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Cold spots in quantum systems far from equilibrium:
Local entropies and temperatures near absolute zero
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We consider a question motivated by the third law of thermodynamics: Can there be a local temperature
arbitrarily close to absolute zero in a nonequilibrium quantum system? We consider nanoscale quantum conductors
with the source reservoir held at finite temperature and the drain held at or near absolute zero, a problem outside
the scope of linear response theory. We obtain local temperatures close to absolute zero when electrons originating
from the finite temperature reservoir undergo destructive quantum interference. The local temperature is computed
by numerically solving a nonlinear system of equations describing equilibration of a scanning thermoelectric
probe with the system, and we obtain excellent agreement with analytic results derived using the Sommerfeld
expansion. A local entropy for a nonequilibrium quantum system is introduced and used as a metric quantifying
the departure from local equilibrium. It is shown that the local entropy of the system tends to zero when the probe
temperature tends to zero, consistent with the third law of thermodynamics.
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I. INTRODUCTION

The local temperature of a quantum system out of equilib-
rium is a concept of fundamental interest in nonequilibrium
thermodynamics. Local temperature reveals information about
the local energy distribution and, if it can be correlated
with a concept of local entropy, can provide the framework
for constructing a local thermodynamics of nonequilibrium
quantum systems.

Out of equilibrium, the temperatures of different degrees
of freedom generally do not coincide, so that one must
distinguish between measures of lattice temperature [1–3],
photon temperature [4–6], and electron temperature [7–16].
The scanning thermal microscope (SThM) [17] couples to
all these degrees of freedom and thus measures some linear
combination of their temperatures [15] in the linear response
regime. Recent advances in thermal microscopy [18–21] have
dramatically increased the spatial and thermal resolution of
SThM, pushing it close to the quantum regime.

In this paper, we focus on the local electron temperature
Tp as defined by a floating thermoelectric probe [13–16]. The
probe, consisting of a macroscopic reservoir of electrons, is
coupled locally and weakly via tunneling to the system of
interest and allowed to exchange charge and heat with the sys-
tem until it reaches equilibrium, thus defining a simultaneous
temperature and voltage measurement. Several variations on
this measurement scenario have also been discussed in the
literature [7–12].

The above definition of Tp is operational: Temperature is
that which is measured by a suitably defined thermometer.
Nonetheless, it has been shown that this definition of Tp is
consistent with the laws of thermodynamics under certain
specified conditions [14,16]. In the present paper, we show
that Tp is consistent with the third law of thermodynamics. In
particular, we introduce a definition of the local entropy Ss

of a nonequilibrium quantum system and show that Ss → 0
as Tp → 0. Ss is always less than or equal to that of a
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corresponding local equilibrium distribution, consistent with
the second law of thermodynamics. Moreover, we show that
values of Tp arbitrarily close to absolute zero can exist in
quantum systems under thermal bias. Ss is also used to
quantify the departure from local equilibrium beyond the linear
response regime.

The paper is organized as follows: The nonequilibrium
Green’s function (NEGF) formalism needed to describe the
local properties of a nonequilibrium quantum system and its
interaction with a scanning thermoelectric probe is introduced
in Sec. II. The local entropy of a nonequilibrium quantum
system is defined in Sec. II B, along with a normalization that
takes into account spatial variations in the local density of
states. Analytical results for the minimum local temperatures
in quantum systems under thermal bias are derived in Sec. III.
The local temperature and entropy distributions in several
π -conjugated molecular junctions under thermal bias are
computed in Sec. IV. Our conclusions are summarized in
Sec. V, while some useful details of the formalism and
modeling are provided in Appendices A–C.

II. FORMALISM

We consider a temperature/voltage probe coupled locally
(e.g., via tunneling) to a nonequilibrium quantum system. The
probe is also connected to an external macroscopic reservoir
of noninteracting electrons held at a fixed temperature Tp and
chemical potential μp. We use the NEGF formalism to write
the electron number current and heat current flowing into the
probe as

I (ν)
p = −i

h

∫ ∞

−∞
dω(ω − μp)ν

× Tr{�p(ω)(G<(ω) + fp(ω)[Gr (ω) − Ga(ω)])}, (1)

where ν = 0 refers to the electron number current [22], and
ν = 1 gives the electronic contribution to the heat current [23].
Gr (ω) and Ga(ω) are the Fourier transforms of the retarded and
advanced Green’s functions, respectively, describing propaga-
tion of electronic excitations within the system, and G<(ω) is
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the Fourier transform of the Keldysh “lesser” Green’s function
describing the nonequilibrium population of the electronic
spectrum of the system. �p(ω) is the tunneling-width matrix
describing the coupling of the probe to the system, and
fp(ω) = 1/(1 + exp (ω−μp

kBTp
)) is the equilibrium Fermi-Dirac

distribution of the probe. Equation (1) is a general result
valid for any interacting nanostructure under steady-state
conditions.

A. Local temperature and voltage measurements

A definition for a local electron temperature and voltage
measurement on the system that takes into account the
thermoelectric corrections was proposed in Ref. [13] by noting
that the temperature Tp and chemical potential μp should
be simultaneously defined by the requirement that both the
electric current and the electronic heat current into the probe
vanish:

I (ν)
p = 0, ν ∈ {0,1}. (2)

Equation (2) gives the conditions under which the probe is in
local equilibrium with the sample, which is itself arbitrarily
far from equilibrium.

Previous analyses [13–15,24] have considered this problem
within linear response theory, which reduces the system of
nonlinear equations (2) to a system of equations linear in Tp

and μp. In this paper, we consider a problem that is essentially
outside the linear response regime and solve the nonlinear
system of equations (2) numerically.

