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We study the statistical properties of charge and energy transport in electron conducting junctions with
electron-phonon interactions, specifically, the thermoelectric efficiency and its fluctuations. The system comprises
donor and acceptor electronic states, representing a two-site molecule or a double-quantum-dot system. Electron
transfer between metals through the two molecular sites is coupled to a particular vibrational mode which is
taken to be either harmonic or anharmonic, a truncated (two-state) spectrum. Considering these models we derive
the cumulant generating function in steady state for charge and energy transfer, correct to second order in the
electron-phonon interaction, but exact to all orders in the metal-molecule coupling strength. This is achieved by
using the nonequilibrium Green’s function approach (harmonic mode) and a kinetic quantum master-equation
method (anharmonic mode). From the cumulant generating function we calculate the charge current and its
noise and the large-deviation function for the thermoelectric efficiency. We demonstrate that at large bias the
charge current, differential conductance, and the current noise can identify energetic and structural properties of
the junction. We further examine the operation of the junction as a thermoelectric engine and show that while
the macroscopic thermoelectric efficiency is indifferent to the nature of the mode (harmonic or anharmonic),
efficiency fluctuations do reflect this property.
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I. INTRODUCTION

Single-molecule junctions offer a versatile playground for
probing basic questions in condensed phases physics: How
do quantum effects and many-body interactions (electron-
electron, electron-phonon) control charge and energy trans-
port processes, thus the operation of nano-scale atomic
and molecular devices [1,2]? How do we accurately and
efficiently simulate quantum transport phenomena involving
different particles (and quasiparticles), electrons, phonons,
spins, polarons? Recent progress in experimental techniques
has made it possible to perform sensitive measurements at the
molecular scale, in the linear and nonlinear transport regimes,
to observe signatures of many-body effects. Kondo physics,
the hallmark of strongly correlated electrons, was observed
in different molecules (see, e.g., Ref. [3]). Coupled electron-
vibration processes were probed in single-molecule junctions
applying inelastic electron tunneling spectroscopy [4–6] and
Raman spectroscopy tools [7–9], displaying frequency shifts
and mode heating in response to electron conduction. Noise
characteristics of the charge current can further expose the
nature of the vibrational modes contributing to electron
dynamics [5,10,11].

Theoretical and computational methodologies dedicated
to the effects of electron-phonon interactions on transport
in nanoconductors were reviewed in Refs. [12,13]. The
celebrated Anderson-Holstein model, with a single electronic
orbital coupled to a local phonon mode, exposes an intricate
interplay between the electronic and nuclear degrees of
freedom. The model has been extensively studied to reveal the
behavior of the current and its fluctuations in different regimes
of electron-phonon coupling (see, for example, [14–30]). An
extension of the Anderson-Holstein model with a secondary
phonon bath was examined in many studies (see, e.g., the

exploration of thermoelectric transport in a three-terminal
junction [31] and the analysis of transient effects [32]).

Complementing the Anderson-Holstein model, the donor-
acceptor (DA) prototype junction of Fig. 1 allows the explo-
ration of a broad range of problems. The model comprises two
electronic states, referred to as “donor” (D) and “’acceptor”
(A), following the chemistry literature on electron transfer
reactions. Electron transfer between the D and A sites is
assisted by a particular vibrational mode, isolated, or coupled
to a secondary phonon bath. This model, suggested to describe
a molecular electronic rectifier [33], was recently revisited
and analyzed using a variety of tools, for example, the
Fermi golden rule approach [34,35], quantum master equations
(QME) [36,37], the nonequilibrium Green’s function (NEGF)
technique [38–40], and from influence functional path-integral
simulations [41]. In molecules, the DA model represents
charge transfer between weakly connected chemical groups,
facilitated by a vibrational mode [34]. In the context of
nanoelectromechanical systems [42], the two electronic states
can be realized by gate-controlled quantum dots which are
coupled by a mechanical system [43], a suspended tunnel
junction such as a carbon nanotube. Electrons transferred
between the quantum dots can, e.g., excite transverse acoustic
modes of the suspended tube [36,44]. The single bosonic mode
can also represent a cavity mode assisting electron tunneling
between quantum dots, and other hybrid models [45,46].

The DA model in Fig. 1 offers a rich setting for investigating
the role of inelastic vibrationally assisted electron scattering
in far-from-equilibrium (nonlinear) situations. In contrast to
coherent conduction, inelastic electron transport can realize
nontrivial effects beyond linear response, such as charge and
thermal rectification and cross-rectification effects. This was,
e.g., demonstrated in Ref. [47] within a three-terminal DA
junction, by replacing the single vibration by a phonon bath.
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FIG. 1. (Color online) Scheme of a donor (D) acceptor (A) molecular junction. (a) In the DA-AH model, electron transfer is coupled to
a highly anharmonic impurity mode which consists of two levels. (b) In the DA-HO model, the vibrational mode is assumed harmonic. The
arrows exemplify an inelastic coupled transport process, with an electron hopping from left to right, assisted by an excitation of the mode. In
the analysis of thermoelectric devices we set TR > TL, μL > μR .

Traditionally, quantities of interest in transport experiments
and calculations were averaged values for population and
currents. However, it should be recognized that nanoscale
junctions suffer from strong random fluctuations due to their
surrounding environments. It is therefore desirable to develop a
probabilistic theory for measurable quantities. Indeed, in small
systems the second law of thermodynamics should be replaced
by a universal symmetry, the fluctuation theorem [48–50]

Pt (S)

Pt (−S)
= eS, (1)

where Pt (S) [Pt (−S)] is the probability distribution for
observing a positive (negative) entropy production during the
time interval t .

Fluctuations in heat provided to a nanoscale engine and
work performed naturally translate to stochastic efficiencies.
Universal characteristics of the corresponding probability
distribution function Pt (η), for time-reversal-symmetric en-
gines, were explored in Refs. [51–53], from the principles
of classical stochastic thermodynamics. It can be proved
that the large-deviation function (LDF) for efficiency, defined
as J̃ (η) = − limt→∞ t−1 ln[Pt (η)], attains a global minimum
which coincides with the macroscopic (average) efficiency,
and a global maximum which corresponds to the least
probable efficiency, coinciding with the Carnot efficiency
[51–53]. These universal features are a direct consequence
of the fluctuation theorem. Extensions of this analysis to
explore efficiency statistics for systems with broken time-
reversal symmetry were given in Ref. [54]. Fluctuations of
the finite-time efficiency were experimentally demonstrated
in Ref. [55]. Beyond classical thermodynamics, in a recent
study the concept of the “stochastic efficiency” was examined
within a quantum coherent model of a thermoelectric junction,
by employing the nonequilibrium Green’s function technique
[56].

In this paper, we provide a complete analysis of charge and
energy transport behavior in the donor-acceptor junction by
taking a full counting statistics (FCS) approach. We consider
two variants of the model as depicted in Fig. 1: electron transfer
may couple to a harmonic vibrational mode (DA-HO model)
or to an anharmonic impurity (DA-AH model). The latter case
is represented by a two-state system, a truncated vibrational
manifold.

We rigorously derive the cumulant generating functions for
the models of Fig. 1 under the assumption of weak electron-
vibration coupling, handing over the complete information
over the models’ steady-state transport behavior. From the
cumulant generating functions we explore transport in the
junctions far from equilibrium, specifically, we aim in identi-
fying transport quantities which are sensitive to the nature of
the vibrational mode. Finally, we investigate thermoelectric
efficiency fluctuations in the DA junction beyond linear
response. Interestingly, our analysis in this paper exemplifies
that one can reconcile two central yet disparate techniques,
QME and NEGF, to obtain consistent results, within the same
order in perturbation theory.

The paper is organized as follows. We introduce the DA
junction in Sec. II and perform a FCS analysis in Sec. III. The
cumulant generating function (CGF) of the DA-AH model
is derived in Sec. III A by employing the quantum master-
equation approach. The derivation of the CGF for the DA-HO
case is detailed in Sec. III B, using the nonequilibrium Green’s
function technique. Two applications are described in Sec. IV:
We simulate the junction’s current-voltage characteristics in
Sec. IV A, and examine the statistics of the thermoelectric
efficiency in Sec. IV B, further comparing numerical results
far from equilibrium with the linear-response (Gaussian) limit.
Our findings are summarized in Sec. V. For simplicity, we set
e = � = kB = 1 throughout derivations.

II. MODEL

The DA junction includes a two-site structure, represent-
ing a donor-acceptor molecule (or, equivalently, a double-
quantum-dot system), placed in-between two metal leads. The
total Hamiltonian is given by

HT = HM + HL + HR + HC + Hvib + HI . (2)

The molecular Hamiltonian HM includes the donor and
acceptor sites

HM = εdc
†
dcd + εac

†
aca, (3)

with cd/a (c†d/a) as a fermionic annihilation (creation) operator
at the donor or acceptor sites with energies εd/a . The second
and third terms in Eq. (2) represent the left (HL) and right
(HR) metal leads, modeled by collections of noninteracting
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electrons,

HL =
∑
l∈L

εlc
†
l cl, HR =

∑
r∈R

εrc
†
r cr , (4)

with the fermionic annihilation (creation) operators cj (c†j ).
The tunneling energies of electrons from the donor (acceptor)
site to the left (right) lead vl (vr ) are included in HC , and are
assumed to be real valued,

HC =
∑
l∈L

vl(c
†
l cd + c

†
dcl) +

∑
r∈R

vr (c†r ca + c†acr ). (5)

Hvib and HI represent the Hamiltonians of the molecular
vibrational mode and its coupling with the D and A sites
(strength g). Assuming a harmonic local mode we write

Hvib = ω0b
†
0b0,

HI = g[c†dca + c†acd ](b†0 + b0), (6)

with b0 (b†0) a bosonic annihilation (creation) operator for
a vibrational mode of frequency ω0. The interaction HI is
sometimes referred to as an “off-diagonal” since electron
exchange between the two sites is allowed only via the
excitation and/or relaxation of the mode (see Fig. 1). Note
that we do not include here a direct tunneling (elastic) term
between sites D and A. This simplification allows us to reach
closed analytic results for the CGF. The contributing of elastic
tunneling processes can be included in an additive manner
[47], a reasonable approximation at weak coupling [41].

