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Lowering the lasing threshold of distributed feedback lasers with loss
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We study laser generation in one-dimensional distributed feedback lasers with amplifying and lossy layers.
We show that when the lasing frequency differs from the transition frequencies of the amplifying medium, loss
induced lasing may occur due to the broadening of the resonator mode with increasing loss in the absorbing
layers. This broadening leads to a shift in the lasing frequency towards the transition frequency. As a result, the
cavity mode interaction with the amplifying medium is enhanced, and the lasing threshold is lowered.

DOI: 10.1103/PhysRevB.92.245420 PACS number(s): 42.55.Tv, 42.55.−f, 42.60.Da

I. INTRODUCTION

Lasers generate coherent radiation due to induced transi-
tions in an active medium caused by the electromagnetic field
in the resonator. For laser generation to arise, in addition to the
resonant phase conditions being fulfilled, the amplification
of the field must be sufficient to compensate for loss due
to dissipation in the laser material and radiation from the
sample [1,2]. It is, therefore, natural to expect that an increasing
resonator loss would result in an increase of the lasing
threshold. There are situations, however, when the lasing
threshold decreases as loss increases [3,4].

In Ref. [3], quenching of lasing by increasing the strength
of the pump has been predicted for a system of two identical
resonators containing an amplifying medium kept at different
pump rates. This results in the field concentration in the more
strongly pumped resonator. Lasing starts in this resonator.
Due to coupling of resonator modes, the oscillations in the
second resonator are synchronized to the lasing mode and the
whole system lases. When the pump rate in the low pumped
resonator increases while remaining fixed at the other one,
a phase transition from a nonsymmetric to symmetric field
distribution in the resonators occurs. As a result, the field
increases in the low pumped resonator and decreases in the
highly pumped resonator leading to the suppression of lasing.
In experiment [4], instead of increasing the pump rate, the loss
in one of the resonators was increased, and the phase transition
went from symmetric to the nonsymmetric eigenmode. This
ensured that the optical field is concentrated in the more active
resonator and lowered the lasing threshold.

Another possibility of the lasing onset may be realized when
the increase in the loss causes a variation of the refractive
index and improves the phase condition. This was shown
theoretically for a resonator uniformly filled with an active
medium with temporal dispersion [5].

In lasers, the transition frequency ω0 of the amplifying
medium is usually tuned to the frequency of one of the
resonator modes ωR . This allows for the greatest effective
interaction between the field and the amplifying medium.
In real systems, however, these two frequencies are detuned.
Among other reasons, a detuning between ω0 and ωR , which

depend differently on the temperature, may arise due to the
temperature variation in the system during the process of
lasing [6].

In this paper, we demonstrate a mechanism of lasing
generation via loss that works when the frequency of the
transition line of the amplifying medium differs from the
laser mode frequency. An increase of loss may pull the lasing
frequency towards the transition frequency, thereby lowering
the laser threshold. Analytical calculations are confirmed by
computer simulation for a distributed feedback (DFB) lasing
possessing both amplifying and absorbing layers. The obtained
results can be used for lowering laser generation thresholds in
DFB lasers with metallic layers, which have recently been
actively studied [7–13].

II. MAIN EQUATIONS

We consider a DFB laser based on a one-dimensional
photonic crystal (see Fig. 1) [13]. The elementary cell of
this crystal consists of passive metallic and active dielectric
layers. As we show below, thanks to the metal layers, the field
distribution in the system changes only slightly when loss
increases. As a result, the lasing mode does not shift when the
loss level changes.

The interaction of the electromagnetic field E with the active
medium can be described with the following Maxwell-Bloch
equations [2,14]:
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where P is the polarization of the active medium which we
consider as a two-level system (TLS); n is the population
inversion of the TLS; dge is the dipole moment of the transition
of the TLS, c is the speed of light; � is the Planck constant;
τP and τn are relaxation times of the polarization and the
population inversion, respectively; and n0 is the population
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FIG. 1. (Color online) Schematic of the DFB laser based on a
one-dimensional photonic crystal. Thin blue and thick green layers
depict passive metallic and active dielectric layers, respectively.

inversion in the TLS in the absence of the field. The latter
quantity characterizes the pump rate of incoherent radiation
that creates the inversion.