It was shown in Ref. [16] that Eq. (1) can be written in
terms of the local properties of the nonequilibrium system.
The mean local spectrum sampled by the probe was defined as

Ā(ω; x) ≡ Tr{�p(ω; x)A(ω)}
Tr{�p(ω; x)} , (3)

where x is the position of the probe and A(ω) = i(Gr (ω) −
Ga(ω))/2π is the spectral function of the nonequilibrium
system. Motivated by the relation at equilibrium, G<

eq(ω) =
2πiA(ω)feq(ω), the local nonequilibrium distribution function
(sampled by the probe) was defined as

fs(ω; x) ≡ Tr{�p(ω; x)G<(ω)}
2πi Tr{�p(ω; x)A(ω)} . (4)

The mean local occupancy of the system orbitals sampled by
the probe is [16]

〈N (x)〉 =
∫ ∞

−∞
dωĀ(ω)fs(ω), (5)

and similarly, the mean local energy of the system orbitals
sampled by the probe is [16]

〈E(x)〉 =
∫ ∞

−∞
dωωĀ(ω)fs(ω). (6)

Equations (3)–(4) allow us to rewrite Eq. (1) in a form
analogous to the two-terminal Landauer-Büttiker formula

I (ν)
p = 1

h

∫ ∞

−∞
dω(ω − μp)ν

× 2π Tr{�p(ω)A(ω)}[fs(ω) − fp(ω)]. (7)

It was noted that, for the case of maximum local coupling
[�p(ω)]ij = �p(ω)δinδjn, where i,j , and n label states in the
one-particle Hilbert space of the nanostructure, the quantities
Ā(ω) = Ann(ω) and fs(ω) become independent of the probe
coupling and can be related by the familiar equilibrium-type
formula G<

nn(ω) = 2πiAnn(ω)fs(ω) even though the system
is out of equilibrium.

In the broad-band limit �p(ω) ≈ �p(μ0), where μ0 is
the equilibrium Fermi energy of the system, we may write
Tr {�p(μ0)} = �̄p so that Ā(ω) = Tr {�p(μ0)A(ω)}/�̄p. From
Eq. (7), we have

I (ν)
p = �̄p

�

∫ ∞

−∞
dω(ω − μp)νĀ(ω)[fs(ω) − fp(ω)]. (8)

It was noted that the equilibrium condition of Eq. (2) now
implies that the mean local occupancy and energy of the
nonequilibrium system are the same as if its nonequilibrium
spectrum Ā(ω) were populated by the equilibrium Fermi-Dirac
distribution of the probe fp(ω):

〈N〉|fp
= 〈N〉|fs

(9)

〈E〉|fp
= 〈E〉|fs

, (10)

i.e., the probe equilibrates with the system in such a way that
fp(ω) satisfies the constraints imposed by Eqs. (9) and (10). A
local temperature (and voltage) measurement therefore reveals
information about the local energy and charge distribution of
the system.

B. Local entropy

The von Neumann entropy [25] for a system of noninteract-
ing fermions can be expressed in terms of the single-particle
occupation probabilities pi as

S = −
∑

i

[pi ln pi + (1 − pi) ln (1 − pi)], (11)

which can be extended to the case of a continuous spectrum
by simply replacing the summation by an integral over the
density of states. We propose a natural extension for the “local
entropy” Ss of the nonequilibrium system, within an effective
one-body description, with the local density of states (sampled
by the probe) given by Ā(ω) and the occupation probabilities
given by the local nonequilibrium distribution of the system
fs :

Ss(x) ≡ S[fs(ω)]

= −
∫ ∞

−∞
dωĀ(ω)[fs(ω) ln fs(ω)

+ (1 − fs(ω)) ln (1 − fs(ω))]. (12)

Within elastic transport theory, it can be shown that 0 � fs � 1
(Appendix A), and therefore Ss in Eq. (12) is real and positive.
Ss also correctly reproduces two known limiting cases for
the entropy of a system of independent fermions: (i) in
equilibrium, Ss gives the correct entropy of the subsystem
sampled by the probe; (ii) Ss gives the correct nonequilibrium
entropy for an entire system of fermions [26]. However,
we note that the entropies (12) of the various subsystems
of a quantum system are not additive out of equilibrium.
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The definition of local nonequilibrium entropy given by
Eq. (12) differs from that proposed in Ref. [27]. In particular,
unlike Eq. (12), the definition proposed in Ref. [27] does
not reduce to the known equilibrium result when the system
is in equilibrium. Moreover, the fundamental quantities in
the theory of Ref. [27] “cannot be expressed in terms of
expectation values of operators,” while the quantities in our
theory clearly are so expressed [cf. Eqs. (3) and (4)].

We also define the local entropy of the corresponding local
equilibrium state of the system if its local spectrum were
populated by the probe’s equilibrium distribution function fp:

Sp(x) ≡ S[fp(ω)] = −
∫ ∞

−∞
dωĀ(ω)[fp(ω) ln fp(ω)

+ (1 − fp(ω)) ln (1 − fp(ω))]. (13)

For sufficiently low probe temperatures,

Sp(x) 	 π2

3
Ā(μ0,x)kBTp(x), (14)

the leading order term in a Sommerfeld expansion of Eq. (13).
The maximum entropy principle implies Sp � Ss , since the
Fermi-Dirac distribution f (ω) = fp(ω) maximizes the local
entropy S[f (ω)] subject to the constraints imposed by Eqs. (9)
and (10). Clearly, Sp → 0 as Tp → 0, which implies Ss → 0
as Tp → 0 (third law of thermodynamics).