We diagonalize the electronic Hamiltonian Hel ≡ HM +
HL + HR + HC , and write it in terms of a new set of fermionic
operators (al/r ,a

†
l/r ):

Hel =
∑

l

εla
†
l al +

∑
r

εra
†
r ar . (7)

These operators are related to the original set by [37]

cd =
∑

l

γlal, ca =
∑

r

γrar ,

cl =
∑

l′
ηll′al′ , cr =

∑
r ′

ηrr ′ar ′ , (8)

with the dimensionless coefficients

γl = vl

εl − εd − ∑
l′

v2
l′

εl−εl′+iδ

, ηll′ = δll′ − vlγl′

εl − εl′ + iδ
.

(9)
Here, δ is a positive infinitesimal number introduced to ensure
causality. Analogous expressions hold for the r set. The
expectation values of number operators obey, e.g., at the L end,
〈a†

l al′ 〉 = δll′fL(εl) with fL(εl) = { exp[βL(εl − μL)] + 1}−1

the Fermi distribution for the lead with chemical potential
μL and an inverse temperature βL. Using the new operators,
we write the total Hamiltonian for the DA-HO junction as

HDA-HO = Hel + ω0b
†
0b0

+ g
∑

l∈L,r∈R

[γ ∗
l γra

†
l ar + H.c.](b†0 + b0). (10)

The last term in the Hamiltonian describes electron-hole pair
generation assisted by the interaction with the vibrational
mode.

In a simpler version of this model, we replace the infinite
level spectrum of the harmonic oscillator by a truncated
two-level system, to mimic a highly anharmonic mode. The
Hamiltonian of this DA-AH model can be conveniently written
in terms of the Pauli matrices as

HDA-AH = Hel + ω0

2
σz + g

∑
l∈L,r∈R

[γ ∗
l γra

†
l ar + H.c.]σx.

(11)
The DA-HO and DA-AH models described above are

simple enough to allow us to derive expressions for the
corresponding CGFs. Meanwhile, we (i) reconcile the NEGF
approach with QME, to assist in method development in the
area of quantum transport, and (ii) provide analytic results
for transport characteristics, to bring intuitive guidelines for
functionality.

We substantiate our modeling by describing connections to
ab initio studies of molecular conduction [57]. The donor and
acceptor sites could represent spatially separated electronic
states in a molecule or atoms in an atomic wire, with the
electron-phonon interaction of Eq. (6) describing a bond-
length stretching mode. The rigid motion of a molecule/atomic
chain between the metal leads can be modeled by an
additional electron-phonon interaction Hamiltonian H

(1)
I =

g1(b†1 + b1)(c†dcd + c
†
aca). This mode is not included in this

study. As well, we ignore direct tunneling between electronic
sites in the form Htunn = vd,a(c†dca + c

†
acd ). Detailed ab initio

studies of electron-phonon inelastic effects in molecular
junctions prepare direct tunneling elements, frequencies of
active modes, and their electron-phonon matrix elements (see,
e.g., Refs. [57–61]). Certain types of molecular junctions could
be well represented by our model when electron transport due
to HI dominates over both elastic tunneling Htunn and the
diagonal electron-phonon coupling H

(1)
I . This is the case, e.g.,

in Ref. [62], considering charge transfer through a biphenyl
molecule with the torsion motion assisting electron hopping
between the (almost orthogonal) benzene rings. Particularly,
when εd 
= εa , calculations of transport in double-quantum-dot
systems show that the inelastic component of the current can
dominate the elastic term [47].

We also justify our model in the language of molecular
orbitals, electronic eigenstates of the molecule. Consider two
orbitals, each coupled to both metal leads, but in an asymmetric
manner: one orbital couples strongly to the left lead but weakly
to the right, the other molecular orbital is strongly coupled
to the right lead but weakly to the left side. In the absence
of electron-phonon interaction, this molecule supports very
small currents. It will, however, turn into a good conductor
at high enough temperatures when phonons contributing to
(6) are active, supporting inelastic current. For an extended
discussion, see Ref. [63].

Turning to the the AH model, the two-state impurity
describe deviations from the harmonic picture. Aside from
electron-phonon coupled situations, the model could represent
electron transport junctions interacting with a local spin
impurity (see e.g., Refs. [64,65], demonstrating electronic
readout of nuclear spins).
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We finally comment that in the noncrossing approximation,
when elastic and inelastic tunneling events do not interfere
[39,66], the current (or more generally, the cumulant generat-
ing function) can be written as a sum of elastic and inelastic
terms. While here we treat the inelastic component only, the
CGF for elastic transport is well known [67], bringing in the
standard Landauer formula for currents.

In the next section, we develop a counting statistics
approach for charge and energy transfer processes. We then
analyze first the (simpler) DA-AH model using a QME
approach, followed by the investigation of the DA-HO junction
by utilizing the NEGF technique.

III. COUNTING STATISTICS FOR CHARGE
AND ENERGY CURRENTS

The cumulant generating function contains information
over the statistics of transferred particles and energy flowing
across the system, potentially far from equilibrium. Here, we
are interested in the CGF for coupled particle (charge) and
energy currents. Such a two-parameter CGF is necessary for
obtaining later in Sec. IV B the statistics of efficiency in a
thermoelectric engine.

We define the particle (p) and energy (e) current operators
from the rate of change of electron number and electron energy
in one of the leads, say R, and write

Ip(t) ≡ −dNH
R (t)

dt
, Ie(t) ≡ −dHH

R (t)

dt
. (12)

Here, NR = ∑
r∈R a

†
r ar is the number operator for the total

charge in the right compartment (right lead plus attached
acceptor site). Similarly, HR = ∑

r∈R εra
†
r ar . The operators

are written in the Heisenberg (H ) picture, thus they should
be evolved with the total Hamiltonian for either model,
AH (t) = U †(t) AU (t) where U (t) = e−iHT t . We follow the
convention that the current flowing out of the right lead is
positive. Changes in the total energy and electron number in
the R lead during the time interval (t0 = 0,t) (t0 and t are
initial and final observation time, respectively), are given by
the integrated currents

Qe(t,t0) ≡
∫ t

t0=0
Ie(t ′) dt ′ = HR(0) − HH

R (t),

(13)

Qp(t,t0) ≡
∫ t

t0=0
Ip(t ′) dt ′ = NR(0) − NH

R (t).

Since at any instant [NH
R ,HH

R ] = 0, it is possible to construct
the so-called “characteristic function” Z(λe,λp), correspond-
ing to the joint probability distribution for integrated charge
and energy currents. Following the two-time measurement
procedure one can define the characteristic function as
[49,50,68,69]

Z(λe,λp) = 〈
eiλeHR+iλpNR e−iλeH

H
R (t)−iλpNH

R (t)
〉
, (14)

where λe and λp are the counting fields for energy and
particles, respectively. 〈. . .〉 represents an average with respect
to the total density matrix ρT (0) at the initial time. We
assume that ρT (0) = ρL(0) ⊗ ρR(0) ⊗ ρvib(0), a factorized-
product form for the electronic degrees of freedom and for

the vibrational part. The leads are maintained in equilibrium
at temperature Tα = 1/βα and chemical potential μα , α =
L,R, and the states are described by the grand canoni-
cal distribution function ρα(0)=exp[−βα(Hα − μαNα)]/Zα ,
with Zα =Trα{exp[−βα(Hα − μαNα)]} as the grand canon-
ical partition function. Equation (14) can be reorganized
as

Z(λe,λp) = TrT
[
U−λe/2,−λp/2(t) ρT (0) U

†
λe/2,λp/2(t)

]
= TrT

[
ρT

λe,λp
(t)

]
= Trvib

[
ρvib

λe,λp
(t)

]
. (15)

The second line introduces the definition of the total, counting-
field-dependent, density operator. We trace out its electronic
degrees of freedom (Trel) and express the characteristic
function in terms of the reduced density matrix ρvib

λe,λp
(t) for

the vibrational mode:

ρvib
λe,λp

(t) ≡ Trel
[
U−λe/2,−λp/2(t) ρT (0) U

†
λe/2,λp/2(t)

]
. (16)

Note that the forward and backward evolution operators are not
Hermitian conjugates. For example, the forward propagator is

U−λe/2,−λp/2(t)

= exp

[
−i

λe

2
HR − i

λp

2
NR

]
U (t) exp

[
i
λe

2
HR + i

λp

2
NR

]

≡ exp
[−iH−λe/2,−λp/2(t)

]
, (17)

with the counting-field-dependent total Hamiltonian

H−λe/2,−λp/2

≡ exp

[
−i

λe

2
HR − i

λp

2
NR

]
HT exp

[
i
λe

2
HR + i

λp

2
NR

]

= Hel + Hvib + S ⊗
[
g

∑
l,r

γ ∗
l γra

†
l are

i
2 (λeεr+λp) + H.c.

