (3) and changing the sign of
one matrix in HX/Y or H� in Eq. (1), without quantitatively
changing the results. The order parameter for the excitonic
SDW condensation is

	X/Y = U0

2
〈c†�,kα(σ3)αβcX/Y,kβ〉, (4)

where 〈. . .〉 denotes the thermal expectation value.

III. GINZBURG-LANDAU THEORY

In this section, we discuss the Ginzburg-Landau expansion
of the ordered state, which describes the second-order phase
transition at small δ. This analysis will allow us to gain
a qualitative insight into the phase diagram for interacting
surface states of TKIs and the notion of symmetry breaking in
various ordered phases. The Ginzburg-Landau functional can
be constructed by systematically expanding the free energy F
in powers of 	X and 	Y , yielding

F(	i) = K[(| �∇	X|)2 + (| �∇	Y |)2] + α[|	X|2 + |	Y |2]

+ β

2
(|	X|2 + |	Y |2)2 + γ |	X|2|	Y |2. (5)

The last term (proportional to γ ) plays an important role
in determining the pattern of symmetry breaking in the
ordered phase. For γ = 0, the free energy is degenerate for
fixed |	X|2 + |	Y |2. If γ > 0, surface states develop a finite
expectation value of either |	X| or |	Y |, but not both. Such a
phase manifestly breaks the C4 rotational symmetry down to
C2, and the system simultaneously develops a nematic order.
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On the other hand, when γ < 0, the system minimizes the free
energy by simultaneously condensing |	X| and |	Y | at the
same temperature, and the fourfold C4 rotational symmetry of
the system is preserved in the ordered phase.

In terms of the microscopic parameters, γ reads [43]

γ = Tr[Ĝ�ĜXĜ�ĜX + Ĝ�ĜY Ĝ�ĜY − 2Ĝ�ĜXĜ�ĜY ],

(6)

where we define

Ĝ−1
� = −iω + H� − λ−, Ĝ−1

X/Y = −iω + HX/Y + λ+,

(7)
with λ± = λ ± μ [see also Fig. 1(c)] and Tr implies a
summation over momentum, Matsubara frequency, and spinor
indices. If all bands are perfectly circular (δ = 0), ĜX = ĜY

and concomitantly γ = 0, which remains true even if the bands
are not perfectly nested, i.e., μ �= 0. In a realistic situation with
elliptic electron-like Fermi pockets near the X and Y points
(i.e., δ �= 0), we have γ �= 0. For small ellipticity (δ 
 1),
expanding all the quartic terms in F in powers of δ, we obtain
γ = δ2g(T ,μ), where g(Tc,μ) is a positive function close to
Tc. Thus, the SDW state breaks the C4 symmetry on the surface
under X ↔ Y . In the limit of large ellipticity, we must treat δ

nonperturbatively, which is done in the next section.
We point out that the Ginzburg-Landau functional in Eq. (5)

possesses a U (1) valley symmetry of the SDW OPs (	X, 	Y )
associated with their phases 	j = |	j |eiφj , which implies that
for γ > 0 the SDW order not only spontaneously breaks a
discrete C4 rotational but also a continuous U (1) symmetry.
It is important to note that such continuous U (1) symmetry
is only an artifact of the low-energy approximation for the
surface states and can be reduced if we allow an additional
quartic term

FSB = ρ|	X|2|	Y |2[cos(2ϕX) + cos(2ϕY )] (8)

in Eq. (5). Such a term can, for example, be generated by pair-
scattering processes represented by c

†
�c

†
�cXcX and c

†
�c

†
�cY cY ,

also known as umklapp processes, which are allowed in the
presence of an underlying lattice [44]. The physical origin
of such terms can be appreciated in the following way: the
phase degree of freedom of 	j represents a sliding mode
of the SDW order in real space. However, in any material
the commensurate density wave will be pinned to the lattice.
Hence, we need to take into account such lattice-induced terms
to pin density-wave order, which also reduce the (artificial)
valley U (1) symmetry down to a discrete Z2 one. Most
importantly, this implies that no continuous symmetry is
broken and the SDW order on the two-dimensional surface of
cubic TKIs can exhibit true long-range order [45]. In particular,
we expect that a mean-field analysis provides an accurate phase
diagram of the effective surface theory, despite the fact that the
system is two-dimensional. We discuss the mean-field phase
diagram in the next section.