We propose the local entropy deficit �S = Sp − Ss as a
suitable metric quantifying the departure from local equilib-
rium. However, it is important to note that the mean local
spectrum Ā(ω) varies significantly from point to point within
the nanostructure depending upon the local probe-system
coupling (especially in the tunneling regime) and limits the use
of �S while comparing the “distance” from equilibrium for
points within the nanostructure. The situation is analogous to
that of a dilute gas, which can have a very low entropy per unit
volume even if it has a very high entropy per particle. We note
that states far from the equilibrium Fermi energy μp contribute
negligibly to the entropy since limf →0 S[f ] = limf →1 S[f ] =
0 and therefore introduce a normalization averaged over the
thermal window of the probe:

N =
∫ ∞

−∞
dω

Ā(ω)

Tr{A(ω)}
(−∂fp

∂ω

)
. (15)

We define the local entropy-per-state of the system ss and that
of the corresponding local equilibrium distribution sp as

ss = Ss

N , (16)

sp = Sp

N . (17)

�s = sp − ss quantifies the per-state “distance” from local
equilibrium. We present numerical calculations of the local
entropy per state in Sec. IV and discuss its implications.

III. LOCAL TEMPERATURES NEAR ABSOLUTE ZERO

Using arguments involving NEGF identities (see, e.g.,
Ref. [28]), one can show that the total current into the probe is
the sum of an elastic contribution and an inelastic contribution:

I (ν)
p = I (ν)

p

∣∣
el + I (ν)

p

∣∣
in. (18)

The elastic contribution to the current is [29,30]

I (ν)
p

∣∣
el = 1

h

∑
α

∫ ∞

−∞
dω (ω − μp)ν Tpα(ω)[fα(ω) − fp(ω)],

(19)

where the elastic transmission function is given by [31–33]

Tpα(ω) = Tr{�p(ω)Gr (ω)�α(ω)Ga(ω)}. (20)

The inelastic contribution to the current is

I (ν)
p

∣∣
in = − i

h

∫ ∞

−∞
dω(ω − μp)ν

× Tr{�pGr [(1 − fp)
<
in + fp 
>

in ]Ga}, (21)

where 
in is the self-energy due to electron-electron and
electron-phonon interactions.

Our analyses in this paper consider a quantum conductor
that is placed in contact with two electron reservoirs: a cold
reservoir R1 and a hot reservoir R2. We are interested in
the limiting case where reservoir R1 is held near absolute
zero (T1 → 0), while R2 is held at finite temperature
(T2 = 100 K in our simulations). We assume no electrical
bias (μ1 = μ2 = μ0).

Transport in this regime occurs within a narrow thermal
window close to the Fermi energy of the reservoirs and will
thus be dominated by elastic processes, so that the contribution
to the probe current from Eq. (21) can be neglected. Typically,

I (ν)
p

∣∣
in

/
I (ν)
p

∣∣
el ∼ O(kBT /�E)2 (22)

due to the suppression of inelastic electron scattering by the
Pauli exclusion principle at low temperatures, where �E is a
characteristic electronic energy scale of the problem: �E =
εF for bulk systems, and �E = max{�,εF − εres} in the
resonant tunneling regime. It should be noted that, although the
transport energy window is small, this problem is essentially
outside the scope of linear response theory owing to the large
discrepancies in the derivatives of the Fermi functions of the
two reservoirs. Therefore, the problem has to be addressed
with the full numerical evaluation of the currents given by
Eq. (19).

A pure thermal bias, such as the one considered in this
paper, has been shown to lead to temperature oscillations in
small molecular junctions [13] and 1D conductors [8,34]. Tem-
perature oscillations have been predicted in quantum coherent
conductors such as graphene [15], which allow the oscillations
to be tuned (e.g., by suitable gating) such that they can
be resolved under existing experimental techniques [18–21]
of SThM. More generally, quantum coherent temperature
oscillations can be obtained for quantum systems driven out of
equilibrium due to external fields [11,35] as well as chemical
potential [24] and temperature bias of the reservoirs. In
practice, the thermal coupling of the probe to the environment
sets limitations on the resolution of a scanning thermoelectric
probe [13]. However, in this paper, we ignore the coupling
of the probe to the ambient environment in order to highlight
the theoretical limitations on temperature measurements near
absolute zero.

In evaluating the expressions for the currents in Eq. (19)
within elastic transport theory, we encounter integrals of the
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form
∫ ∞
−∞dωF (ω)(f2(ω) − f1(ω)). We use the Sommerfeld

series given by∫ ∞

−∞
dωF (ω)(f2(ω) − f1(ω))

=
∫ μ2

μ1

dωF (ω) + 2
∑

k

�(k + 1)[(kBT2)k+1F (k)(μ2)

− (kBT1)k+1F (k)(μ1)], k ∈ {1,3,5, . . .}, (23)

where we use the symbol � that relates to the Riemann-Zeta
function as �(k + 1) = (1 − 1

2k )ζ (k + 1), and fα(ω) is the
Fermi-Dirac distribution of reservoir α. The second term on
the right-hand side of Eq. (23) accounts for the exponential
tails in (f2(ω) − f1(ω)), and its contribution depends on the
changes to the function F (ω) in the neighborhoods of ω = μ1

and ω = μ2 and can generally be truncated using a Taylor
series expansion for most well-behaved functions F (ω). The
left-hand side of Eq. (23) is bounded if F (ω) grows slower
than exponentially for ω → ±∞ and is satisfied by the current
integrals in Eq. (19).