]
.

(18)

S is a system operator; the HDA-AH model is reached
when S = σx , Hvib = ω0

2 σz. The model HDA-HO is realized

with S = (b†0 + b0) and Hvib = ω0b
†
0b0. The electron-phonon

coupling term here depends on the counting field. Herein,
we use λ as a shorthand notation for both λe and λp.
To facilitate our discussion, we define the operators B±λ/2

as

B∓λ/2 ≡ g

[∑
l,r

γ ∗
l γra

†
l are

±i
2 (εrλe+λp) + H.c.

]
. (19)

These operators correspond to the bath operator coupled to
the system [see Eqs. (10) and (11)], now dressed by counting
fields λe,λp as a consequence of the measurements of charge
and energy. Note that the sign convention for B corresponds
to the respective time evolution operator. The counting-field
Hamiltonians [Eq. (18) and the complementarity term for the
backward evolution] can be organized in a form convenient for
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a perturbation expansion in g:

H±λ/2 = H0 + V±λ/2,

H0 = Hel + Hvib, V±λ/2 ≡ S ⊗ B±λ/2, (20)

with Hel incorporating the two metals with the hybridized
states [see Eq. (7)].

A. DA-AH model: Quantum master-equation approach

We derive the counting-field-dependent quantum master
equation [49,71] for the model (11) under the assumption that
the coupling between electron-hole pair generation and the
vibrational mode is weak [72]. Unlike other standard QME ap-
proaches for molecular junctions, in which the molecule-metal
coupling is considered weak [56,73], in the present derivation
the metal-molecule hybridization [defined below Eq. (27)] can
be made arbitrarily large, absorbed into the leads’ spectral
density by the exact diagonalization procedure presented in
Sec. II. Taking the time derivative of Eq. (16) we get

ρ̇vib
λ (t) = Trel

[−iV−λ/2(t)ρT
λ (t) + iρT

λ (t)Vλ/2(t)
]
. (21)

The operators here are written in the interaction representation
A(t) = eiH0tAe−iH0t , with H0 including the uncoupled
electrons and vibration. By formally integrating this equation
we receive the exact form (〈B±λ/2〉 = 0)

ρ̇vib
λ (t) = −

∫ t

t0=0
dt ′Trel

[
V−λ/2(t)V−λ/2(t ′)ρT

λ (t ′)

+ ρT
λ (t ′)Vλ/2(t ′)Vλ/2(t) − V−λ/2(t ′)ρT

λ (t ′)Vλ/2(t)

−V−λ/2(t)ρT
λ (t ′)Vλ/2(t ′)

]
. (22)

We now follow standard steps as in the derivation of
the weak-coupling Markov-Redfield equation. The initial
condition is assumed fully factorized, ρT

λ (t ′) is replaced by
the initial condition, ρT

λ (0) = ρT (0), and the upper limit of
integration is extended to infinity, assuming Markovianity
of the electron baths. The equation of motion for the
counting-field-dependent reduced density matrix (describing
the dynamics of the vibrational mode) depends on the
following relaxation (kd ) and excitation (ku) rates:

kλ
d =

∫ ∞

−∞
dτ e−iω0τ 〈Bλ/2(0) B−λ/2(τ )〉el,

kλ
u =

∫ ∞

−∞
dτ eiω0τ 〈Bλ/2(0) B−λ/2(τ )〉el

= kλ
d [ω0 → −ω0]. (23)

Here, 〈. . .〉el = TrLTrR[. . . ρL(0)ρR(0)]. An explicit cal-
culation of the relaxation rate gives

kλ
d = 2πg2

[∑
l,r

|γl|2|γr |2fL(εl)[1 − fR(εr )]

× e−i(λp+εrλe)δ(εl − εr + ω0)

+
∑
l,r

|γl|2|γr |2fR(εr )[1 − fL(εl)]

× ei(λp+εrλe)δ(εl − εr − ω0)

]
. (24)

The first term represents an inelastic process with an electron
hopping from the left lead to the right one, by absorbing one
quanta ω0, satisfying energy conservation with εr = εl + ω0.
This process, which goes against our convention of a positive
current (flowing right to left), contributes negative charge and
energy currents, reflected by the negative sign for λp and λe in
the exponent. The second term in Eq. (24) corresponds to the
reversed process with electron hopping from the right metal
to the left, observing εl = εr + ω0, with a positive sign for λp

and λe. The downward rate assists in cooling the vibrational
mode. In the complementary excitation process, electrons lose
energy to the vibration, heating up the junction. Equation (24)
can be decomposed into two separate contributions

kλ
d = [

kλ
d

]L→R + [
kλ
d

]R→L
, (25)

and similarly for kλ
u . We define the spectral densities for the

baths (metals) as

Jα(ε) = 2πg
∑
k∈α

|γk|2δ(ε − εk). (26)

Using the transformations (9) we note that these functions are
Lorentzian shaped, centered around the donor (εd ) or acceptor
(εa) site energies

JL(ε) = g
�L(ε)

(ε − εd )2 + �L(ε)2/4
,

(27)

JR(ε) = g
�R(ε)

(ε − εa)2 + �R(ε)2/4
,

with �α(ε) = 2π
∑

k∈α v2
k δ(ε − εk). In terms of these spectral

functions, bath-induced relaxation rates (24) are given by

[
kλ
d

]L→R =
∫

dε

2π
[fL(ε)[1 − fR(ε + ω0)]JL(ε)JR(ε + ω0)

× e−i[λp+(ε+ω0)λe]],
(28)[

kλ
d

]R→L =
∫

dε

2π
[fR(ε)[1 − fL(ε + ω0)]

× JR(ε)JL(ε + ω0)ei(λp+ελe)].

We also define the λ = 0 rates from Eqs. (23)–(28), only
missing the λ identifier. The rates are nonzero as long as (i)
both left and right leads are not fully occupied or empty and
(ii) the overlap between the spectral densities differing by one
quanta of energy is non-negligible. Note that because of the
weak electron-phonon coupling approximation, each electron
tunneling process involves absorption/mission of a single
quanta of energy. In other words, the dynamics is completely
described by single-phonon excitation and relaxation rates.

As mentioned above, we apply the weak-coupling Born
Markov approximation on Eq. (22). By further ignoring off-
diagonal coherence elements for the reduced density matrix,
we obtain the population dynamics for the vibrational states
(written here for an arbitrary number of levels, m = 0,1,2, . . .),

ṗλ
m(t) = −[mkd + (m + 1)ku] pλ

m(t)

+ (m + 1)kλ
d pλ

m+1(t) + mkλ
u pλ

m−1(t), (29)

where pλ
m(t) = 〈m|ρvib

λ (t)|m〉 and |m〉 denotes the mth vibra-
tional level. kd and ku are rates evaluated at λ = 0. For the
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DA-AH model, m = 0,1, it can be shown that off-diagonal
coherences do not appear in the Born-Markov approximation
without further assumptions [37], and the dynamics of the
population follows:

ṗλ
0 (t) = −ku pλ

0 (t) + kλ
d pλ

1 (t),
(30)

ṗλ
1 (t) = kλ

u pλ
0 (t) − kd pλ

1 (t).

These equations can be written in a matrix form as

d|pλ(t)〉
dt

= L(λ)|pλ(t)〉, (31)

where |pλ(t)〉 = (pλ
0 (t),pλ

1 (t)). The long-time (steady-state)
limit defined as

G(λ) = lim
t→∞

1

t
lnZ(λ) = lim

t→∞
1

t
ln〈I |pλ(t)〉 (32)

provides the CGF, where 〈I | = (1,1)T is the identity vector.
In this limit, only the smallest eigenvalue of the Liouvillian
survives. The final result for the CGF for the DA-AH junction
is given by

GAH(λ) = − 1
2 (ku + kd ) + 1

2

√
(ku − kd )2 + 4 kλ

uk
λ
d . (33)

We label this CGF by “AH” to highlight the mode anhar-
monicity. Recall that λ collects two counting fields λp and
λe, for charge and energy, respectively. The CGF satisfies the
fluctuation symmetry

GAH(λe,λp) = GAH[−λe + i(βL − βR),

− λp + i(βRμR − βLμL)], (34)

which can be verified by examining the rates in Eq. (24). Un-
der the transformations λe → −λe + i(βL − βR) and λp →
−λp + i(βRμR − βLμL), the rates transform as

kλ
d → kλ

ue
βLω0 ,

(35)
kλ
u → kλ

de
−βLω0 .

The extra factors e±βLω0 cancel out in Eq. (33), to satisfy the
fluctuation symmetry.

The charge and energy currents and the corresponding zero-
frequency noise powers can be readily obtained by taking
derivatives of the CGF with respect to the counting fields. For
example, the particle (p) and energy (e) currents are obtained
from

〈Ip〉 ≡ 〈Qp〉
t

= ∂G(λe,λp)

∂(iλp)

∣∣∣∣
λe=λp=0

,

(36)

〈Ie〉 ≡ 〈Qe〉
t

= ∂G(λe,λp)

∂(iλe)

∣∣∣∣
λe=λp=0

.

