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Anomalous behavior in the magneto-optics of a gapped topological insulator
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The Dirac fermions at the surface of a topological insulator can be gapped by introducing magnetic dopants.
Alternatively, in an ultrathin slab with thickness on the order of the extent of the surface states, both the top and
bottom surface states acquire a common gap value (�) but with opposite sign. In a topological insulator, the dom-
inant piece of the Hamiltonian (Ĥ ) is of a relativistic nature. A subdominant nonrelativistic piece is also present
and, in an external magnetic field (B) applied perpendicular to the surface, the N = 0 Landau level is no longer at
zero energy but is shifted to positive energy by the Schrödinger magnetic energy. When a gap is present, it further
shifts this level down by −� for positive � and up by |�| for a negative gap. This has important consequences
for the magneto-optical properties of such systems. In particular, at charge neutrality, the lowest energy transition
displays anomalous nonmonotonic behavior as a function of B in both its position in energy and its optical
spectral weight. The gap can also have a profound impact on the spectral weight of the interband lines and on
corresponding structures in the real part of the dynamical Hall conductivity. Conversely, the interband background
in zero field remains unchanged by the nonrelativistic term in Ĥ (although its onset frequency is modified).
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I. INTRODUCTION

The prediction and observation of two-dimensional (2D)
[1–4] and three-dimensional (3D) [5–8] topological insulators
(TIs) (and later topological crystalline insulators [9–11]) has
lead to the discovery of many such materials [12,13]. The
subject remains of great interest because of its potential for
the discovery of new physics [14–16] and possible device
applications such as in quantum computing [17]. The dynamics
of the helical surface states in a TI are dominated by a
relativistic (Dirac) linear-in-momentum Hamiltonian which
involves real spin as opposed to graphene [18] and other
2D membranes such as MoS2 [19,20] and buckled silicene
[21], where it is the lattice pseudospin which is involved.
While the Dirac cones in graphene display perfect particle-hole
symmetry, they do not in a TI due to the presence of an
additional nonrelativistic contribution. This term is quadratic
in momentum and is described by a Schrödinger mass m.
Typically, in Bi2Se3 and Bi2Te3 as examples, m = 0.16me and
0.09me [22,23], respectively, where me is the bare electron
mass. The relativistic contribution to the total Hamiltonian
has its origin in a strong spin-orbit coupling and leads to the
phenomenon of spin-momentum locking with the in-plane spin
component perpendicular to the direction of the momentum
[24,25]. The subdominant Schrödinger contribution distorts
the perfect Dirac cone into an hourglass shape with the cross
section of the upper conduction-band cone decreasing with
increasing energy while that of the valence band increases with
decreasing energy below the Dirac point. The spin-momentum
locking is retained.

It is possible to introduce a gap (�) at the Dirac point of
the surface fermion band structure. This can be achieved by
the introduction of magnetic dopants. In the work of Chen
et al. [26], a gap of ∼7 meV was seen in (Bi0.99Mn0.01)2Se3

using angular-resolved photoemission spectroscopy (ARPES).
A significantly larger gap can be generated in an ultrathin TI

slab when its thickness is sufficiently reduced such that the top
and bottom surface states hybridize [27–29]. In Ref. [27], it
is shown that the sign of the induced gap can change from a
negative value to a positive one as the distance between the two
surfaces is reduced below ∼25 Å. Additionally, the magnitude
can grow to ∼100 meV. The Hamiltonians for describing
the top and bottom surfaces in a thin slab are related by the
mapping � → −� [27]. A gap of superconducting origin can
also be created in a TI through proximity to a superconductor
[30], but this goes beyond the scope of the present manuscript.
When a TI has a finite gap, a z component of spin perpendicular
to its surface is generated. This implies that the in-plane spin
component involved in the locked spin texture is reduced. This
effect has recently been observed in spin-polarized ARPES
data [31].

The quantum Hall effect of an ultrathin TI has been
discussed by Yoshimi et al. [32] and Zhang et al. [33].
Oscillations in the quantum capacitance of such systems
feature in the work of Tahir et al. [34] and thermoelectric
transport in the work of Tahir and Vasilopoulos [35]. Other
studies include work on the Kerr and Faraday effects in
thin films with broken time-reversal symmetry [36,37] and
magneto-optical transport [38,39].