A. Constant transmissions

In order to make progress analytically, we consider first the
case of constant transmissions:

Tpα(ω) = Tpα(μ0) ≡ Tpα. (24)

This is a reasonable assumption because the energy window
involved in transport is of the order of the thermal energy of
the hot reservoir (kBT2 ≈ 25 meV, at room temperature), and
we may expect no great changes to the transmission function.
In this case the series (23) for the number current contains
no temperature terms at all, while the heat current contains
terms quadratic in the temperature. It is easy to see that the
expression for the number current into the probe becomes

I (0)
p = 1

h

∑
α

Tpα(μα − μp), (25)

and the heat current into the probe is given by

I (1)
p = 1

h

∑
α

(
Tpα

(μα − μp)2

2
+ π2k2

B

6
Tpα

(
T 2

α − T 2
p

))
. (26)

Equation (25) does not depend on the temperature and can be
solved readily:

μp = μ0, (27)

since μ1 = μ2 = μ0, and Eq. (26) is solved by

Tp =
√
Tp1T

2
1 + Tp2T

2
2

Tp1 + Tp2
. (28)

In this paper, we are primarily interested in temperature
measurements near absolute zero and work in the limit T1 → 0,
which yields

Tp =
√

Tp2

Tp1 + Tp2
T2. (29)

We have Tp → 0 as Tp2 → 0. Indeed, when the system is
decoupled from the hot reservoir R2, the probe would read the
temperature of reservoir R1.

B. Transmission node

The analysis of the previous section suggests that a
suppression in the transmission from the finite-temperature
reservoir R2 results in probe temperatures in the vicinity of
absolute zero. In quantum coherent conductors, destructive
interference gives rise to nodes in the transmission function.
In this section, we consider a case where the transmission from
R2 into the probe has a node at the Fermi energy. In the vicinity
of such a node, generically, the transmission probability varies
quadratically with energy:

Tp2(ω) = 1
2T

(2)
p2 (ω − μ0)2, (30)

while the transmission from the cold reservoir R1 may still be
treated as a constant:

Tp1(ω) = Tp1. (31)

Applying the Sommerfeld series (23) for the number current
gives us

I (0)
p = 1

h

(
Tp1(μ0 − μp) − T (2)

p2

6
(μp − μ0)3

+ π2

6
T (2)

p2 (μ0 − μp)k2
BT 2

p

)
, (32)

where the kBT2 term is still missing since the first derivative
of Tp2(ω) vanishes at μ2 = μ0. We note that Eq. (32) admits
a single real root at

μp = μ0. (33)

With this solution, we can write down the equation for the heat
current as

I (1)
p = 1

h

(
π2k2

B

6
Tp1

(
T 2

1 − T 2
p

) + 7

8

π4k4
B

15
T (2)

p2

(
T 4

2 − T 4
p

))
,

(34)

which gives us a simple quadratic equation in T 2
p . We note

that the above equation is monotonically decreasing in Tp

for all positive values of temperature. There exists a unique
solution to Eq. (34) in the interval T1 < Tp < T2, since I (1)

p (Tp)
undergoes a sign change between these two values and is also
the only positive solution due to monotonicity. Physically,
this solution is reasonable since we expect a temperature
measurement to be within the interval (T1,T2) in the absence of
an electrical bias. It is straightforward to write down the exact
solution to Eq. (34) (see Appendix C). However, we simplify
the expression for Tp by noting that

T (2)
p2 (kBT2)2 � Tp1, (35)

that is, the transmission into the probe from R2 within a
thermal energy window kBT2 in the presence of a node is small
in comparison to the transmission from R1. The approximate
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solution for Tp then becomes

Tp =

√√√√7π2

20

T (2)
p2 (kBT2)2

Tp1
T2, (36)

where, as before, we have taken the limiting case where
T1 → 0.

C. Higher-order destructive interferences

Although a generic node obtained in quantum coherent
transport depends quadratically on the energy, it is possible to
obtain higher-order “supernodes” in some systems [33]. In the
vicinity of such a supernode, the transmission function can be
written as

Tp2(ω) = 1

2n!
T (2n)

p2

∣∣
ω=μ0

(ω − μ0)2n, (37)

while the transmission from R1 may still be approximated
by Eq. (31). Exact expressions for the currents can again
be evaluated using Eq. (23). The expression for the number
current becomes

I (0)
p = 1

h

(
Tp1(μ0 − μp) − T (2n)

p2

(2n + 1)!
(μp − μ0)2n+1

+ 2
∑

k∈odd

�(k + 1)
[
(kBT2)k+1T (k)

p2 (μ0)

− (kBTp)k+1T (k)
p2 (μp)

])
, (38)

and we have

T (k)
p2 (μ0) = 0, ∀k ∈ {1,3,5, . . .}. (39)

Now, with

μp = μ0, (40)

every term on the right-hand side of Eq. (38) vanishes. With
this solution for μp, we proceed to write the equation for the
heat current. Using Eq. (23) with F (ω) = (ω − μ0)Tpα(ω),
we obtain only one nonvanishing derivative for each reservoir,
that is, F (1)(μ0) = Tp1(μ0) for R1 and F (2n+1)(μ0) = (2n +
1)T (2n)

p2 for R2. Therefore,

I (1)
p = 2

h

(
�(2)Tp1[(kBT1)2 − (kBTp)2] + (2n + 1)

� (2n + 2)T (2n)
p2 [(kBT2)2n+2 − (kBTp)2n+2]

)
, (41)

which is a polynomial equation in Tp of degree (2n + 2). We
can rewrite Eq. (41) as a polynomial p(x) in x = Tp/T2:

p(x) = x2 + λnx
2n+2 − λn = 0, (42)

where we have taken T1 → 0 for R1, and λn is a dimensionless
quantity given by

λn = (2n + 1)
�(2n + 2)