The zero-frequency noises of these currents are

〈Sp〉 ≡
〈〈
Q2

p

〉〉
t

= ∂2G(λe,λp)

∂(iλp)2

∣∣∣∣
λe=λp=0

,

(37)

〈Se〉 ≡
〈〈
Q2

e

〉〉
t

= ∂2G(λe,λp)

∂(iλe)2

∣∣∣∣
λe=λp=0

,

where 〈〈Q2
e,p〉〉 = 〈Q2

e,p〉 − 〈Qe,p〉2 is the second cumulant.

FIG. 2. Keldysh contour representing the counting statistics prob-
lem. The forward upper (+) and backward lower (−) branches evolve
with different Hamiltonians corresponding to different counting
fields. τ1,τ2 are the contour times and t is the final observation time.

B. DA-HO model: Nonequilibrium Green’s function approach

We now focus our attention to the DA-HO junction of
Fig. 1(b), described by Eq. (10). In this case, electron-hole
pair excitation is coupled to a harmonic oscillator mode.
We employ the NEGF technique [74,75] to derive the CGF
of this model, again correct up to the second order of the
electron-phonon coupling parameter g. Note that the presence
of an infinite number of vibrational levels for the HO mode
makes it difficult to obtain a closed form for the CGF under the
QME approach since the Liouvillian is an infinite-dimensional
matrix.

We begin with Eq. (15), now identifying the initial time by
t0, and write the characteristic function on the Keldysh contour
(see Fig. 2) as [69]

Z(λe,λp) = 〈U †
λe/2,λp/2(t) U−λe/2,−λp/2(t)〉,

= TrT
[
ρT (0) Tc e−i

∫
c
dτH

λ(τ )
T

]
. (38)

The forward upper (backward lower) branch of the Keldysh
contour corresponds to the modified unitary evolution
U−λe/2,−λp/2(t) [U †

λe/2,λp/2(t)]. Evolving the counting fields
on two branches of the Keldysh contour with two different
signs is the main essence of counting statistics problems. The
normalization condition is trivially satisfied with Z(0,0) = 1.
In the above expression, Tc is the contour ordered operator,
which orders operators according to their contour time
argument; earliest-time operators appear at the right. λ(τ ) =
(λe(τ ),λp(τ )) is the contour time-dependent counting function.
In the upper (+) branch, λ+(t) = (λ+

e (t),λ+
p (t)) = (−λe/2,

−λp/2), in the lower (−) branch, λ−(t) = (λ−
e (t),λ−

p (t)) =
(λe/2,λp/2). Moving to the interaction picture with respect to
the Hamiltonian H0 = Hel + Hvib, we write the characteristic
function as

Z(λe,λp) =
〈
Tc exp

(
−i

∫
c

dτ V λ(τ )(τ )

)〉
, (39)

where the counting-field-dependent interaction term is

V λ(τ )(τ ) = [b0(τ ) + b
†
0(τ )]

× g
∑
l,r

γ ∗
l γr e−i[λp(τ )+εrλe(τ )] a

†
l (τ ) ar (τ ) + H.c.

= g
∑
l,r

γ ∗
l γr a

†
l (τ ) ãr (τ ) [b0(τ ) + b

†
0(τ )] + H.c.
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introducing the short notation ãr (τ ) ≡ e−i[λp(τ )+εrλe(τ )]ar (τ ).
Our objective is to calculate the CGF, correct up to second
order in electron-phonon coupling but exact to all orders in
the metal-molecule hybridization. It can be shown that a naive
perturbative calculation of Eq. (39) in terms of the electron-
phonon coupling g leads to a violation of the nonequilibrium
fluctuation symmetry. Moreover, such a perturbative treatment
cannot capture the correct nonequilibrium phonon distribution,
and it will lead to (an incorrect) long-time solution for
the vibrational density matrix which depends on the initial
arbitrary state ρvib(0).

In order to restore the fluctuation symmetry, and obtain the
correct nonequilibrium phonon distribution [which depends
on the temperatures of the electronic baths and their chemical
potentials, but not on ρvib(0)], one has to sum over an
infinite subclass of diagrams in this perturbative expansion.
This procedure takes into account all electron scattering
processes which are facilitated by the absorption or emission
of a single quanta ω0. Physically, the summation collects
not only sequentially tunneling electrons, but all coordinated
multitunneling processes, albeit with each electron interacting
with the mode to the lowest order, to absorb/emit each
a single quanta ω0. This summation can be achieved by
exploiting the random-phase approximation (RPA) as done
in Refs. [27,76,77], also referred to as the self-consistent Born
approximation [57]. Summing over a particular set of diagrams
(ring type) in the perturbative series (see Fig. 3), we reach the
following expression:

lnZRPA(λe,λp) = − 1
2 Trτ ln[I − D0(τ,τ ′)F̃ (τ ′,τ )]. (40)

The symbol Trτ denotes an integration over contour time
variables (τ,τ ′). For example,

Trτ [D0(τ,τ ′)F̃ (τ ′,τ )] =
∫

dτ

∫
dτ ′D0(τ,τ ′)F̃ (τ ′,τ ). (41)

Here, I is the identity matrix in the Keldysh space and D0(τ,τ ′)
is the free-phonon Green’s function

D0(τ1,τ2) = −i〈TcX(τ1)X(τ2)〉, (42)

[= −i g2

(a)
(b)

(c)

(d)

+ ]

F (τ1, τ2)

FIG. 3. Ring-type Feynman diagrams in contour time.
(a) Second-order, (b) fourth-order, and (c) sixth-order diagrams in
the electron-phonon coupling. The dotted line represents the phonon
Green’s function D0. Closed loops are the electron-hole propagator
F (τ1,τ2), the sum of two diagrams (d) consisting of the bare left
(solid) and right (dashed) leads Green’s functions.

with X ≡ (b0 + b
†
0), proportional to the phonon displacement

operator. F̃ (τ,τ ′) is the counting-field-dependent electron-hole
Green’s function. It describes electron hopping processes from
the left to the right lead, and vice versa,

F̃ (τ1,τ2) = −ig2
∑

l∈L,r∈R

|γl|2γr |2

× [gl(τ1,τ2)g̃r (τ2,τ1) + g̃r (τ1,τ2)gl(τ2,τ1)]. (43)

This expression is symmetric under the exchange of the
contour time parameters τ1 and τ2. Recall that the tilde
symbol advices that the Green’s function is λ dependent. This
propagator involves free-electron Green’s functions for the left
and right leads:

gl(τ1,τ2) = −i 〈Tcal(τ1)a†
l (τ2)〉,

(44)
g̃r (τ1,τ2) = −i〈Tcãr (τ1)ã†

r (τ2)〉.
Explicit expressions for different components of these Green’s
functions in real time are given in Appendix A. Here, we write
the lesser component, given as

F̃ <(ω) = −i 2πg2

[∑
l,r

|γl|2|γr |2fL(εl)[1 − fR(εr )]

× e−i(λp+εrλe)δ(εl − εr − ω)

+
∑
l,r

|γl|2|γr |2fR(εr )[1 − fL(εl)]

× ei(λp+εrλe)δ(εl − εr + ω)

]
. (45)

The greater component is obtained from F̃ >(ω) = F̃ <(−ω). It
is clear that the greater (lesser) component corresponds to the
electronic bath-induced transition rates within the vibrational
mode kλ

d (kλ
u) [see definitions (23) and a physical explanation

below Eq. (24)].
Projecting Eq. (40) to the real time and invoking the steady-

state limit by taking t0 → −∞, we write the CGF as [68,75]

G(λe,λp) = lim
t→∞

1

t
lnZRPA(λe,λp)

= −
∫

dω

4π
ln det D−1

λ (ω), (46)

where D−1
λ (ω) = D−1

0 (ω) − σz F̃ (ω) σz with σz as the third
Pauli matrix. Note that we renormalized the CGF with a
counting-field-independent term D−1

0 . The matrix D−1
λ can

be written explicitly as

D−1
λ (ω) =

([
Dr

0

]−1
(ω) − F t (ω) F̃ <(ω)

F̃ >(ω) −[
Da

0

]−1
(ω) − F t̄ (ω)

)
,

where r, a, t, t̄ , < , > stand for the retarded, advanced,
time-ordered, anti-time-ordered, lesser, and greater compo-
nents of the Green’s functions, respectively. The free-phonon
Green’s functions D

r,a
0 (ω) are given by

Dr
0(ω) = 2ω0

(ω + iη)2 − ω2
0

, Da
0 (ω) = [

Dr
0(ω)

]∗
, (47)
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where η is an infinitesimal positive number, introduced to
preserve the causality of the retarded Green’s function. The
determinant of D−1

λ (ω) can be immediately evaluated:

det D−1
λ (ω) = −

[
ω2 − ω2

0

2ω0
−

(
F t −F t̄

2

)]2

− Aλ(ω). (48)

Here,

Aλ(ω) ≡ F̃ <(ω)F̃ >(ω) − [F<(ω) + F>(ω)]2

4
(49)

is written solely in terms of the electron-hole Green’s function,
and it will end up being the central quantity in this problem.
The above determinant was simplified using the identity
F t (ω) + F t̄ (ω)=F>(ω) + F<(ω) (see Appendix A). We now
take the λ derivative of the CGF in Eq. (46) to obtain

∂λG(λ) = −
∫

dω

4π

∂λAλ(ω)[ω2−ω2
0

2ω0
− (

F t−F t̄

2

)]2 + Aλ(ω)
. (50)