IV. MEAN-FIELD PHASE DIAGRAM

To go beyond the Ginzburg-Landau regime of the phase
diagram, we now analyze the interacting surface theory in
the mean-field approximation. In this section we neglect the
symmetry-breaking terms [Eq. (8)], and thus the excitonic

orders enjoy an artificial U (1) symmetry. In terms of the order
parameters, defined in Eq. (4), the free energy density reads

F = 2

U0
(|	X|2 + |	Y |2) − 1

2β

6∑
i=1

∫
d2k

(2π )2

× ln

[
2 cosh

βEi

2

]
, (9)

where β is the inverse temperature and Ei are the six eigen-
values of the effective quadratic single-particle Hamiltonian

HHS =

⎡
⎢⎣

H� − λ−σ0 −	Xσ3 −	Y σ3

−	
†
Xσ3 HX + λ+σ0 0

−	
†
Y σ3 0 HY + λ+σ0

⎤
⎥⎦. (10)

In the above equation, we set λ± = λ ± μ as illustrated
in Fig. 1(a). As is characteristic for two-dimensional Dirac
systems, the free energy density in Eq. (9) diverges linearly
due to large-momentum contributions, which, however, can
be absorbed in a renormalization of the effective interaction
strength

1

U0
= 1

U
− 2

v2
�, (11)

where U > 0 is the renormalized interaction and � is an
ultraviolet cutoff in momentum space [46,47], which in real
systems corresponds to the bulk band gap. Consequently, phys-
ical quantities only depend on U , but not on the nonuniversal
cutoff scale � or the bare coupling U0.

In Fig. 2 (left), we present the phase diagram as obtained by
minimizing the free energy in Eq. (9) as a function of chemical
potential μ and temperature T for the nesting parameter λ =
2U−1 and an ellipticity of the X/Y surface pockets of δ = 0.2.
At small chemical potential, the ground state displays a twofold
rotational or C2 symmetry, where electrons from either X or Y

pocket pair with holes from the � point, respectively, yielding
|	X| �= 0 and |	Y | = 0 or vice versa. The appearance of C2

SDW order naturally introduces a nematicity (characterized
by 	X �= 	Y ) in the system. As the temperature is increased,
there is a continuous second-order transition out of the SDW
phase to the paramagnetic (PM) phase.

This limit corresponds to the Ginzburg-Landau analysis
presented in the previous section. If the chemical potential
(and hence the Fermi surface mismatch) is increased, the direct
C2-normal (PM) transition at low temperature is masked by
an intermediate phase in which the C4 rotational symmetry
is restored and all Fermi pockets participate in the excitonic
pairing. Both C2-C4 and C4-PM transitions are first order in
nature. Figure 2 (right) shows the complete phase diagram as a
function of μ, δ, and T . Increasing the ellipticity δ pushes the
critical chemical potential for the C2-C4 transition to smaller
values but only mildly affects the subsequent C4-PM transition.
Hence, while a small ellipticity favors the C2 phase at small μ,
the region of the phase diagram with C4 symmetry increases
when the Fermi surfaces are strongly anisotropic.