�(2)

(T (2n)
p2 (kBT2)2n

Tp1

)
. (43)

We will have λn � 1 for a suitable energy window set by
kBT2, since the transmission into the probe from R2 suffers

destructive interference at the Fermi energy (μ0). If the thermal
energy is large enough, then this approximation may no longer
hold. In any case, it is possible to define a temperature T2 so
that this approximation is strongly valid. Under the validity
of this approximation, the solution to Eq. (42) can be written
using perturbation theory as

x =
√

λn

(
1 + O

(
λn+1

n

))
, (44)

with corrections that are of much higher order in λn. The
solution for Tp given in Eq. (44) reduces to Eq. (29) for
the case with constant transmissions by setting n = 0 and to
the approximate result obtained in Eq. (36) in the presence of a
node by setting n = 1. We note that higher-order interference
effects cause the probe temperature to decay more rapidly with
respect to T2 since Tp ∼ T n+1

2 , that is, when T2 is halved, Tp is
reduced by a factor of 2n+1. Now, if we consider the limiting
case where R2 is also cooled to absolute zero, T2 → 0, Eq. (44)
implies that Tp → 0 at least as quickly as T2 (in the absence
of destructive interference, i.e., n = 0) or quicker (when there
is destructive interference, i.e., n � 1).

It should be noted that the polynomial given in Eq. (42) is
monotonically increasing for all positive x, and furthermore,
there is only one positive root since p(0) < 0 and p(1) > 0.
Stated in terms of Tp, this implies the existence of a unique
solution for the measured temperature Tp in the interval
T1 < Tp < T2, as noted in the previous subsection [T1 has been
set to zero in Eq. (42)]. The sign of p(x) essentially tells us
the direction of heat flow for a temperature bias of the probe
with respect to its equilibrium value. p(x) < 0 (p(x) > 0)
corresponds to heat flowing into (out of) the probe, since
we changed the sign in rearranging Eqs. (41) to (42). The
monotonicity of p(x) is therefore equivalent to the Clausius
statement of the second law of thermodynamics and also
ensures the uniqueness of the temperature measurement.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the above theoretical results and
further characterize the local properties of the nonequilibrium
steady state, we now present numerical calculations for
several molecular junctions with π conjugation. In all of the
simulations, the molecule is connected to a cold reservoir R1
at T1 = 0 K and a hot reservoir R2 at T2 = 100 K. There is
no electrical bias; both electrodes have chemical potential μ0.
The temperature probe is modeled as an atomically-sharp Au
tip scanned horizontally at a constant vertical height of 3.5 Å
above the plane of the carbon nuclei in the molecule (tunneling
regime).

The molecular Hamiltonian is described within Hückel
theory, Hmol = ∑

〈i,j〉 tij d
†
i dj + H.c., with nearest-neighbor

hopping matrix element t = −2.7 eV. The coupling of the
molecule with the reservoirs is described by the tunneling-
width matrices �α . The retarded Green’s function of the
junction is given by Gr (ω) = [Sω − Hmol − 
T (ω)]−1, where

T = −i

∑
α �α/2 is the tunneling self-energy. We take

the lead-molecule couplings in the broad-band limit, i.e.,
�α

nm(ω) = �α
nm(μ0), where μ0 is the Fermi energy of the

metal leads. We also take the lead-molecule couplings to be
diagonal matrices �α

nm(ω) = �αδnlδml coupled to a single π

orbital l of the molecule. S is the overlap matrix between
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FIG. 1. (Color online) Upper panels: Local temperature distributions for Au-benzene-Au junctions in meta- and paraconfigurations,
respectively. The thermal bias is supplied by cold (T1 = 0 K) and hot (T2 = 100 K) reservoirs covalently bonded to the atoms indicated
by the blue and red squares, respectively, and there is no electrical bias. The probe is scanned at a height of 3.5 Å above the plane of the
carbon nuclei in the molecule. The green dots shown in the temperature distributions correspond to the coldest temperature found in each of the
junction configurations. Bottom panels: Transmission probabilities into the probe from R1 (cold, i.e., blue curve) and R2 (hot, i.e., red curve)
when the probe is positioned over the coldest spot (shown by the corresponding green dot in the upper panel). The existence of a transmission
node in the metaconfiguration leads to a greatly suppressed probe temperature (see Table I for comparison). Note the very different vertical
scales in the bottom panels.

the atomic orbitals on different sites, and we take S = I,
i.e., an orthonormal set of atomic orbitals. The lead-molecule
couplings are taken to be symmetric, with �1 = �2 = 0.5 eV.
The nonzero elements of the system-reservoir couplings for
R1 (cold) and R2 (hot) are indicated with a blue and red
square, respectively, corresponding to the carbon atoms in the
molecule covalently bonded to the reservoirs. The tunneling-
width matrix �p describing probe-sample coupling is also
treated in the broad-band limit (see Appendix B for details
of the modeling of probe-system coupling). The probe is in
the tunneling regime, and the probe-system coupling is weak
(few meV) in comparison to the system-reservoir couplings
(�1 = �2 = 0.5 eV). It must be emphasized that, although we
take a noninteracting Hamiltonian for the isolated molecule,
our results depend only upon the existence of transmission
nodes in the elastic transport regime, which are a characteristic

feature of coherent quantum transport and do not depend on
the particular form of the junction Hamiltonian.