The integration can be performed to the leading order in the
electron-phonon coupling g. To the lowest nontrivial order in
the electron-phonon coupling the location of the poles can be
approximated by

±{ω0 + Re[F r (ω0)] ± i
√

Aλ(ω0)}, (51)

where we identify Re[F r ] = (F t − F t̄ )/2. Employing the
residue theorem, the integration in Eq. (50) can be performed,
resulting in

∂λG(λ) ≈ −∂λ

√
Aλ(ω0). (52)

We now formally identify the lesser and greater components
of the electron-hole Green’s functions in Aλ(ω0) with the
excitation and relaxation rates, defined in the QME approach
in Sec. III A [see Eq. (24)]. They are given by F>(ω0) =
−ikd and F<(ω0) = −iku. In the presence of counting fields,
F̃ >(ω0) = −ikλ

d , F̃ <(ω0) = −ikλ
u . The final expression for the

CGF is

GHO(λ) = 1
2 (kd − ku) − 1

2

√
(ku + kd )2 − 4kλ

uk
λ
d . (53)

Remarkably, the expressions for GHO(λe,λp) and GAH(λe,λp)
in Eq. (33) are very similar, aside from the sign differences,
although they were obtained via two completely different
approaches. The sign difference reflects the different normal-
ization, with the AH mode conserving population in the two
states of the mode, while in the harmonic mode all levels
are occupied at nonzero temperature. The RPA approximation
restores the fluctuation symmetry [Eq. (34)].

The CGFs for the DA-AH and DA-HO models, Eqs. (33)
and (53), respectively, are the main analytical results of this
paper [72]. It should be emphasized that only few impurity
models, essentially, variants of the single-dot Anderson model
[18,27,78–81], can be solved analytically, within certain
approximations, to provide the CGF and expose charge and
energy statistics under interactions. Our work here substan-
tially extends these efforts by solving the FCS of a vibrationally
assisted two-site electronic conduction. In Sec. IV A, we derive
and simulate charge and energy currents and their noise using
Eqs. (36) and (37). As a further nontrivial application, we
employ the CGFs in Sec. IV B to simulate fluctuations of the
thermoelectric efficiency.

IV. APPLICATIONS

A. Charge current and Fano factor far from equilibrium

We present here simulations for the charge current and its
noise in the DA junction. Particularly, we examine signatures
of mode harmonicity in transport. In Ref. [82], we further
explore fingerprints of vibrational anharmonicities in linear-
response quantities: the electronic thermal conductance, the
thermopower, and the thermoelectric figure of merit.

We obtain closed-form expressions for the currents and
high-order cumulants by taking partial derivatives of the CGF
with respect to the counting fields [see Eqs. (36) and (37)].
The particle (p) and energy (e) currents in the DA-AH and
DA-HO models are given by

〈
IAH/HO
p

〉 = 2
kR→L
d kR→L

u − kL→R
d kL→R

u

kd + sku

,

(54)〈
IAH/HO
e

〉 = kd

[
∂(iλe)k

λ
u

∣∣
λ=0

] + ku

[
∂(iλe)k

λ
d

∣∣
λ=0

]
kd + s ku

,

where s = +1 (s = −1) for the AH (HO) mode. Note that we
did not simplify the expression for the energy current above;
the derivatives return energy transfer rates which are analogs
to Eq. (28), only with an additional energy variable in the
integrand. The average heat current, extracted from the right
terminal is defined as 〈IAH/HO

q 〉 = 〈IAH/HO
e 〉 − μR〈IAH/HO

p 〉.
We further write closed expressions for the particle-current
noise〈

SAH/HO
p

〉 = − 2s

kd + sku

〈
IAH/HO
p

〉2
+ 4

kd + sku

(
kL→R
u kL→R

d + kR→L
u kR→L

d

)
. (55)

The first term hands over a strictly nonequilibrium (finite-bias)
noise. The second term survives even when the bias voltage
is zero, thus we refer to it as the equilibrium contribution
(although it is somewhat modified with bias). At low bias
and low temperatures, ku � kd , thus, 〈SAH

p 〉 ∼ 〈SHO
p 〉. At finite

bias, significant differences show up, as we discuss in the text
following Figs. 6 and 7.

The Fano factor, defined as the ratio of the noise to the
current F ≡ 〈Sp〉/〈Ip〉, receives a rather transparent form

F AH/HO = −2s
〈
IAH,HO
p

〉
kd + sku

+ 2
kR→L
d kR→L

u + kL→R
d kL→R

u

kR→L
d kR→L

u − kL→R
d kL→R

u

. (56)

The second term here does not depend on the mode harmonic-
ity/anharmonicity: At finite bias (μR > μL) kR→L

d,u > kL→R
d,u ,

thus, this term roughly takes on the value 2, besides at
asymptotically small biases when the denominator drops to
zero since the current itself is diminishing. The first term
in Eq. (56), in contrast, depends on the mode harmonicity,
it strongly varies with the bias voltage, and physically it
corresponds to the ratio between two rates: charge transfer
through the junction and transitions between vibrational states
within the attached mode.

Before presenting results at finite voltage and temperature,
we derive scaling relations for the current and its noise
in the large-voltage–zero-temperature limit, when metal-
molecule hybridization is large JL(ω) → 4g

�L
, JR(ω) → 4g

�R
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[see Eq. (27)]. This limit will allow us to pinpoint on
fundamental differences between the HO and the AH mode
models. As well, scaling relations will be contrasted with
results from the Anderson-Holstein model. We introduce the
notation ḡ2 ≡ 8g2/π , assume zero electronic temperature
and a large-voltage bias �μ = μR − μL � εd,a,�L,R,ω0, and
obtain from Eq. (28) the λ = 0 rates

kd ≈ kR→L
d ≈ ḡ2ω0

�L�R

(
�μ

ω0
+ 1

)
,

(57)

ku ≈ kR→L
u ≈ ḡ2ω0

�L�R

(
�μ

ω0
− 1

)
,

with negligible left-to-right rate constants. Equation (54) for
the particle current then reduces to〈

IHO
p

〉 = ḡ2ω0

�L�R

(
�μ2

ω2
0

− 1

)
,

(58)〈
IAH
p

〉 = ḡ2�μ

�L�R

(
1 − ω2

0

�μ2

)
.

Similarly, we derive the particle current noise〈
SHO

p

〉 = ḡ2ω0

�L�R

(
�μ4

ω4
0

− 1

)
,

(59)〈
SAH

p

〉 = ḡ2�μ

�L�R

(
1 − ω4

0

�μ4

)
,

and the Fano factor

F HO = �μ2

ω2
0

+ 1 ∼ �μ2

ω2
0

(60)

F AH = 1 + ω2
0

�μ2
∼ 1.

Thus, while at low bias and low temperature the DA-AH and
DA-HO models similarly behave, at high voltage fundamental
differences are displayed, particularly in the current statistics,
(see, e.g., Fig. 6). It can be further proved that in the
DA-AH model, higher-order cumulants scale as Cn+1/Cn ∝ 1,
while the DA-HO model supports Cn+1/Cn ∝ �μ2/ω2

0. It is
interesting to note that the single impurity Anderson Holstein
mode shows a similar scaling for phonon-induced cumulants
[27]. The harmonic and anharmonic models thus display
distinct noise characteristics, a useful input for identifying
the nature of the mode coupled to conducting junctions.

We proceed by presenting simulation results at finite tem-
perature and bias, focusing on the large-bias limit rather than
the linear-response behavior. We set the Fermi energy μ at zero,
and adjust the chemical potentials of the leads symmetrically
around the Fermi energy μL = −μR , �μ = μR − μL. For
simplicity, we align the donor and acceptor energies at the
same value and use εd = εa =ε0 = 0.25 eV. The junction is
assumed symmetric with � ≡ �L,R , and the temperature is
taken rather low, T < ω0,�,ε0. We employ g = 0.1 eV for
the electron-vibration coupling energy; this value may seem
large given the perturbative nature of our treatment, requiring
g/ω0 � 1. However, since in the present weak-coupling limit
the current simply scales as g2, our simulations following are
representative and can be immediately translated to consider

other values for g [83]. Simulations were performed by
evaluating numerically the rates, assuming metals with a wide
bandwidth D (larger than all other energy scales), and an
energy-independent hybridization �.

In Fig. 4, we study the DA-AH model and display the
current and its derivative, the differential conductance, as a
function of the applied voltage bias. Figures 4(a) and 4(b)
illustrate results with a relatively high mode frequency ω0 =
0.1 eV, using � = 0.01 or 0.1 eV and T = 100 K. We find that
when the hybridization energy is small � � ω0, the current
increases in two steps positioned at �μ ≈ 2ε0 and 2(ε0 + ω0).
These steps are clearly resolved as a two-peak structure in the
differential conductance [see Fig. 4(b)].

The location of these peaks can be reasoned by investigating
the expression for the current (54): For the given parameters
with site energy ε0 > μ and low temperatures, the rates kR→L

u

and kR→L
d dominate the current at finite bias whereas kL→R

u and
kL→R
d are negligible. As we gradually raise the bias, we find

that the vibrational relaxation rate kR→L
d significantly increases

once μR approaches the site energy μR = �μ/2 ≈ ε0, as the
chemical potential precisely sits then within a region of a high
molecular electronic density of states, reflected by the first
jump in the current. At further higher biases μR ≈ ε0 + ω0,
the rate kR→L

u is now strongly enhanced since an excess energy
ω0 is available for mode excitation, producing the second peak.
The energy gap between the peaks is therefore given by 2ω0.
At high hybridization energies � � ω0, the current reaches
higher values in comparison to the weak hybridization case,
and it increases monotonically before saturation. However, in
this large-� limit the differential conductance reveals only a
single broad peak centered around �μ ∼ 2ε0.