There is an intuitive picture why at small ellipticity the
system is C2 symmetric and only at large Fermi surface
mismatch the C4 symmetric phase arises [48]: for nearly
perfect nesting (small δ and μ), the same hole-like state near the
� point contributes to the excitonic pairing with electron-like
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FIG. 2. (Color online) Left: Phase diagram for λ = 2U−1 and δ = 0.2 as a function of Fermi surface mismatch μ and temperature T . At
small temperature and chemical potential, the ground state has only a C2 symmetry. Red (thick) and blue (thin) lines denote second and first
order phase transitions, respectively. Right: Phase diagram for λ = 2U−1 as a function of Fermi surface anisotropy δ, μ, and T . Notation as in
the left panel. The parameter δ in various ARPES experiments is δ = 0.25 [8], 0.11 [9], 0.21 [11], 0.33 [12]. It is worth pointing out that the
phase diagrams we obtain here are qualitatively similar to the one extracted experimentally for iron pnictides, which also share similar structure
of the BZ [49].

states from X and Y pockets. Thus, pairing between � and
X reduces the available phase space for pairing between �

and Y and vice versa, implying that only one condensate
develops and the system enters the C2-symmetric phase. As
the Fermi surface mismatch increases, disjoint regions of the
� Fermi surface contribute to the excitonic condensation and a
C4-symmetric phase becomes preferable, as demonstrated by
our full calculation of the phase diagram.

For δ = 0 (circular Fermi surfaces) the quadratic Hamil-
tonian in Eq. (10) manifests a U (1) symmetry among the
excitonic OPs 	X and 	Y , and consequently the free energy
depends only on the magnitude 	2 = |	X|2 + |	Y |2. Thus, in
the limit δ = 0, there is no distinction between the C2 and the
C4 symmetric phases. At zero temperature, the free energy
density then takes the particularly simple form F = μ2 −
	2

0/2, where 	0 represents the SDW OP at T = 0 and μ = 0,
which implies a first-order transition between condensed and
normal phase at the standard critical Clogston-Chandrasekhar
value μcrit = 	0/

√
2, which can also be seen in Fig. 2 (right).

We point out that the structure of the BZ in iron-based
superconductors is qualitatively similar to the one for the
surface states of cubic TKIs. Interestingly, the phase diagrams
of these two systems bear some qualitative similarities [48–
50]. In particular, the C2-C4 phase transition that can be
tuned by doping has been observed experimentally in pnictide
materials [49].

We note that there are two possible ways to modify
the mean-field phase diagram: For a large Fermi surface
anisotropy, the system may condense into an incommensurate
density-wave phase, where the periodicity of the excitonic
condensate is different from the reciprocal lattice vector [30].
Furthermore, for large doping, various superconducting in-
stabilities may set in. The discussion of these phenomena is
beyond the scope of this paper.

Our present mean-field analysis does not account for
thermal fluctuations. Quite generally, a full analysis of the

phase diagram should, in principle, distinguish between the
nematic and the excitonic phases. As will be discussed in the
following section, once thermal fluctuations are incorporated,
the transition temperatures for these two instabilities can be
different. Let us focus on the regime of small chemical poten-
tial, where mean-field theory predicts a C2 phase for arbitrary
δ, as shown in Fig 2. In this phase either 	X or 	Y develops a
nonzero but real expectation value and thus the surface states
simultaneously develop a nematic (due to the breaking of
C4 symmetry) as well as a translational symmetry breaking
commensurate SDW order. These orders can be represented
by two different Ising-like variables and thus the ground state
at T = 0 displays an exact fourfold degeneracy. However, at
finite temperature, thermal fluctuations allow the system to
fragment into multiple domains of these degenerate phases. We
will argue that interplay of these domains at finite temperatures
can be captured by a two-component isotropic Ashkin-Teller
model, and allude to the finite-temperature phase diagram for
the surface states beyond the mean-field approximation.