The dynamical conductivity can provide detailed infor-
mation on electron dynamics in 2D systems. An example
is graphene where experiments have verified the predicted
universal background [40,41], as well as revealed details about
correlations due to electron-phonon interactions [42,43]. The
magneto-optics of such systems provide additional informa-
tion [23,44–51]. In this paper, we consider the magneto-optics
of a gapped TI. Both the longitudinal and transverse Hall
conductivity are considered.

The paper is structured as follows. In Sec. II, we specify our
Hamiltonian which includes a relativistic and nonrelativistic
kinetic energy term as well as a gap. On a given surface,
for simplicity, we treat a single Dirac cone centered at the
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� point of the surface Brillouin zone. This applies to Bi2Se3,
Bi2Te3, and other similar systems; however, for materials such
as samarium hexaboride [52], three such cones are present.
To treat an ultrathin slab with a tunneling gap between top
and bottom surfaces, we need to consider both positive and
negative gap values [27]. We solve for the eigenvalues of
the associated Landau levels (LLs) which emerge when a
perpendicular magnetic field (B) is applied to the surface
of a TI. The corresponding eigenvectors are also reported.
Particular attention is given to the N = 0 LL, which behaves
quite differently in a TI than it does for graphene. In particular,
even without a gap, the LL no longer exhibits particle-hole
symmetry. The N = 0 level has moved to positive energy
from its zero-energy value in the pure relativistic case. It
is important to realize that two competing magnetic energy
scales exist in a TI. The dominant magnetic energy scale is
that associated with the relativistic term (E1 = �vF

√
eB/�).

The second is E0 = �eB/m and comes from the Schrödinger
mass. Here vF is the Dirac Fermi velocity and m is the
Schrödinger mass. It is clear that, as B increases, the relative
importance of E0 increases. However, at one tesla, it is an
order of magnitude smaller than E1. Nevertheless, as we will
highlight, E0 introduces important changes to some aspects
of the magneto-optics, while others are left unchanged. In
Sec. III, we provide the results of a Kubo formula approach
to the dynamical conductivity. We give explicit expressions
for Reσxx(�) and Reσxy(�) at finite B and discuss the
modifications needed to obtain the respective imaginary terms.
Numerical results are presented when a finite gap is included
and are compared with the pure relativistic limit. Emphasis is
placed on the real part of the Hall conductivity. Both charge
neutrality and finite chemical potential are described as is the
effect of changing the value of � and B. In Sec. IV, particular
attention is given to the optical spectral weight of the various
magneto-optical absorption lines and how the gap impacts
these values. For a fixed gap, it is found that the position
of the intraband line and its spectral weight show a jump at
a critical value of magnetic field Bc = (2�m)/(�e[1 + g]),
where g is a Zeeman splitting contribution. This jump only
occurs when the sign of the gap is positive. In Sec. V, we
derive a simplified formula for the optical spectral weight
of the intraband transitions when B → 0 and the chemical
potential μ is much greater than both magnetic energy scales.
This is obtained from our general conductivity formulas for
finite B. We also consider the interband transitions and how
they evolve into a universal background which is independent
of the Schrödinger mass. We discuss how the gap modifies this
result. A summary and conclusions follow in Sec. VI.

II. FORMALISM

A. No magnetic field

In the absence of a magnetic field, the model Hamiltonian
for describing the helical surface states of a TI is given by
[53,54]

Ĥ = �
2k2

2m
+ �vF (kxσ̂y − kyσ̂x) + �σ̂z, (1)

where σ̂x,σ̂y,σ̂z are the Pauli-spin matrices and �k is the
momentum relative to the � point of the surface Brillouin zone.

The first term is a quadratic-in-momentum nonrelativistic
kinetic energy piece with electronic mass m. The second
is relativistic and linear-in-momentum with Fermi velocity
vF . The last term (which provides a gap) is present when
the surface of the TI is doped with magnetic particles or,
alternatively, when the TI is made ultrathin so that the top
and bottom surface states hybridize. In the latter case, the
two surfaces have a gap of the same magnitude but opposite
sign [27]. Appropriate parameters for the Hamiltonian have
been provided by band structure calculations and, as an
illustration, mv2

F = 96 meV (130 meV) with m = 0.09me

(0.16me) in Bi2Te3 (Bi2Se3). From these parameters, one
can compute other useful parameters such as the Dirac and
Schrödinger magnetic energies E1 ≡ �vF

√
eB/� and E0 =

�eB/m, respectively. They are 10.9 meV (12.7 meV) and
1.25 meV (0.7 meV) for Bi2Te3 (Bi2Se3) for B = 1 T.