We assume that the field and the polarization
are slow functions of time with the carrier fre-
quency ω0. Then, E and P can be represented in
the form E(x,t) = e(x,t) exp(−iω0t) + e∗(x,t) exp(iω0t) and
P (x,t) = p(x,t) exp(−iω0t) + p∗(x,t) exp(iω0t), where the
complex-valued functions e(x,t) and p(x,t) are slowly chang-
ing during the oscillation period, |∂e(x,t)/∂t | � ω0|e(x,t)|
and |∂p(x,t)/∂t | � ω0|p(x,t)|. In this description, the disper-
sion of the TLS is taken into account by the explicit calculation
of the layer dynamics. The dispersion of a metal is described by
the Drude equation ε(ω) = 1 − ω2

p(ω2 + iγ ω)−1. Then, using
the slow amplitude approximation we obtain [15]
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and
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Using Eqs. (4) and (5) we obtain Maxwell-Bloch equations
for slow amplitudes,
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where α(x) = 0 for dielectric layers.

III. THE DEPENDENCE OF LASING THRESHOLD ON
LOSSES (NUMERICAL SIMULATION)

For a finite photonic crystal system, Eqs. (6)–(8) can be
solved by using the finite-difference time-domain (FDTD)
method. We consider the photonic crystal having 30 elemen-
tary cells of size a = 200 nm. In the crystal, the ratio of the
widths of the dielectric and metallic layers is dd/dm = 4,
and the transition frequency of the TLS is ω0 = 1016 Hz. We
also assume that the relaxation times of the polarization and
the TLS population inversion are τp = 3 × 10−14 s and τn =
5 × 10−12 s, respectively, and the absolute value of the dipole
moment is |dge| = 20 D [16]. Finally, we assume that the
permittivity of dielectric layers is εd = 3 and the permittivity of
the metal layers is the same as that of silver at the frequency of
ω0 = 1016 Hz [Reεm(ω0) = −1]. These parameters are typical
for recently studied plasmon DFB lasers [7–12].

The chosen transition frequency of the TLS falls into the
gap of the photonic crystal, 0.985 × 1016 Hz < ω < 1.3 ×
1016 Hz. Therefore, the lasing mode is a standing wave of
the gap edge. Thus, there is a detuning 	 = 1.5 × 1014 Hz
between the TLS transition frequency and the frequency of
the resonator mode. For the chosen values of the system
parameters, the dielectric permittivity of the metal layers
changes only weakly near the center of the second band
gap, ωc = 1.14 × 1016 Hz, in the range of frequencies of
0.7ωc < ω < 0.9ωc (see Fig. 2).

In numerical simulations, for initial conditions we choose
a random distribution of the field in the photonic crystal in
the absence of the polarization and the population inversion in
the active medium. Then we look for the steady state of field
generation.

In the laser, the dependence of the energy on the pump
rate, shown in Fig. 3, has a standard form. At the threshold,
the energy of the field starts increasing with an increase of
the population inversion. When loss increases, the slope of the
generation line decreases [1]. Above the threshold, as shown
in Sec. IV, the generated energy is inversely proportional to
Imεm. This explains the decrease of line slopes in Fig. 3 with
a loss increase.

As Fig. 4 shows, the dependence of the population inversion
threshold nonmonotonically depends on the loss in metal
layers. For small losses, its increase results in an increase
of the threshold. Then, above some critical value of the loss,
its increase leads to a decrease of the population inversion
threshold, which starts increasing for further loss increase.

In obtaining the curves in Fig. 4, the numerical simulations
have been done for a finite photonic crystal containing
30 elementary cells while analytical calculations have been
conducted for an infinite crystal. There is additional radiation
from the ends of the finite crystal that is absent in the infinite
crystal. Additional radiation results in an increase of the
generation threshold that explains some difference between
the numerical and analytical results that can be seen in Fig. 4.
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FIG. 2. (Color online) The frequency dependence of the dielec-
tric permittivity of the metal layers for different values of the
imaginary part of the dielectric permittivity of these layers at the
amplifying medium transition frequency, Imεm(ω0). The frequency
region of interest is between the vertical dotted lines. One can see
from (b) that in this region, an increase of Imεm(ω0) is accompanied
by an increase of Imεm(ω).

In Fig. 5, the dependence of the TLS lasing frequency ωg

on loss in the metal is shown. When loss increases, ωg is
pulled towards the transition frequency of the TLS. As we
mention above, the latter is positioned in the photonic band
gap of the crystal. Below we show that pulling the lasing
frequency towards the transition frequency of the TLS results
in a decrease of the lasing threshold.

FIG. 3. (Color online) Generation curves (the energy of the elec-
tromagnetic field summed over the photonic crystal) calculated for
different values of the imaginary part of the dielectric constant of the
metal.

FIG. 4. (Color online) The dependence of the population inver-
sion threshold on the imaginary part of the dielectric permittivity
of the metal at the transition frequency of the amplifying medium.
The solid line is numerical simulation. The dashed line is plotted in
accordance with the theory developed in Sec. IV.