A. Local temperatures

We considered several different molecules and electrode
configurations, with and without transmission nodes, and
searched for the coldest spot in each system (indicated by
a green dot in the figures) as measured by the scanning
thermoelectric probe. The local temperature Tp(x) depends on
the transmissions from the reservoirs into the probe [Eq. (20)],
determined by the local probe-system coupling �p(x) (see
Appendix B) and is thus a function of probe position. The
coldest spot was found using a particle swarm optimization
technique that minimizes the ratio of the transmissions to the
probe (within a thermal window) from the hot reservoir R2
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TABLE I. The table shows the lowest temperatures found in
the different junctions considered. All junctions have the same
bias conditions: T1 = 0 K, T2 = 100 K, and no electrical bias.
The rightmost column shows the equation used to compute the
temperature analytically. We obtain excellent agreement between the
numerical and analytic results. The paraconfiguration of the benzene
junction does not display a node in the probe transmission spectrum,
and therefore the minimum probe temperature is not strongyly
suppressed.

Tp(K) Tp(K)
Junction Numerical Analytic Eq.

benzene (meta) 0.154 0.1526 (36)
benzene (para) 4.624 4.627 (29)
pyrene 0.0821 0.0817 (36)
coronene 0.0349 0.0355 (36)

to that of the cold reservoir R1, within a search space that
spans the z plane at 3.5 Å and is restricted in the xy direction
within 1 Å from the edge of the molecule [36]. The numerical
solution to Eq. (2) was found using Newton’s method. While
the algorithm was found to converge rapidly for most points
(less than 15 iterations), it is still computationally intensive
since the evaluation of the currents given by Eq. (19) must
have sufficient numerical accuracy. We also note that the
minimum probe temperature obtained for each junction does
not depend strongly on the distance between the plane of the
scanning probe and that of the molecule. This is explained
as follows: The probe temperature must depend upon the
relative magnitudes of the transmissions into the probe from
the two reservoirs and not their actual values. Therefore,
the temperature remains roughly independent of the coupling
strength Tr {�p}. It has also been previously noted in Ref. [14]
that the local temperature measurement showed little change
with the coupling strength even when varied over several orders
of magnitude. The restrictions placed on our search space
within the optimization algorithm are therefore well justified.

Figure 1 shows the temperature distribution for two con-
figurations of Au-benzene-Au junctions with the chemical
potentials of the metal leads at the middle of the HOMO-
LUMO gap. The mid-gap region is advantageous, since (i) the
molecule is charge neutral when the lead chemical potentials
are tuned to the mid-gap energy, and (ii) the mismatch between
the metal leads’ Fermi energy and the mid-gap energy is
typically small (less than 1–2 eV for most metal-molecule
junctions), and available gating techniques [37] would be
sufficient to tune across the gap. In both junctions, the
region of lowest temperature passes through the two sites
in metaorientation relative to the hot electrode, because the
transmission probability from the hot electrode into the probe
is minimum when it is at these locations [13]. The metajunction
exhibits much lower minimum temperature measurements
since there is a transmission node from the hot reservoir
R2 at the mid-gap energy, but such nodes are absent in the
parajunction. Table I shows the coldest temperature found in
each of the junctions presented here.

We only present two junction geometries for benzene
here to illustrate that the existence of a node in the probe
transmission spectrum, at the mid-gap energy, depends upon
the junction geometry. The nodes are also absent in the ortho-
configuration of benzene, and the lowest temperature found in
this case is similar to that found in the paraconfiguration.

Figure 2 shows the temperature distribution in a gated
Au-pyrene-Au junction and the transmissions into the probe
from the two reservoirs at the coldest spot. In general, nodes in
the transmission spectrum occur only in a few of the possible
junction geometries. As in the benzene junctions, the coldest
regions in the pyrene junction pass through the sites to which
electron transfer from the hot electrode is blocked by the
rules of covalence [13] describing bonding in π -conjugated
systems. We note that the temperature distribution shown in
Fig. 2 differs significantly from that shown in Ref. [13] for four
important reasons: (i) the junction configuration in Fig. 2 is
asymmetric, while that considered in Ref. [13] was symmetric;
(ii) the thermal coupling κp0 of the temperature probe to the
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FIG. 2. (Color online) Left panel: Probe temperature distribution in a Au-pyrene-Au junction under the same conditions described in Fig. 1.
The green dot corresponds to the coldest temperature found by the search algorithm. Right panel: Transmissions into the probe from the hot
reservoir R2 (red) and the cold reservoir R1 (blue) at the coldest position, indicated by the green dot on the left. The probe transmission from
R2 exhibits a (mid-gap) node at the Fermi energy μ0 of the reservoirs, thereby suppressing the temperature measured by the probe.
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FIG. 3. (Color online) Upper panels: Probe temperature distributions for a Au-coronene-Au junction under the same conditions described
in Fig. 1. The numerically calculated temperature is on the left, and to the right is the analytically calculated temperature using Eq. (29).
Although it is in excellent qualitative agreement (and quantitative agreement for the most part), Eq. (29) poorly estimates the temperature for
the coldest spot (shown in green) due to the existence of a transmission node. Equation (36) gives the correct estimation in the presence of a
node, while Eq. (29) incorrectly predicts Tp = 0 K. The lower panel shows the probe transmissions from the two reservoirs (R1 with T1 = 0
K in blue and R2 with T2 = 100 K in red) corresponding to the probe positioned over the coldest spot (shown in green).

ambient environment has been set to zero in Fig. 2 to allow for
resolution of temperatures very close to absolute zero, while
the probe in Ref. [13] was taken to have κp0 = 10−4κp0, where
κp0 = (π2/3)(k2

BT /h) = 2.84 × 10−10 W/K at T = 300 K is
the thermal conductance quantum [38,39]; (iii) the transport
in Fig. 2 is assumed to take place at the mid-gap energy due to
appropriate gating of the junction, while Ref. [13] considered
a junction without gating; and (iv) Ref. [13] considered
temperature measurements only in the linear response regime,
while the thermal bias applied in Fig. 2 is essentially outside
the scope of linear response. Points (ii)–(iv) also differentiate
the results for benzene junctions shown in Fig. 1 from the
linear-response results of Ref. [13].