Through a 1% replacement of Bi with Mn on the surface of
Bi2Se3, Chen et al. [26] produced a gap of � ∼ 7 meV. Much
larger gap values can be obtained by hybridization of the top
and bottom surface states in an ultrathin slab as estimated in
the work of Lu et al. [27]. For their parameter set, the Fermi
velocity is of order 6.2 × 105 m/s with some variation on slab
thickness (L). They find � can be of order 50 meV and can even
change sign (� < 0 for L ∼ 32 Å and � > 0 below 25 Å).

B. Finite magnetic field

To account for the influence of an external magnetic field
B applied perpendicular to the surface of a TI, we employ the
Landau gauge with vector potential A = (0,Bx,0). Including a
Zeeman term to the Hamiltonian of the form (−1/2)gsμBBσ̂z,
with gs the Zeeman splitting strength (gs ∼ 8 for Bi2Se3 [55])
and μB = e�/(2me) the Bohr magneton. The LL energies are

EN,s =
⎧⎨
⎩E0N + s

√
2NE2

1+
[
�−E0

2 (1 + g)
]2

, N=1,2,3, . . . ,

E0
2 (1 + g) − �, N = 0,

(2)

where s = ± for the conduction and valence band, re-
spectively, and g = gsm/(2me) is the renormalized Zeeman
coupling coefficient. The relativistic and nonrelativistic mag-
netic energy scales are E1 = �vF

√
eB/� and E0 = �eB/m,

respectively. The associated eigenvectors are

|Ns〉 =
(
C↑

N,s |N − 1〉
C↓

N,s |N〉

)
, (3)

where

C↑
N,s =

{
−s

√
1
2 + s

�−(1+g)E0/2
2(EN,+−E0N) , N = 1,2,3, . . . ,

0, N = 0
(4)

and

C↓
N,s =

{√
1
2 − s

�−(1+g)E0/2
2(EN,+−E0N) , N = 1,2,3, . . . ,

1, N = 0.
(5)

We begin our analysis by emphasizing that, for gapless
graphene [no Schrödinger term in Eq. (1) and � = 0], the
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N = 0 LL falls at E = 0 in the absence of Zeeman splitting.
For a TI, however, the nonrelativistic term in the Hamiltonian
pushes this level to positive energy as does the inclusion of the
Zeeman term. By contrast, including a gap pushes the N = 0
level down in energy for � > 0 and up for � < 0. This plays
an important role in the following considerations.

III. MAGNETO-OPTICAL CONDUCTIVITY

Based on the Kubo formula in the one-loop approximation,
the longitudinal ac conductivity σxx(�) takes the form [44]

Re

{
σxx(�)

e2/�

}

= E2
1

2π

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

η

(� + EM,s ′ − EN,s)2 + η2

×[F(Ns; Ms ′)δN,M−1 + F(Ms ′; Ns)δM,N−1], (6)

where η ≡ �/(2τ ) is a phenomenological optical scattering
rate and the optical matrix element is

F(Ns; Ms ′) ≡
[
C↑

M,s ′C↓
N,s − E0√

2E1

× (
√

NC↑
M,s ′C↑

N,s + √
N + 1C↓

M,s ′C↓
N,s)

]2

.

(7)

For the imaginary part of the longitudinal conductivity, the η

in the numerator of Eq. (6) is replaced by � + EM,s ′ − EN,s .
The Hall conductivity also follows with small modifications
to Eq. (6). Its real part is given by Eq. (6) with the η in the
numerator replaced by � + EM,s ′ − EN,s and with a switch in
sign between the matrix elements. For the imaginary part, the
numerator is −η rather than the energy difference plus photon
energy. In Eq. (6), fN,s is the thermal occupation factor which
reduces to the Heaviside step function 
(μ − EN,s) at zero
temperature, where μ is the chemical potential. Our numerical
results for the real part of the longitudinal conductivity are
presented in Fig. 1 for μ = 0, g = 0, and |�| = 7 meV. In the
numerics, we use a broadening parameter η = 0.5 meV. The
magnetic field values used are 0.1 T (solid black curve), 1 T
(dashed blue), 5 T (dash-dotted red), and 10 T (double-dash-
dotted purple). Frame (a) is for comparison and has E0 = 0
(i.e., no Schrödinger contribution so that we would be dealing
with the particle-hole-symmetric Dirac case when the gap is
neglected). When the magnetic field is small, the distance
in energy between LLs (and consequently between optical
absorption lines) is small. This arises from the