IV. THE DEPENDENCE OF LASING THRESHOLD ON
LOSSES (ANALYTICAL APPROACH)

In this section, we obtain the dependence of the threshold
population inversion nth

0 on the imaginary part of the dielectric
permittivity of metal, Imεm, for an infinite photonic crystal.
As it follows from numerical simulations, in the laser under
study, the regime of a single-mode lasing is realized (Fig. 5). In
this regime, the field distribution of an infinite photonic crystal
coincides with the distribution of one of the modes described
by the Helmholtz equation [15]:

∂2EM (x)

∂x2
+ Re[ε(ωM,x)]

ω2
M

c2
EM (x) = 0, (9)

with the periodic boundary conditions. Here ε(ωM,x) is either
εd or εm(ωM ) in dielectric or metal layers, respectively. EM (x)
and ωM are the field distribution and the frequency of the mode.
In this approach, Eq. (1) is split into two equations. The first
one, Eq. (9), defines the special distribution of the lasing mode.
The second equation, Eq. (10) below, gives the time evolution
of the amplitude of this mode. The numerical analysis shows
that the imaginary part of the value of permittivity of metal

FIG. 5. (Color online) The lasing frequency ωg near the threshold
as a function of loss in the metal layers (in units ωc = c/a, which is
the frequency at the center of the second band gap). The results of
numerical simulations and analytical calculations are shown by solid
red and blue dashed lines, respectively. The TLS transition frequency,
ω0, is shown by the dash-dotted green line.
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FIG. 6. (Color online) The ratio of the energies localized in the
dielectric and the total energy in the photonic crystal. The pump rate
is fixed, n0 = 1.5 × 10−4.

and the inversion population do not substantially affect the field
distribution in the system (Fig. 6). Thus, compared to Eq. (1), in
Eq. (9) the imaginary part of the dielectric permittivity of metal
and the temporal dependence of the active medium controlled
by the population inversion are excluded because they affect
the field distribution in the lasing mode only weakly [17].

To determine the lasing threshold, it is sufficient to solve
a linear problem neglecting the dependence of the population
inversion n on the field amplitude [14]. In this case, n = n0 and
it does not depend on time. This allows for a factorization of
the generated field, E(x,t) = EM (x)e(t), after which Eq. (1)
is simplified as

−Re[ε(x)]ω2
MEM (x)e(t) − ε(x)EM (x)

∂2e(t)

∂t2

= 4π
∂2P (x,t)

∂t2
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From Eqs. (12) and (13) we can find nth
0 that character-

izes the threshold pump rate. At the onset of lasing, time
dependencies of the electric field and the polarization have the
form e(t) = e0 exp(−iωgt) and p(t) = p0 exp(−iωgt), where

e0 and p0 are constants and ωg is the lasing frequency that is
determined by the condition of the onset of lasing. As a result,
we obtain
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Since the lasing mode frequency and the frequency of the
TLS transition are close, we obtain the final equations[
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Parameters ωg and n0, for which the nontrivial solution of
Eqs. (15) and (16) arises, determine the lasing frequency and
the threshold population inversion:
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ωMτpω0 + 2UωM
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If we identify 2U/
ωM as the longitudinal relaxation time
of the laser, τa , and

√
2πμωM/�U as the interaction constant

of the field with the amplifying medium, �R , then Eqs. (17)
and (18) coincide with well-known equations for ωg and
nth

0 [1]:

ωg = τpω0 + τaωM

τp + τa
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Rτpτa
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(
τ−1
a + τ−1

p

)−2]
. (20)

Thus, the generation curves shown in Fig. 2 are the same
as for a laser with the uniform distribution of the field in the
resonator. These curves are described by the equation [1]

|est |2 = τa

(
n0 − nth

0

)
/4τn, (21)

where est is the stationary field amplitude above the threshold.
Note that a nonmonotonic behavior of the threshold population
inversion described by Eq. (20) is a feature of single-mode
lasers. In a multimode laser with the Fabry-Perot resonator,
modes are very close to each other so that there is practically
no frequency detuning.