Figure 3 shows the temperature distribution in a gated
Au-coronene-Au junction exhibiting a node in the probe
transmission spectrum. The junction shown was one of
three such geometries to exhibit nodes (10 distinct junction

geometries were considered). Again, the coldest regions in the
junction pass through the sites to which electron transfer from
the hot electrode is blocked by the rules of covalence. The
coronene junction in Fig. 3 displays the lowest temperature
amongst all the different junctions considered, with a minimum
temperature of Tp = 35 mK. It should be noted that this
temperature would be suppressed by a factor of 100, i.e.,
Tp = 350 μK if R2 were held at 10 K due to the quadratic
scaling of Tp with respect to the temperature T2 [cf. Eq. (36)].
Higher-order nodes would produce even greater suppression.

B. Local entropies

The local temperature distributions shown in Figs. 1–3 are
essentially outside the scope of linear response theory [13]
since the cold reservoir R1 is held at T1 = 0 K, and derivatives
of the Fermi function are singular at T = 0. However, it is an
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FIG. 4. (Color online) Upper panels (left to right): The local entropy per state of the system ss , of the corresponding local equilibrium
distribution sp , and the local entropy deficit �s ≡ sp − ss . The temperature distribution for the same junction (with identical bias conditions
and sampling of probe positions) is shown in Fig. 2, and we note that it resembles almost exactly the distribution sp . Lower panels: The
distributions fs and fp for three points shown in the upper panels, each having different probe temperatures Tp = 0.15 K, 15.9 K, and 81.6 K,
respectively. The corresponding entropy deficits are �s = 0.11, 7.3, and 1.5, respectively, ×10−5. Point 2, although closer to 0 K than point 3
is to 100 K, is further from local equilibrium.

open question how far out of equilibrium these systems are
and which regions therein manifest the most fundamentally
nonequilibrium character. To address such questions quantita-
tively, we use the concept of local entropy per state introduced
in Sec. II B. In particular, the normalized local entropy deficit
�s ≡ sp − ss defined through Eqs. (12)–(17) allows us to
quantify how far the system is from local equilibrium.

Figure 4 shows the local entropy distribution of the system
ss and that of the corresponding local equilibrium distribution
sp, defined by Eqs. (16) and (17), respectively, for the
Au-pyrene-Au junction considered earlier in Fig. 2. The sp

distribution strongly resembles the temperature distribution
shown in Fig. 2, consistent with the fact [Eq. (14)] that the
equilibrium entropy of a system of fermions is proportional
to temperature at low temperatures. This resemblance is only
manifest in the properly-normalized entropy per state sp; the
spatial variations of Sp are much larger, and they stem from
the orders-of-magnitude variations of the local density of
states Ā(μ0). The nonequilibrium entropy distribution ss of the
system qualitatively resembles sp, but everywhere satisfies the
inequality ss � sp (see Sec. II B). ss → 0 whenever Tp → 0,
consistent with the third law of thermodynamics.

The deviation from local equilibrium is quantified by the
local entropy deficit �s = sp − ss shown in the top right panel
of Fig. 4. �s shows deep blue regions (low entropy deficit)

in both the hottest and coldest parts of the system, while
the largest entropy deficits (bright red) occur in the areas at
intermediate temperatures. This may be explained as follows:
Within elastic transport theory, the local nonequilibrium
distribution function is a linear combination of the distribution
functions of the various reservoirs (see Appendix A). The
entropy deficit is minimal when this distribution function
strongly resembles the equilibrium Fermi-Dirac distribution
of one of these reservoirs. Conversely, the entropy deficit is
maximal when there is a large admixture of both hot and cold
electrons without inelastic processes leading to equilibration.
Therefore, the hottest and coldest spots show the smallest
entropy deficits since there is very little mixing from the cold
reservoir R1 and hot reservoir R2, respectively, while the
regions at intermediate temperatures have the largest entropy
deficits and hence are farthest from local equilibrium.

However, it can be seen that the colder spots are more
strongly affected due to the mixing from the hot reservoir
R2, while the hotter spots are affected to a lesser extent
due to the mixing from the cold reservoir R1. This reflects
the fact that the distribution function fs deviates much more
from the distribution function f1(ω) with T1 → 0 (implying
a pure state with zero entropy), due to a small admixture
of hot electrons from R2, than is the case for the opposite
scenario. In other words, it is easier to increase the entropy
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deficit �s of a cold spot by adding hot electrons (and thus
driving it out of equilibrium) than it is the other way around.
The entropy deficit is a good metric to capture such a change
in the distribution function and gives us a per-state “distance”
from local equilibrium.

V. CONCLUSIONS

We investigated local electronic temperature distributions
in nanoscale quantum conductors with one of the reservoirs
held at finite temperature and the other held at or near
absolute zero, a problem essentially outside the scope of
linear response theory. The local temperature was defined as
that measured by a floating thermoelectric probe, Eq. (2). In
particular, we addressed a question motivated by the third
law of thermodynamics: Can there be a local temperature
arbitrarily close to absolute zero in a nonequilibrium quantum
system?

We obtained local temperatures close to absolute zero when
electrons originating from the finite temperature reservoir un-
dergo destructive quantum interference. The local temperature
was computed by numerically solving a nonlinear system of
equations [Eqs. (2) and (19)] describing equilibration of a
scanning thermoelectric probe with the system, and we obtain
excellent agreement with analytic results [Eqs. (29), (36),
and (44)] derived using the Sommerfeld expansion. Our
conclusion is that a local temperature equal to absolute zero is
impossible in a nonequilibrium quantum system, but arbitrarily
low finite values are possible.