Before concluding the section a discussion on the nature of
the nematic order seems appropriate. Notice that the nematic
phase is described by a fluctuating excitonic order that does
not acquire a finite vacuum expectation value. We pointed
out in the Introduction that depending on the relative strength
of nearest-neighbor and next-nearest-neighbor hybridization
amplitude among the opposite parity orbitals (such as d and
f ) in the bulk, the chiralities of electron and hole pockets
can be same or opposite, which in turn determines the nature
of density-wave excitonic order (SDW or CDW). Therefore,
depending on bulk hybridization strength over a finite range,
the nematic phase may represent either a fluctuating charge-
or spin-density-wave order. However, the phase diagram of
the interacting surface states is insensitive to the exact nature
of the ordering, as only discrete Ising-like symmetries are
broken in the charge- or spin-density-wave phases (uniform
or fluctuating).
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FIG. 3. Phase diagram of the two-component isotropic Ashkin-
Teller model [52], in terms of microscopic parameters J1 ∼ U and
J2/J1 ∼ δ2.

V. THERMAL FLUCTUATIONS, DOMAIN WALLS,
AND ASHKIN-TELLER MODEL

To understand the role of a domain walls at finite temper-
atures, we first consider a simpler situation, where the system
exhibits only a twofold degeneracy among the configurations,
say A and B (chosen from four possible states with 	X > 0
or 	X < 0 and 	Y > 0 or 	Y < 0). The free energy of
the domain wall per unit length of this system is given by
F = JAB − T SAB , where SAB(JAB) is the entropy (energy)
per unit length of a single domain wall. For temperatures T >

JAB/SAB , we have F < 0, and the free energy is minimized
through the proliferation of domain walls between these two
configurations.

To estimate the result of proliferation of domain walls
on the surface of cubic TKIs, we define two Ising-spin
variables s = sgn(|	X| − |	Y |) and σ = sgn(	X + 	Y ). The
spin variable s determines the direction of the SDW order,
while σ represents how the translation symmetry is broken.
Therefore, in the nematic phase s �= 0, and when the density-
wave order condenses we have σ �= 0. The energy of the
domain walls can be accounted for by an effective exchange
Hamiltonian

Hex = −
∑
〈i,j〉

[J2 sisj + J1(1 + sisj )σiσj ], (12)

where J2 represents the energy of a domain wall between
the regions where |	X| �= 0 and |	Y | �= 0. J1 represents a
similar quantity where 	X or 	Y changes the sign without
changing the direction of the symmetry breaking [hence the
factor (1 + sisj )]. We expect J2/J1 to be proportional to δ2,
where δ is the ellipticity of the pockets near the X and Y points.
In terms of a redefined variable s → s̃ = sσ , the rescaled
Hamiltonian assumes the form of a two-component isotropic
Ashkin-Teller model [51]:

Hex = −J1

∑
〈i,j〉

(s̃i s̃j + σiσj ) − J2

∑
〈i,j〉

s̃i s̃j σiσj . (13)

The phase diagram of this model is shown in Fig. 3 [52],
which we discuss below qualitatively in terms of the original
variables s and σ .

For weak Fermi surface anisotropy, which corresponds to
small values of J2/J1 (∼δ2), there exists a continuous transi-
tion (across the dashed line in Fig. 3) from a high-temperature
disordered phase to a low-temperature ordered phase. Along
this line of direct transition between the disordered and the
ordered phases, the exponents change continuously, much like
for the Kosterlitz-Thouless transition. In the ordered phase,
the surface states break both translational (by the SDW order)
and rotational (by the nematic order) symmetries, and the
expectation values of the Ising-spin variables in Eq. (12) are
〈s〉 �= 0 and 〈σ 〉 �= 0. This phase is also known as the Baxter
phase [51]. However, for large δ or J2/J1 (large Fermi surface
anisotropy), transitions associated with these two symmetry
breakings bifurcate and occur at distinct temperatures. The
system first condenses into the nematic phase, where 〈s〉 �= 0
but 〈sσ 〉 = 〈σ 〉 = 0, and only subsequently enters the ordered
(Baxter) phase at lower temperature. Next we characterize
each of these phases in terms of original order parameters, 	X