√
B dependence

of the dominant magnetic energy scale E1. At higher photon
energies, the well known universal background provided by
interband transitions is revealed in the solid black curve. In our
units, its height is 1/16 which (when multiplied by a factor of
4 for spin and valley degeneracy) gives the expected graphene
value. As the photon frequency is reduced, the amplitude of
the oscillations about the background value increase as does
the energy spacing. The energy of the first absorption line is at
� = � +

√
2E2

1 + �2 and, for B = 0.1 T, is already close to
its B = 0 limiting value of 2�. We also note that the average

R
e

σ xx
(Ω

)[
e2 /

]

(b)

(c)

Δ>0

R
e

σ xx
(Ω

)[
e2 /

]

Δ<0

Ω

R
e

σ xx
(Ω

)[
e2 /

]

E0/B=0

(a)

E1/√B=10.4 meV/√T
µ=0, g=0, η=0.5 meV 
|Δ|=7 meV

E0/B=1.1 meV/T

E0/B=1.1 meV/T

FIG. 1. (Color online) Longitudinal magneto-optical conductiv-
ity of a (a) gapped Dirac system (E0 = 0) compared with that of a
TI for a (b) positive and (c) negative gap. Various values of B are
considered; for small B, the familiar interband background emerges.

interband background grows from its universal value of 1/16
to twice this amount at the gap edge. This is somewhat obscure
in the figure as the quantum oscillations are rather large in this
energy range. In graphene, it is known that the introduction of
a gap modifies that universal background by a multiplicative
factor of (�2 + 4�2)/�2. Here, we find that this holds for a
TI even when a subdominant Schrödinger term is included in
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the Hamiltonian. As the magnitude of the magnetic field is
increased, the first absorption line moves to higher photon
frequency. For example, in the double-dash-dotted purple
curve, it has moved to ∼54 meV.

For the pure relativistic case, the sign of the gap makes
no difference in Reσxx(�). This changes in a TI as can be
seen in frames (b) and (c). It is particularly striking that the
position of the first peak in the double-dash-dotted purple
curve has moved to higher energy for � > 0 and to lower
energies for � < 0 relative to the pure Dirac system even
though all other parameters are kept the same. The only
difference is that now the Schrödinger magnetic energy scale
E0 is nonzero. Even more striking is the fact that, except for
the first process, all other absorption lines show a satellite
peak attached to each dominant peak. In frame (b) (� > 0),
this satellite line is below the main absorption process of the
doublet. Conversely, in frame (c), the relative locations are
reversed. These subdominant peaks are a clear signature of
the small nonrelativistic term in the Hamiltonian. They have
already been noted in the previous work of Li and Carbotte
[23] when � = 0. In that case, however, the optical spectral
weight in each of the two lines is nearly equal. The opening
of a band gap substantially changes this and will be studied in
detail in the following section. While both frames (b) and (c)
include the effect of a finite Schrödinger mass, the universal
limit is unchanged for � � |�| and is also unaffected by
the sign of the gap. The introduction of E0 only slightly
affects the conductivity for small B. This is because the
factor � − (1 + g)E0/2 appearing in the LL energies is nearly
unchanged from its pure relativistic value of � (for g = 0). For
example, when B = 0.1 T (solid black), E0/2 ≈ 0.055 meV,
which is much smaller than the damping η = 0.5 meV used in
our numerics.