A definition for the local entropy [Eq. (12)] of a nonequi-
librium system of independent fermions was proposed, along
with a normalization factor [Eq. (15)] that takes into ac-
count local variations in the density of states. The local
nonequilibrium entropy is always less than or equal to that
of a local equilibrium distribution with the same mean
energy and occupancy (consistent with the second law of
thermodynamics), and the local entropy deficit was used to
quantify the distance from local equilibrium in a nanoscale
junction with nonlinear thermal bias (Fig. 4). It was shown
that the local entropy of the system tends to zero when
the probe temperature tends to zero, implying that the local
temperature so defined is consistent with the third law of
thermodynamics.
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APPENDIX A: ELASTIC TRANSPORT REGIME

We derive the form of the nonequilibrium distribution
function fs(ω) when the transport is dominated by elastic pro-
cesses. We assume a nanostructure connected to M reservoirs,
including the probe. Equation (7) takes the form of Eq. (19)

when the transport is elastic, and we have

2π Tr{�p(ω)A(ω)}(fs(ω) − fp(ω))

=
M∑

α=1

Tpα(ω)(fα(ω) − fp(ω)). (A1)

Now, we wish to rewrite the above equation in terms of the
local properties sampled by the probe:

Tr{�p(ω)A(ω)}
Tr{�p(ω)} (fs(ω) − fp(ω))

=
M∑

α=1

Tr{�p(ω)Gr (ω)�α(ω)Ga(ω)}
2π Tr{�p(ω)} (fα(ω) − fp(ω)),

(A2)

where the first factor on the left-hand side is the mean local
spectrum Ā(ω) sampled by the probe, defined by Eq. (3), and
we used Eq. (20) for the elastic transmissions on the right-hand
side. We define the injectivity of a reservoir α sampled by the
probe as

ρpα(ω) = 1

2π

Tr{�p(ω)Gr (ω)�α(ω)Ga(ω)}
Tr{�p(ω)} (A3)

for the factors appearing on the right-hand side of Eq. (A2).
Injectivity of a reservoir α has been previously defined [40]
as the local partial density of states (LPDOS) associated with
the electrons originating from reservoir α and, due to number
conservation, the sum of injectivities of the reservoirs gives
the local density of states (LDOS). We state an equivalent
result for the injectivities defined in Eq. (A3) in the following
paragraph. Before proceeding, we note that the injectivities
sampled by the probe, in Eq. (A3), reduce to the LPDOS for
electrons injected by reservoir α when the probe coupling is
maximally local, i.e., [�p(ω)]ij = �p(ω)δinδjn and become
essentially independent of the probe coupling when it is weak.
Equation (A3) also extends to α = p and defines the probe
injectivity sampled by itself, which becomes negligible in the
limit of weak coupling.

It can be shown that the spectrum can be written as [31]

A(ω) = 1

2π
Gr (ω)�(ω)Ga(ω), (A4)

where �(ω) is given by

�(ω) =
∑

α

�α(ω). (A5)

The contribution due to interactions �int(ω) in Eq. (A5) is
missing since the interaction self-energy is Hermitian for
elastic processes. Equations (A3), (A4), and (A5) imply

M∑
α=1

ρpα(ω) = Ā(ω). (A6)

From Eq. (A2), we write

Ā(ω)(fs(ω) − fp(ω)) =
M∑

α=1

ρpα(ω)(fα(ω) − fp(ω)), (A7)
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and Eq. (A6) implies

Ā(ω)fs(ω) =
M∑

α=1

ρpα(ω)fα(ω). (A8)

Finally, fs(ω) can be written as

fs(ω) =
M∑

α=1

ρpα(ω)

Ā(ω)
fα(ω), (A9)

∴ 0 � fs(ω) �
M∑

α=1

ρpα(ω)

Ā(ω)
(A10)

0 � fs(ω) � 1, (A11)

where we used Eq. (A6) and the fact that the Fermi-Dirac
distributions satisfy 0 � fα(ω) � 1. The nonequilibrium dis-
tribution function fs(ω) is thus a linear combination of the
Fermi-Dirac distributions of the reservoirs, and Eq. (A11)
leads to an unambiguous definition of the local entropy for
a nonequilibrium system given by Eq. (12).

APPENDIX B: MODEL OF PROBE-SAMPLE COUPLING

The scanning thermoelectric probe is modeled as an
atomically sharp Au tip operating in the tunneling regime. The

probe tunneling-width matrices may be described in general
as �

p
nm(ω) = 2πVnV

∗
mρp(ω), where ρp(ω) is the local density

of states of the apex atom in the probe electrode and Vm, Vn

are the tunneling matrix elements between the quasiatomic
wave functions of the apex atom in the electrode and the
mth, nth π orbitals in the molecule. We consider the Au
tip to be dominated by the s-orbital character and neglect all
other contributions. The probe-system coupling is also treated
within the broad-band approximation. The tunneling-width
matrix �p describing the probe-system coupling is in general
nondiagonal and is calculated using the methods highlighted
in Ref. [41].

APPENDIX C: EXACT SOLUTION

The exact solution to Eq. (34) with T1 → 0 is

Tp = T2

(√
1 + 4λ2

1 − 1

2λ1

) 1
2

,

where λ1 is defined in Eq. (43) and simplifies to

λ1 = 7π2

20

T (2)
p2 (kBT2)2

Tp1
,

a factor that appears in Eq. (36).
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