and 	Y .
The nematic phase is ordered along either QX = (π,0) or

QY = (0,π ) in such a way that a large density of sign flips
(domain wall) of the order parameter proliferates in the system.
In this phase 〈|	X|〉 or 〈|	Y |〉 is nonzero, but 〈	X〉 = 〈	Y 〉 =
0. Consequently, the nematic phase breaks the C4 rotational
symmetry, yet still retains the translational invariance of the
the system. Only at lower temperature, through a subsequent
transition, the system enters into the ordered/Baxter phase,
where both nematic and density-wave orders develop nonzero
expectation value. It is worth mentioning that a similar, but
distinct, nematic phase has also been studied for iron-based
superconductors [43,53,54].

VI. SUMMARY AND DISCUSSION

In summary, we discuss various many-body instabilities
on the surface of strongly interacting cubic TKIs. We show
that if the chemical potential is placed in between the Dirac
points at the � and X/Y points of the surface BZ and the
resulting electron (near X and Y points) and hole (near �

point) pockets are of comparable size, fermions can condense
into a nematic and density-wave phase. In this phase only
one of the electron pockets participates in excitonic pairing,
and thus the fourfold rotation symmetry on the surface gets
lifted spontaneously. Therefore, our results provide a possible
explanation for the recently observed C2-symmetric magne-
toresistence [17] and the upturn in surface resistivity with
tunable gate voltage or equivalently the chemical potential [18]
in SmB6.

The excitonic phase, however, can display a spin- or charge-
density wave ordering depending on the relative chirality of
the Dirac cones with electron- and hole-like carriers. In Sec. II,
we argued that due to the presence of underlying strong
spin-orbit coupling that causes spin (in-plane components)
momentum locking of the surface states [1,2], and only
the z-component of electrons’ spin participates in various
instabilities, which in turn also allows the system to exhibit
long-range order at finite T . Our results are substantiated by
complimentary Ginzburg-Landau analysis of order parameters
(for small Fermi surface mismatch) in Sec. III and the
free-energy minimization in mean-field approximation (for
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arbitrary values of the parameters μ,δ,λ,T ) in Sec. IV. For
large Fermi mismatch, on the other hand, our mean-field
analysis predicts that both electron pockets get involved in
excitonic ordering, and the ordered phase restores the fourfold
rotational symmetry of the surface BZ.

Furthermore, we extend our analysis beyond the mean-field
level, and account for thermal fluctuations and domain walls,
when the system condenses into a C2 density-wave phase in
Sec. V. In this limit, the system can be described by a two-
component isotropic Ashkin-Teller model and we presented a
finite-temperature phase diagram in Fig. 3. For small Fermi
surface mismatch, both nematic and density-wave orders
condense at the same temperature in agreement with our mean-
field analysis. Only for substantial Fermi surface mismatch,
these two transitions take place at different temperatures. The
system first pairs into a nematic phase and yet at a lower
temperature to an excitonic (Baxter) phase. Although our
study is primarily motivated by ongoing experimental works
in SmB6 [17,18] that are suggestive of the presence of strong
electronic correlations on its surface, it can describe various
signature of electron-electron interactions on the surface of
other strongly interacting cubic TIs, such as YbB6 [23–25]
and PuB6 [55].

Various recent experiments have extracted the effective
parameters for the surface band structure. For example,
ARPES experiments have found the ellipticity factor δ =
0.1–0.4 [8,9,11,12] not too large in SmB6. Extracting the
energy offset among the Dirac points in an experiment is a
challenging task. Nevertheless, various first-principles [22]
and effective band structure [21] calculations suggest that
|E� − EX/Y | ∼ 2–10 meV. The estimated values of these
parameters indicate that while the ellipticity of the Fermi
pockets is not too large to destroy the propensity of nematic
and excitonic orderings on the surface, a large offset among the
Dirac points allows one to tune the surface chemical potential
over a reasonably wide range to realize electron and hole pock-
ets of comparable sizes through external gating [18], conducive
for orderings. Therefore, with currently estimated values of
these band parameters, it is quite conceivable that surface states
of SmB6 or other cubic TKIs (such as YbB6 and PuB6) can
accommodate various exotic broken-symmetry phases.