Figures 4(c) and 4(d) illustrate the behavior of the current
and the differential conductance when adopting a smaller
value for the vibrational frequency, ω0 = 0.05 eV. We observe
similar features as in the previous larger-ω0 case, only the
broadening � now conceals the two-peak structure. It is also
notable that the first resonance peak at �μ = 2ε0 is higher in
magnitude than the second jump at �μ = 2(ε0 + ω0).

Transport in the DA-HO junction is similarly examined in
Fig. 5. The magnitude of the current is higher in comparison
to the DA-AH case (Fig. 4), for both weak and strong hy-
bridization energies, due to the availability of many additional
channels for excitations and relaxations, once the bias exceeds
the value 2(ε0 + ω0). In fact, at high-bias voltage the charge
current diverges and the vibrational mode becomes overly
heated, a phenomenon referred to as “vibrational instability”
[34]. This heating effect can be controlled and avoided if
dissipation of energy from the single-molecular vibration to an
additional bath (aside from the metals) is allowed [37,41] (see
Appendix B for details). Mathematically, this divergence is
reflected by the denominator in the expression for the current:
At large bias, the current-induced excitation rate exceeds the
relaxation rate (as we break detailed balance at finite bias)
[34]. To remove the vibrational instability, results in Fig. 5
were obtained by attaching the molecular mode to a secondary
phonon bath with a finite phonon damping rate �ph = 0.05 eV
and Tph = TL = TR . Interestingly, inspecting the differential
conductance, we observe that the peak at �μ = 2(ε0 + ω0) is
more pronounced relative to the first peak at �μ = 2ε0. This
trend is opposite to the DA-AH case in Fig. 4. It is explained
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FIG. 4. (Color online) Charge current and differential conductance as a function of voltage bias for the DA-AH model with (a), (b)
ω0 = 0.1 eV and (c), (d) ω0 = 0.05 eV. Other parameters are εd = εa =0.25 eV, T = TL =TR =100 K, g = 0.1 eV, � =0.01 eV (solid line),
� = 0.1 eV (dashed line).

by noting that the second peak corresponds to the opening up
of many channels for charge transfer in the case of a harmonic
mode.

The zero-frequency Fano factor [Eq. (56)] is investigated
in Figs. 6 and 7. We find that this measure strongly reflects
the nature of the vibrational mode: In the DA-AH model,
the Fano factor shows a super-Poissonian behavior at low-
intermediate biases, but in the high-bias limit �μ > 2(ε0 +
ω0) it reaches the value 1, reflecting a Poissonian behavior.
In this high-bias limit, we receive analytically F = −1 + 2,
where the first (second) term in Eq. (55) contributes −1 (2).
While we cannot offer a fundamental understanding of the
involved features in Fig. 6, we confirm that they emerge from
the behavior of the first term in Eq. (56), while the second-
equilibrium term maintains the value ∼2 at the relevant range
of applied voltage. The DA-HO junction shows a very different
behavior (see Fig. 7). Here, a Poissonian behavior takes place
at relatively low biases �μ < ε0, but beyond that F is always
super-Poissonian, reaching high values when many vibrational
states participate in the conductance.

Other theoretical studies have confirmed that molecular
junctions may reach very high noise levels due to electron-
vibration scattering processes [25,84–86]. It should be empha-
sized, however, that in these calculations large-F values were

materialized under the assumption of a strong electron-phonon
interaction, while the molecule-lead coupling was assumed
weak. In contrast, we are concerned here with precisely the
opposite arrangement: weak electron-phonon interaction but
arbitrary large metal-molecule coupling, and we reach large
values for F due to the breakdown of the detailed balance
relation by the applied bias voltage leading to the participation
of many vibrational states in transport [34,37].

To summarize our observations in this section, the current
and its noise can reveal information on the vibrational mode
participating in the transport process, as well as provide input
on the hybridization strength of the molecule to the leads.
The differential conductance shows a two-peak structure.
The separation between the peaks corresponds to (twice)
the vibrational frequency, and the relative peaks’ height can
be attributed to mode harmonicity. A strong hybridization
� � ω0 smears out the double-peak structure to form a single-
asymmetric feature. Genuine anharmonicity, e.g., in the form
of a Morse potential rather than a two-state system, should
lead to a differential conductance similar to that obtained in
the harmonic case, as long as � is greater than the anharmonic
energy scale (� > ω2

0/De, with De as the dissociation energy
in the Morse potential). The significant qualitative differences
in the noise characteristics between the DA-AH and the
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FIG. 5. (Color online) Charge current and differential conductance as a function of voltage bias for the DA-HO model with (a), (b)
ω0 = 0.1 eV and (c), (d) ω0 = 0.05 eV. Parameters are the same as in Fig. 4, but the mode is further coupled to a dissipative phonon bath with
�ph = 0.05 eV and Tph = TL = TR .

DA-HO junctions could assist in identifying the participating
“impurity” mode.

B. Thermoelectric efficiency and its statistics

1. Large-deviation function for efficiency

In this section, we study the operation of the DA junction as
a thermoelectric engine. We explore the device averaged effi-

FIG. 6. (Color online) Fano factor as a function of voltage bias
for the DA-AH model. Junction’s parameters are same as in Fig. 4.

ciency under certain conditions and the statistics of efficiency
fluctuations, which should play an important role in small
devices as opposed to the bulk. In a recent study, Esposito
et al. had analyzed the thermoelectric efficiency statistics in a
purely coherent charge transport model [56]. Classical models
were examined in other studies [51]. The DA junction offers
a rich opportunity to examine the thermoelectric efficiency

FIG. 7. (Color online) Fano factor as a function of applied volt-
age bias for the DA-HO model, with parameters as in Fig. 5.
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FIG. 8. (Color online) (a) Output power P = (μL − μR)〈Ip〉 and
(b) macroscopic efficiency η̄ = η̄TE/ηc, comparing exact results to
the value (72). Parameters are εa = εd = 0.2 eV, ω0 = 0.01 eV,
g = 0.1 eV, � = 0.1 eV, TL = 300 K, TR = 800 K, �ph = 0. For
linear-response calculations, we define the average temperature as
Ta = (TL + TR)/2, the temperature difference �T = TR − TL, and
similarly for the chemical potential, μa = (μL + μR)/2 and �μ =
μR − μL.

beyond linear response, explore the new concept of efficiency
fluctuations, and interrogate the role of quantum effects and
many-body interactions on the operation of a molecular
thermoelectric engine. The DA junction is particularly in-
teresting in this context: As exemplified in Ref. [82] and
below in Fig. 8(b), the macroscopic thermoelectric efficiency is
identical in the DA-AH and DA-HO models; only fluctuations
of efficiency reveal signatures of molecular anharmonicity.

To operate the device as a thermoelectric engine, we set
TL < TR and μL > μR . The macroscopic thermoelectric (TE)
efficiency η̄TE is defined as the ratio between the averaged
power generated by the engine

−Ẇ ≡ (μL − μR)〈Ip〉 (61)

to the heat absorbed from the hot reservoir

Q̇ ≡ 〈Iq〉 = 〈Ie〉 − μR〈Ip〉. (62)

Namely, η̄TE = (μL−μR )〈Ip〉
〈Iq 〉 . According to the second law, the

engine’s efficiency is upper bounded, η̄TE � ηc, with ηc =
1 − TL

TR
as the Carnot efficiency. In the language of stochastic

thermodynamics, corresponding stochastic variables can be
defined, the results of measurements during the time interval
t , the fluctuating work −w = −tẇ and input heat flow q = t q̇

[87]. One can further define the stochastic efficiency for a
single realization as ηTE = −w/q.

In our formalism, we obtain the CGF for work and heat by
going back to the definition of the characteristic function (14).
Rather than using the counting fields λp and λe for charge
and energy, we make the following substitutions to obtain
cumulants for work and heat:

λe → λq,

λp → −λqμR − λw(μL − μR). (63)

λq and λw are conjugate counting parameters for q = HR −
μRNR and −w = (μL − μR)NR , respectively. This transfor-
mation modifies the form of the fluctuation symmetry

G(λw,λq) = G(−λw + iβL,−λq + i[βL − βR)], (64)

which immediately implies (using λw = λq = 0) that [88–90]〈
exp

[
− w

TL

−
(

1

TL

− 1

TR

)
q

]〉
= 1. (65)

By invoking the Jensen’s inequality, Eq. (65) immediately
returns the bound −〈w〉/〈q〉 � ηc, confirming that our defini-
tions for q and w are consistent with classical thermodynamics.
In contrast, efficiency fluctuations are typically not bounded,
and can take arbitrary values because of the stochastic nature of
small systems. Therefore, in general, it is useful to investigate
the probability distribution function to obtain the fluctuating
work and heat within the interval t , thus the probability
distribution function Pt (η), to observe the value η within t .
According to the theory of large deviations, the probability
function assumes an asymptotic long-time form [91]

Pt (η) ∼ e−t J̃ (η) (66)

with J̃ (η) identified as the “large-deviation function.” We
rescaled here the efficiency by the Carnot value

η ≡ ηTE/ηc. (67)

The upper bound of the efficiency thus corresponds to the value
η = 1.