The results obtained in this section allow one to explain the
nonmonotonic dependence of the threshold of the population
inversion described by Eq. (18) and shown in Fig. 3. The
threshold increases linearly with respect to 
 for small and
large losses,

nth
0 = �


4πμτp

[
1 + (ω0 − ωM )2τ−2

p

]
, 
 � 2U/ωMτp,

nth
0 = �
ωM

4πμτpω0
, 
 � 2U |ω0 − ωM |/ωM. (22)

nth
0 has a minimum for an intermediate value of 
. The

nonmonotonic behavior with loss increase is due to an increase
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FIG. 7. (Color online) Lorentzians of the resonator and transi-
tion lines of the amplifying medium for values (a) Im εm = 0.1,
(b) Im εm = 0.25, and (c) Im εm = 1.5. The Lorentzians are nor-
malized so that the area under each curve is equal to unity. Blue
and red lines correspond to the resonator and amplifying medium
lines, respectively. The orange line shows the lasing frequency.
The pumping frequency is ω0 = 0.878ωC and the frequency of the
resonator mode is ωM = 0.864ωc.

of broadening of the lasing mode line. This broadening results
in a shift of the lasing frequency towards the transition
frequency of the amplifying medium (Fig. 5). The interaction
between the electromagnetic wave and the amplifying medium
peaks when these two frequencies coincide. It decreases
when the frequencies move away from each other. As a
result, the loss increase in the resonator causes an increase
of the attenuation rate in the metallic layers and a field
increase in the amplifying layers. Depending on which of
these competing factors prevails, the lasing threshold may
either increase or decrease with the loss increase in the res-
onator. In Fig. 4, for Imεm < 2U [τσωM

∫
metal |E(x)|2dx]−1 ≈

0.2 and Imεm > 2U |ω0 − ωM |[ωM

∫
metal |E(x)|2dx]−1 ≈ 3

FIG. 8. (Color online) Dependencies on Imεm of the lasing
threshold (the red solid line) and the ratio of areas of Lorentzians
of the amplifying medium and the resonator mode overlap (the green
dashed line).

the lasing threshold is mainly defined by the energy loss in
the metal, while for 2U [τσωM

∫
metal |E(x)|2dx]−1 < Imεm <

2U [τσωM

∫
metal |E(x)|2dx]−1, an increase of the interaction

between the amplifying medium and the electromagnetic
field plays the main role. This increase can be described by
considering an overlap of the resonator mode line and the
transition line of the amplifying medium (Fig. 7). When loss
in the resonator is small (Imεm < 2), the overlap increases
with the loss increase. Then, for Imεm � 2, it decreases. The
largest overlap and the lowest generation threshold occur for
the same value of Imεm (Fig. 8).

V. DISCUSSIONS AND CONCLUSIONS

Since a DFB laser works at the boundary of the band
gap [12,18], thanks to the Borrmann effect [19], the field is
mainly concentrated in active dielectric layers. Hence, the field
distribution in the system changes only slightly when the loss
in the metal increases. As one can see from Fig. 9, the fraction
of the generated energy localized in the metal changes only by
about 5% while the imaginary part of the metal permittivity
increases by a factor of 5. As shown in Sec. IV, in the absence
of frequency detuning, the threshold value of the population
inversion that is needed for laser generation is

nth
0 ∼ Imεm × Imd, (23)

FIG. 9. (Color online) The ratio of the energies localized in metal
and dielectric in the photonic crystal. The pump rate is fixed at n0 =
1.5 × 10−4.
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where Imd = ∫
metal |EM (x)|2dx/

∫
dielectric |EM (x)|2dx; EM (x)

is the electric field distribution in the lasing mode.
As one can see from Eq. (23), when the fraction of the

generated energy localized in the metal changes by 5% while
Imεm increases from 0.4 to 1.5, the threshold population
inversion nth

0 triples. This is also confirmed by numerical
simulations. In the presence of detuning, nth

0 is no longer
described by Eq. (23). It is now described by Eq. (18) that
gives the dependence shown in Fig. 3. In this case, when Imεm

increases from 0.4 to 1.0, Imd and nth
0 are moving in opposite

directions; the former increases and the latter decreases. Thus,
as opposed to Refs. [3,4], the nonmonotonic behavior of the
lasing threshold is not caused by changes in the spatial overlap
of the lasing mode and the active medium layers.

To conclude, we show that in a DFB laser in which the
transition frequency of the amplifying medium is detuned from
the frequency of the resonator mode, an increase in the loss
may lead to a decrease in the lasing threshold. Such a decrease
is due to the broadening of the resonator mode that leads to the
lasing frequency being pulled towards the transition frequency

of the amplifying medium and to an increase of the overlap
between the lines of the resonator mode and the transition of
the amplifying medium. As a result, the interaction between
an electromagnetic wave and the amplifying medium also
increases. Thus, while the loss increases the dissipation rate
in the resonator, it nonetheless results in an increase of the
amplification rate in the active medium. If the latter factor
prevails, the conditions for lasing are improved.

Our results allow for selecting the parameters of a DFB laser
for which an increase of the imaginary part of the dielectric
permittivity is not critical. Moreover, such an increase may
improve laser characteristics. This is important in connection
with the ongoing development of plasmonic DFB lasers
[7–12].
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