In Fig. 2, we show results for the real part of the Hall
conductivity Reσxy(�) for the same parameters as Reσxx(�)
except instead of B = 10 T we employ 15 T to accentuate
the important features. Frame (a) shows the pure relativistic
result, while frames (b) and (c) display finite E0 and � = 7
meV and −7 meV, respectively. As in Fig. 1, the solid black
curve shows small oscillations which become somewhat more
pronounced as � is reduced but, nevertheless, define the
background fairly well. The B = 0 background is basically
zero for large photon energy and has a characteristic peak-
valley structure at small �. We wish to emphasize several other
features. First, the dc limiting value of Reσxy(�) gives the Hall
plateaus which are quantized. As discussed in Ref. [56], in the
context of the conductivity and in Refs. [44,57] in the context
of the magnetization, the introduction of a subdominant
nonrelativistic term does not change this quantization. It keeps
its relativistic value independent of m. In our units, this is
1/2 times 1/(2π ) at charge neutrality which agrees with
what is known for graphene when a valley-spin-degeneracy
factor of 4 is included. This value is independent of B but
can be made to change sign as B is increased in the case
when � > 0 as can be seen in frame (b) for B = 15 T
(dash-double-dotted purple). It has switched from 1/(4π )e2/�

for B = 0.1, 1, and 5 T to the negative of the same value.
This is to be contrasted with the � < 0 case where it is
always equal to −1/(4π )e2/�. This difference in sign implies
additional differences in the curves at finite photon energies.

R
e

σ xy
(Ω

)[
e2 /

]
R

e
σ xy

(Ω
)[

e2 /
]

(b)

(c)

Ω

R
e

σ xy
(Ω

)[
e2 /

]

(a)

E0/B=0

Δ>0

Δ<0

E1/√B=10.4 meV/√T

µ=0, g=0, η=0.5 meV 
|Δ|=7 meV

E0/B=1.1 meV/T

E0/B=1.1 meV/T

FIG. 2. (Color online) Transverse magneto-optical conductivity
of a (a) gapped Dirac system (E0 = 0) compared with that of a TI for
a (b) positive and (c) negative gap. Various values of B are considered.
The � = 0 limit gives the quantized Hall plateaus. For � > 0, the
sign of the dc Hall effect in a TI switches as B becomes large.

For � = 0, the first LL is positioned at (1 + g)E0/2, at which
energy the Hall conductivity would jump from −1/2 to 1/2
(in units of e2/h). For nonzero �, this transition energy is
instead moved to −� + (1 + g)E0/2 (i.e., down for � > 0
and up for � < 0). This means that in frame (b), we have
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Reσxy(� = 0) = (1/2)e2/h for fields less than the critical
value Bc = 2�m/([1 + g]�e) ∼ 13 T and −(1/2)e2/h above
the critical field (dash-double dotted purple). By contrast, for
negative gap values, −� + (1 + g)E0/2 remains positive so
that the Hall quantization retains its value of −(1/2)e2/h

for all B. In the pure relativistic case, the sign of the Hall
conductivity cannot be changed by increasing B for g = 0.
This sign change is a signature of the subdominant magnetic
energy scale E0 in the TI Hamiltonian or of a Zeeman term. By
choice, we have taken g = 0 in all the curves shown in Fig. 2.
There are other features in this figure which require comments.
First, the dashed blue curve starts with a peak-valley structure
when the Hall quantization is e2/(2h) [frames (a) and (b)],
while in the lower frame, when Reσxy(�) = −e2/(4π�), this
structure is inverted. The peak-valley feature is followed by
a series of other similar structures as the photon energy is
increased. These have a different shape in a TI (lower two
frames) compared to the pure Dirac system (top frame). Each
subsequent peak is not as sharp as in the frame (a) but shows a
rather flat top; this can be traced to the splitting of a single line
into doublets (see the lower frames of Fig. 1). Also, for the TI,
there is a clearly defined knee just before (above) a new peak
sets in when � > 0 (� < 0). Using the vertical dotted line at
� = 50 meV as a guide, we see that the peak in the middle
frame is followed by a sharp drop and a minimum while, in
the lower frame, there is knee and the minimum following at
higher photon frequencies.

In Fig. 3, we show the real part of the Hall conductivity
for various values of chemical potential. Again, the dc limit
gives the quantization of the Hall plateaus. Comparing � = 0
[Fig. 3(a)] with � = 2 meV [Fig. 3(b)], we see that this
intercept is robust and does not change with the value of
�. Instead, it retains the value associated with graphene (up
to a degeneracy factor of 4) even in the presence of the
nonrelativistic Schrödinger mass term. However, the presence
of a small gap can change the sign of the dc Hall effect from
−e2/(2h) in Fig. 3(a) to e2/(2h) in Fig. 3(b) for μ = 0 (solid
black curve). The first peak-valley structure also flips to a
valley-peak feature. Its location in energy has shifted from
7 meV to 9 meV because of the gap. We wish to stress that,
as μ is increased, the quantization of the Hall conductivity (in
units of e2/h) increases from 1/2 to 3/2 to 5/2 as another
LL is crossed. Here, for μ = 8 meV (10 meV), the 3/2 (5/2)
plateau is involved [dashed red (dash-dotted purple) curve].
For μ = −10 meV (dotted brown curve), the Hall intercept is
−5/2 and instead of a peak-valley structure following it is a
valley-peak feature. Higher energy structures are also modified
by the gap.