It can be shown [51,53,56] that the large-deviation function
for efficiency can be obtained from G(λw,λq) by setting λq =
η ηcλw, and minimizing it with respect to λw,

J̃ (η) = − min
λw

G(λw,η ηc λw). (68)

The CGFs for the AH and HO mode models are given
in Eqs. (33) and (53), respectively. To study efficiency
fluctuations, we use the transformation (63), and receive the
LDF from Eq. (68). Note that we do not explicitly evaluate the
probability distribution function Pt (η).

It can be proved that J̃ (η) has a single minimum, coinciding
with the macroscopic efficiency of the engine, and a single
maximum, corresponding to the least likely efficiency, which
equals to the Carnot efficiency η = 1 [51–53,56].

2. Gaussian limit: Linear-response theory

In the linear-response limit, i.e., close to equilibrium,
the stochastic work and heat are assumed to be Gaussian
variables. It is possible then to derive an explicit expression
for the large-deviation function, expressed in terms of the On-
sager’s response coefficients and the thermodynamic affinities
[52–54,56]. The scaled-dimensionless LDF is defined as

J (η) = J̃ (η)/Ṡ, (69)

with the entropy production rate Ṡ. In the present Gaussian
(G) limit, it is given by [52,54,56]

JG(η) = 1

4

(η + α2 + αd + αdη)2

(1 + α2 + 2αd)(η2 + α2 + 2αdη)
, (70)

with the dimensionless parameters

d ≡ Lpq√
LppLqq

, α ≡ Ap

√
Lpp

Aq

√
Lqq

. (71)

Here, d describes the degree of coupling in the system, α is the
affinity parameter. The affinities responsible for the particle
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FIG. 9. (Color online) Efficiency LDF for the DA-AH model, showing the exact result JAH(η) and the Gaussian limit J AH
G (η) at different

biases. Parameters are εa = εd = 0.2 eV, ω0 = 0.01 eV, g = 0.1 eV, � = 0.05 eV, �ph = 0, TL = 300 K, TR = 800 K. (a) �μ = 0.025 eV,
(b) �μ = 0.1 eV, (c) �μ = 0.14 eV. The vertical dashed line identifies the scaled Carnot efficiency at η = 1.

and heat fluxes are Ap = βL(μR − μL) and Aq = βL − βR ,
respectively. Note that in the Gaussian limit JG(η) is bounded,
0 � JG(η) � 1

4 . The minimum value JG(η̄G) = 0 is obtained
at the average (macroscopic) efficiency

η̄G = −α(α + d)

(1 + αd)
. (72)

The maximum value JG(η = 1) = 1
4 shows up precisely at the

Carnot efficiency.
To simulate (70) we get hold of d and α by extracting

numerically the coefficients of the linear-response average
charge 〈Ip〉 and heat currents 〈Iq〉:

〈Ip〉 = LppAp + LpqAq, 〈Iq〉 = LqpAp + LqqAq. (73)

Time-reversal symmetry guarantees that Lpq = Lqp. The av-
erage entropy production rate, valid in general nonequilibrium
situations, is Ṡ = 〈Ip〉Ap + 〈Iq〉Aq [92]. Note that we plotted
the dimensionless LDF in Figs. 9 and 10, when presenting both
exact and linear-response results. Only in Fig. 11 we retract to
the unscaled function, when comparing different models.

3. Numerical results: Efficiency statistics

We investigate numerically the thermoelectric efficiency
and its statistics in the DA model, considering the effect
of mode harmonicity and beyond linear-response situations.
We begin with macroscopic-averaged properties. Inspecting
Eq. (54), we note that the numerator in the expressions for the
average charge and energy currents are identical in the DA-AH
and the DA-HO models. Since the macroscopic efficiency is

proportional to the ratio of these two currents, we immediately
conclude that regardless of whether the mode is harmonic or
two-state system, the same macroscopic efficiency is to be
reached, at an arbitrary nonequilibrium condition. However,
the output power takes different values in the two models.

In Fig. 8(a), we display the generated power P = (μL −
μR)〈Ip〉 as a function of bias voltage μL − μR for both DA-AH
and DA-HO models. We find that when the mode is harmonic,
the output power can largely exceed values reached in a junc-
tion with an AH mode due to the availability of many additional
channels. In Fig. 8(b), we examine the efficiency far from
equilibrium, and compare the exact value to the linear-response
limit. For the given parameters, linear-response theory agrees
with the exact efficiency calculation as long as �μ � 0.03 eV.
Interestingly, we find that the device can be made more efficient
in the nonlinear regime (η̄ ≈ 0.75 at μL − μR ≈ 0.14 eV), in
contrast to the linear-response limit (72), which is obtained
by linearizing the currents around equilibrium, to extract the
Onsager coefficients. We further recall the scaling P ∝ g2,
and that η̄ itself does not depend on g.

We now turn our attention to the efficiency statistics. In
Fig. 9, we display the scaled LDF JAH(η) for the model with
an AH mode (normalized by the entropy production rate Ṡ). It
is obtained from Eq. (68) by minimizing the analytical form for
the CGF (33) with respect to λw. We further compare the exact
LDF with the Gaussian limit J AH

G (η), which is obtained from
Eq. (70) by linearizing (numerically) the currents to obtain
the parameters d and α, different in general for the DA-HO
and DA-AH models. J (η) does not depend on g given the
normalization with the entropy production rate.

FIG. 10. (Color online) Efficiency LDF JHO(η) and J HO
G (η) for HO model for different bias voltage. Parameters are same as in Fig. 9 with

(a) �μ = 0.025 eV, (b) �μ = 0.1 eV, (c) �μ = 0.14 eV. The vertical dashed line identifies the scaled Carnot efficiency at η = 1.
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FIG. 11. (Color online) The exact LDF ṠJ (η) (unnormalized) for the DA-AH and the DA-HO models at different biases (a) �μ = 0.025 eV,
(b) �μ = 0.1 eV, (c) �μ = 0.14 eV. Parameters are same as in Fig. 9. The vertical dashed line identifies the scaled Carnot efficiency at η = 1.

We examine the efficiency statistics in the three panels
of Fig. 9 at different representative values for the applied
voltage: (a) linear-response limit �μ = 0.025 eV, (b) beyond
linear response �μ = 0.1 eV, and (c) around the maximal
value for efficiency �μ = 0.14 eV. We find that the minimum
value of JAH(η) corresponds to the macroscopic efficiency, and
that the Carnot efficiency η = 1 is the least-likely efficiency.
We also confirm that J AH

G (η) is always bounded between
0 and 1

4 , with the upper bound reached precisely at the
Carnot efficiency η = 1. In contrast, we find (numerically)
that at η = 1 the exact LDF satisfies J (1) � 1

4 ; equality is
reached only in the linear-response limit. When increasing the
bias voltage, the magnitude of efficiency fluctuations grows,
and, as expected, the Gaussian approximation JG(η) becomes
increasingly unreliable.

In Fig. 10, we display the LDF for the DA-HO model. The
observed trends are similar to those of Fig. 9. However, because
of the large entropy production rate taking place in the DA-HO
junction, the normalized J (η) receives rather low values.

We further compare the two models for the vibrational mode
and plot the unnormalized LDF ṠJ (η) in Fig. 11. As stated
before, the macroscopic efficiency coincides in these models.
However, quite interestingly, the overall statistics differs when
increasing bias. In the linear regime, the DA-HO model
performs as an effective two-state system at low temperatures
and deviations only show up at the tail of the distribution. At
high bias, the DA-AH model suffers more significant efficiency
fluctuations relative to the DA-HO model.

We conclude this section emphasizing central observations:
The statistics of efficiency can reveal information on the mode
harmonicity, and the Gaussian linear-response limit becomes
highly unreliable at large bias, as expected.

V. CONCLUSIONS

We provided a comprehensive analysis of vibrationally
assisted charge and energy transport in a donor-acceptor-type
molecular junction. Two limiting models were examined:
(a) In the DA-AH junction the impurity mode was highly
anharmonic, consisting of a two-level system. (b) The mode
was taken as harmonic in the DA-HO model. Key results are
as follows:

(i) Employing QME and NEGF approaches for the DA-AH
and the DA-HO models, respectively, we obtained analytical
expressions for the steady-state cumulant generating functions
(33) and (53). These results are valid to second order in the
electron-phonon strength, and correct to arbitrary order in

the molecule-metal coupling. The CGF furnishes analytical
results for charge and energy currents in the system, and for
fluctuations of these quantities.

(ii) Our analysis establishes that one can reconcile two
different eminent quantum transport techniques: QME and
NEGF. By taking into account scattering processes to the
same order in perturbation theory, we showed that the QME
(used here for treating the DA-AH junction) and the NEGF
approach (DA-HO model) yielded corresponding results.
Several works had compared transport predictions from
these two approaches, showing deviations given the different
approximations involved [56,93]. Our work here is unique
in demonstrating that one can reconcile results from these
two techniques by carefully taking into account corresponding
processes.

(iii) Expressions for the current, output power, as well as
the Fano factor (noise) were reached, shown to be sensitive to
the properties of the vibrational mode. Specifically, we found
that in our model the two-peak structure of the differential
conductance directly evinces on the mode frequency, while
the Fano factor definitely reveals information on the mode
harmonicity/anharmonicity. In contrast, the macroscopic (av-
eraged) thermoelectric efficiency was proved to be identical
regardless of the mode harmonicity, although fluctuations
around the averaged value were distinct in the two cases.