Detection of the nematic or the C2-symmetric excitonic
orderings demands direction-dependent measurements of
transport quantities, for example. Here, we focus only on the
C2-symmetry breaking ordering, as it occupies most of the
phase diagram in Fig. 2. Notice that in the nematic and the
excitonic phases the fourfold rotational symmetry gets broken,
while the former one is devoid of uniform condensation of any
order parameter. Therefore, to pin the the onset of these order-
ings one needs to perform direction-dependent measurements
of various physical quantities, such as conductivity, resistivity,
or magnetoresistance, on the surface that can sense the lack
of rotational symmetry in the close proximity to an ordering.
A recent experiment [17] has reported the lack of fourfold
rotational symmetry in magnetoresistance in SmB6 below
5 K, which is suggestive of at least a nematic ordering on the
surface.

It should be noted that the surface BZ of cubic TKI closely
is similar to the one in pnictides [43,53,54]. However, there
exist several crucial differences between these two systems.

For example, due to the strong spin-orbit coupling the SDW
order of the surface states breaks only the discrete Z2 symmetry
[note that the valley U (1) symmetry of SDW order is only an
artifact of the low-energy approximation in Eqs. (1) and (10)
which gets reduced to Z2 due to the presence of an underlying
lattice captured by the termFSB in Eq. (8)], responsible for true
long-range order, whereas spin rotation is a good symmetry
and the SDW phase breaks continuous SO(3) symmetry in
pnictides [53]. In addition, the Fermi surfaces on the surface
of TKIs constitute vortices or antivortices in momentum space
that in turn encode the bulk topological invariance of the
system, while the bands in pnictide materials are regular
nonrelativistic parabolic bands. Consequently, the regular
parabolic bands and therefore the SDW order in pnictides
can carry additional orbital degeneracy, which depends on
various nonuniversal details of the system [43], whereas the
noninteracting model [see Eq. (1)] and the SDW/CDW order
[see Eq. (10)] that we consider for the surface states of TKIs
are constrained by nontrivial bulk topological invariant. Thus
neither SDW nor CDW is accompanied by additional degen-
eracy. In additional contrast to our results, a recent theoretical
study finds that the transition from paramagnetic-C2 SDW in
pnictide is discontinuous or first order in nature [56]. Despite
these fundamental differences, we find that the qualitative
structure of the phase diagram in Fig. 2 for the surface states of
TKIs bears some similarities to the one for iron pnictides both
calculated theoretically [43] and also with the one obtained
experimentally (see the phase diagram of Ba1−x Nax Fe2 As2

in Fig. 2 of Ref. [49]). The similarity between such different
systems is both surprising and encouraging. Therefore, we
expect that our study will initiate future works related to TKIs
that may unearth some exotic effects due to the presence of
strong electronic correlations in these systems and may as well
shed light on the phase diagram of iron pnictides.

As a final remark, we highlight some other possible
phenomena arising from strong residual electronic interactions
on the surface of TKIs, among which are the renormalization
of the plasmon spectrum due to strong fluctuations [14], the
non-Fermi-liquid phase for d electrons [15], quasiparticle
interference [27], and spontaneous valley Hall ordering in
the presence of strong magnetic field [57]. In addition, a
spatial variation of the hybridization has been proposed to
lead to a topological chiral liquid on the surface [58], without
destroying the helical structure of the surface states (protected
by bulk topological invariant). While these proposals are
quite fascinating and of definite fundamental importance, our
work focuses on the possibilities of realizing various broken-
symmetry phases (excitonic and nematic) on the surface of
TKIs, resulting from strong residual interactions, which can
explain some peculiar experimental observations in the recent
past [17,18].
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