IV. OPTICAL SPECTRAL WEIGHT

In this section, we return to the question of the optical
spectral weight under the absorption peaks of Reσxx(�) and
how it is distributed amongst the two peaks of the doublet.
To understand these features, it is useful to look at the
optical matrix element F(Ns; Ms ′) of Eq. (7) which, along
with the energy difference EN,s − EM,s ′ , gives the optical
spectral weight associated with the real part of the longitudinal
conductivity [Eq. (6)]. This is shown in Fig. 4 for the intraband
line. In frame (a), we plot F(N = 0,s = +; M = 1,s ′ = −),

(b)

R
e

σ xy
(Ω

)
[e

2 /
]

Ω

(a)

R
e

σ xy
(Ω

)
[e

2 /
]

E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

g=0, η=0.5 meV 

µ
µ
µ
µ

FIG. 3. (Color online) Real part of the transverse Hall conduc-
tivity of a TI for (a) � = 0 and (b) � = 2 meV for various μ. The dc
Hall effect steps through different quantized values as μ changes.

which applies to the transition 1− → 0 and F(M = 0,s ′ =
−; N = 1,s = +), which corresponds to 0 → 1+. There are
two cases of interest. For � > 0, the solid black curve gives
the 1− → 0 transition and is seen to decrease with increasing
�, while the dashed blue curve is for 0 → 1+ and increases
with �. Even at � = 0, it is above the solid black line. A similar
pair of curves describes the optical matrix elements for � < 0.
These are the dashed-dotted red and double-dash-dotted green
curves for 1− → 0 and 0 → 1+, respectively. However, now
the former increases with � while the latter decreases. This
causes them to cross. The energy difference between the two
LLs involved in a given transition (�E = EN,s − EM,s ′ ) is also
of interest for two reasons. First, it gives information on the
required photon energy to excite this transition in absorptive
experiments. Secondly, it is the ratio of F to �E which
determines the optical spectral weight of the line. The thermal
factors in Eq. (6) at T = 0 are either zero or one, while the
Lorentzian factor gives π once integrated to get the optical
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Δ<0

Δ>0

Δ<0

Δ>0

|Δ|

E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

g=0, B=1T 

FIG. 4. (Color online) (a) Optical matrix element and (b) transi-
tion energy of a TI as a function of |�| for positive and negative gaps.
The results for the 0 → 1+ transition are compared to 1− → 0 (clear
asymmetry is observed).

spectral weight. The remaining E2
1 is constant at fixed B. The

energy difference is plotted in Fig. 4(b) using the same line
types as in the top frame. Similar toF , for � > 0, the energy of
the 1− → 0 transition (solid black) decreases with increasing
�, while it increases for the 0 → 1+ transition (dashed blue).
For negative gaps, �E also shows the same trend as for F .
Importantly, the spectral weight factor F/�E decreases with
|�| in all cases. This identifies the factors which contribute
to the intensity decay of the intraband line with increasing �.
This also explains the increase in photon energy needed to
excite this transition.

Another interesting feature noted in reference to Fig. 1 for
Reσxx(�) for several B was the splitting of the interband lines
into doublets with the intensity of the lines being distinctly
different (the higher � line being larger for � > 0). Similarly,
the lower energy line of the doublet loses intensity as � > 0 is

|Δ|

Δ<0

Δ>0

Δ<0

Δ>0

E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

g=0, B=1T 

FIG. 5. (Color online) (a) Optical matrix element and (b) transi-
tion energy of a TI as a function of |�| for positive and negative gaps.
The results for the 1− → 2+ transition are compared to 2− → 1+

(asymmetry is observed).