(iv) We had employed the DA junction as a thermoelectric
engine and studied its efficiency fluctuations based on the
derived CGF for charge and energy transfer. Previous works
of efficiency fluctuations were limited to classical models
[51–53], or to the quantum purely coherent (noninteracting)
regime [56]. Here, in contrast, we examined efficiency fluctu-
ations far from equilibrium in a quantum many-body model,
using a rigorous approach.

In future studies, we will demonstrate the correspondence
between the QME and NEGF in the DA-HO model, and
examine energy harvesting in a double-dot cell with three
terminals, to examine the quantum photovoltaic effect.
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APPENDIX A: REAL-TIME GREEN’S FUNCTIONS

1. Free-electron Green’s function

The free-electronic Green’s functions for the leads, with the contour times τ1 and τ2, are given as

gk(τ1,τ2) = −i 〈Tcak(τ1)a†
k(τ2)〉, k ∈ L,R. (A1)

The projection of this contour ordered Green’s function to real time generates four different components, namely, lesser (<),
greater (>), time-ordered (t), and anti-time-ordered (t̄) Green’s functions. The lesser and greater components are given as (e.g.,
for l ∈ L)

g<
l (t1 − t2) = i 〈a†

l (t2)al(t1)〉 = ifL(εl)e
iεl (t2−t1),

g>
l (t1 − t2) = −i 〈al(t1)a†

l (t2)〉 = −i[1 − fL(εl)]e
iεl (t2−t1). (A2)

In frequency domain we get

g<
l (ω) = 2πifL(εl)δ(ω − εl), g>

l (ω) = −2πi[1 − fL(εl)]δ(ω − εl). (A3)

The following relations between different components of the Green’s functions are valid in both time and frequency domain:

gt
l = gr

l + g<
l = ga

l + g>
l , gt̄

l = g<
l − ga

l = g>
l − gr

l , (A4)

where gt
l and gt̄

l are time-ordered and anti-time-ordered Green’s functions. The retarded Green’s function is defined as

gr
l (t1,t2) = −i�(t1 − t2)〈{al(t1),a†

l (t2)}〉, (A5)

and the advanced Green’s function is ga
l (t1,t2) = [gr

l (t2,t1)]∗. In a similar manner, counting-field-dependent Green’s functions
are defined on the contour as

g̃r (τ1,τ2) = −i 〈Tcãr (τ1)ã†
r (τ2)〉, (A6)

where we employ the short notation ãr (τ ) ≡ e−i[λp(τ )+εrλe(τ )]ar (τ ). In real time, we obtain the lesser and greater components

g̃<
r (t1−t2) = i〈ã†

r (t2)ãr (t1)〉 = i fR(εr )eiεr (t2−t1)ei(λp+εrλe),

g̃>
r (t1−t2) = −i〈ãr (t1)ã†

r (t2)〉 = −i [1 − fR(εr )]eiεr (t2−t1) e−i(λp+εrλe). (A7)

In frequency domain, they are given by

g̃<
r (ω) = 2πifR(εr )δ(ω − εr )ei(λp+εrλe),

(A8)
g̃>

r (ω) = −2πi[1 − fR(εr )]δ(ω − εr )e−i(λp+εrλe).

Note that relations such as in Eq. (A4) do not hold for counting-field-dependent Green’s functions.

2. Electron-hole Green’s function

In the main text we have defined the electron-hole propagator in Keldysh space [Eq. (43)]. In real time we receive the four
different components as

F t (t1,t2) = −ig2
∑
l,r

|γl|2|γr |2
[
gt

l (t1 − t2) gt
r (t2 − t1) + gt

l (t2 − t1) gt
r (t1 − t2)

]
,

F t̄ (t1,t2) = −ig2
∑
l,r

|γl|2|γr |2
[
gt̄

l (t1 − t2) gt̄
r (t2 − t1) + gt̄

l (t2 − t1) gt̄
r (t1 − t2)

]
,

(A9)
F̃ <(t1,t2) = −ig2

∑
l,r

|γl|2|γr |2[g<
l (t1 − t2) g̃>

r (t2 − t1) + g>
l (t2 − t1) g̃<

r (t1 − t2)],

F̃ >(t1,t2) = −ig2
∑
l,r

|γl|2|γr |2[g>
l (t1 − t2) g̃<

r (t2 − t1) + g<
l (t2 − t1) g̃>

r (t1 − t2)].

In frequency domain assuming time-translational invariance for the propagator in the steady-state limit, these components can
be written as

F t (ω) = −ig2
∑
l,r

|γl|2|γr |2
∫ ∞

−∞

dω′

2π

[
gt

l (ω+) gt
r (ω−) + gt

l (ω−) gt
r (ω+)

]
,

F t̄ (ω) = −ig2
∑
l,r

|γl|2|γr |2
∫ ∞

−∞

dω′

2π

[
gt̄

l (ω+) gt̄
r (ω−) + gt̄

l (ω−) gt̄
r (ω+)

]
,
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F̃ <(ω) = −ig2
∑
l,r

|γl|2|γr |2
∫ ∞

−∞

dω′

2π
[g<

l (ω+) g̃>
r (ω−) + g>

l (ω−) g̃<
r (ω+)],

F̃ >(ω) = −ig2
∑
l,r

|γl|2|γr |2
∫ ∞

−∞

dω′

2π
[g>

l (ω+) g̃<
r (ω−) + g<

l (ω−) g̃>
r (ω+)], (A10)

where ω± = ω′ ± ω
2 . Using the relations between the Green’s functions [Eq. (A4)] and the expressions for the free Green’s

functions [Eq. (A8)], we obtain the lesser and greater components for the propagator

F̃ <(ω) = −i2πg2

[∑
l,r

|γl|2|γr |2fL(εl)[1 − fR(εr )]e−i(λp+εrλe)δ(εl − εr − ω)

+
∑
l,r

|γl|2|γr |2fR(εr )[1 − fL(εl)]e
i(λp+εrλe)δ(εl − εr + ω)

]
, (A11)

and F̃ >(ω) = F̃ <(−ω). Note that at the phonon frequency ω0 the lesser and greater components of F̃ are related to the excitation
and relaxation rates, defined in the QME approach, as F̃ <(ω0) = −i kλ

u and F̃ >(ω0) = −i kλ
d .

The sum of t and t̄ components can be simplified following the relations (A4), and using the identity
∫ ∞

∞ dω′gr,a(ω+)gr,a(ω−) =
0, to reach

F t (ω) + F t̄ (ω) = −ig2
∑
l,r

|γl|2|γr |2
∫ ∞

−∞

dω′

2π
[g<

l (ω+) g>
r (ω−) + g>

l (ω−) g<
r (ω+) + g>

l (ω+) g<
r (ω−) + g<

l (ω−) g>
r (ω+)]

= F>(ω) + F<(ω). (A12)

We further obtain

F t (ω) − F t̄ (ω) = 2 Re[F r (ω)], (A13)

where

F r (ω) = −ig2
∑
l,r

|γl|2|γr |2
∫

dω′

2π

{
Re

[
gr

l (ω+)
]
g<

r (ω−) + Re
[
gr

r (ω−)
]
g<

l (ω+)
} + l ↔ r. (A14)

APPENDIX B: GENERATING FUNCTION IN THE PRESENCE OF A PHONON BATH

The CGFs derived for the DA-AH and DA-HO models can be extended to describe the case with a vibrational mode linearly
coupled to a dissipative phonon bath. Assuming this coupling to be weak, it can be shown that the formal expressions for the
CGFs [Eqs. (33) and (53)] remain the same except that the excitation and relaxation rates are modified, given now by the sum of
electronic baths and phononic-bath induced contributions

kλ
u = kλ,el

u + kph
u ,

kλ
d = k

λ,el
d + k

ph
d (B1)

with

kph
u = �ph(ω0)nph(ω0),

(B2)
k

ph
d = �ph(ω0)[1 + nph(ω0)].

k
λ,el
u,d are the rates defined in the main text, induced by the metal leads. Here, �ph(ω0) is the coupling energy of the particular

mode ω0 to the phonon bath and nph(ω) = [exp(βphω) − 1]−1 is the Bose-Einstein distribution function at temperature 1/βph.
Note that in the presence of the additional phonon bath, the fluctuation symmetry as written in Eq. (34) is not satisfied. To restore
the symmetry, one should “count” as well the energy dissipated into the phonon bath.

For completeness, we include the expressions for the charge current and its noise in the dissipative harmonic mode model,
generalizing Eqs. (54) and (55):

〈
IHO
p

〉 =
(
kel
u

)′
kd + (

kel
d

)′
ku

kd − ku

, (B3)

with the short notation (kel
u )′ ≡ [kel

u ]R→L − [kel
u ]L→R and (kel

d )′ ≡ [kel
d ]R→L − [kel

d ]L→R . The charge current noise is

〈
SHO

p

〉 = 2

〈
IHO
p

〉2
kd − ku

+ kel
u kd + kel

d ku + 2
(
kel
u

)′(
kel
d

)′

kd − ku

. (B4)
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The second term clearly indicates that the noise includes terms mixing the effects of the three reservoirs. These expressions were
used to simulate Figs. 5 and 7, taking �ph as a constant.
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