increased. As previously mentioned, it is the ratio of the matrix
elements F and energy denominators �E which determines
the optical intensity (up to a factor) of the spectral lines. In
Fig. 5, we plot F [frame (a)] and �E [frame (b)] for the 2− →
1+ and 1− → 2+ transitions. For � > 0, the 2− → 1+ optical
matrix element decreases with increasing � while it increases
for 1− → 2+. The opposite behavior is found for � < 0 as
expected. Concerning the energies of the lines, we see in the
lower frame that they all increase with increasing |�|. In both
cases, the 2− → 1+ transition is the lower energy line of the
doublet while the 1− → 2+ line has higher energy. The energy
associated with the line splitting is reasonably constant at |�|.
These facts conform with what we have found in other figures.
For small |�|, the intensity of both the 2− → 1+ and 1− → 2+
lines is almost the same. However, as � > 0 is increased the
energy of the 2− → 1+ (lower peak of the doublet) rapidly
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E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

µ=0, g=0
Δ
Δ

FIG. 6. (Color online) (a) Optical matrix element and (b) transi-
tion energy of a TI as a function of B for positive and negative gaps.
A discontinuity is present for � > 0 at B = Bc due to a change in
sign of the N = 0 LL energy [inset of (b)]. This changes the charge
neutral transition from 0 → 1+ to 1− → 0.

decreases while that of the 1− → 2+ line (upper peak in the
pair) increases. It is opposite for � < 0. This rapid change is
attributed to a sharp increase/decrease of the optical matrix
element F which depends on the sign of the gap and the
transition involved [as seen in Fig. 5(a)].

While it has been useful to consider variations of � in
Figs. 4 and 5, an anomalous behavior of the energy and
intensity of the intraband line at charge neutrality is best
brought out by considering a fixed value of � and varying
magnetic field. This is shown in Fig. 6 for g = 0, μ = 0,
and � = ±2 meV. Here, the occupation factors fMs ′ and fNs

in Eq. (6) play an essential role. At zero temperature, these
are just Heaviside step functions which equal 1 if the state
is occupied and 0 if it is empty. In the inset of Fig. 6(b),
we show the lowest LLs involved as well as the location

of zero energy (dotted line) where μ falls by arrangement.
For � > 0, we wish to emphasize that the zeroth level falls
at an energy (1 + g)E0/2 − �. For � = 0, this level has a
positive energy, while for � > 0 it can be moved to negative
energies by decreasing the external magnetic field below
Bc = 2�m/([1 + g]�e) as previously noted. For B < Bc, the
optical transition involved in the intraband response is 0 → 1+.
For B > Bc, this switches to 1− → 0. These two transitions
have different intensities and correspond to different photon
energies as seen in the solid black curve in Fig. 6(a) for the
matrix element F and in frame (b) for the energy �E . Both of
these quantities have a discontinuity at B = Bc. The intensity
and energy of the line drop above the critical field. This effect
is only present for � > 0. For the negative gap case (dashed
blue curve), there is no jump at any value of B. Note that this
behavior directly depends on the presence of a subdominant
nonrelativistic magnetic energy E0. This anomalous behavior
is one of our important results.

V. LIMIT OF SMALL B

We now consider the limit of B → 0 with a view of
understanding the effects introduced by a gap. We consider
both the intraband transitions which give the Drude peak
when B = 0 and the interband transitions which provide a
background. We begin with the intraband response of the
longitudinal conductivity [see Eq. (6)]. For simplicity, we
take μ > 0 and assume both the relativistic and nonrelativistic
magnetic energy scales to be small in comparison to μ. After
employing the Kronecker δ functions, only the sum over N

remains. We define a critical value of N (denoted Nc) such
that ENc,+ = μ. We also integrate over � from 0 to ∞ to get
the total optical spectral weight under the intraband line:

WD = e2

�

E2
1

2

∑
N

(
− ∂fN,+

∂EN,+

)
F(N − 1,+; N,+). (8)

At zero temperature, the derivative of the Fermi-Dirac function
becomes a Dirac δ function δ(EN,+ − μ), which we use to carry
out the sum over N (which becomes an integral in the B → 0
limit). That is,

WD = e2

�

E2
1

2

∫ ∞

0
dN

(
∂EN,+
∂N

)−1

δ(μ − EN,+)

× F(Nc − 1,+; Nc,+)

= e2

�

E2
1

2

(
∂EN,+
∂N

)−1∣∣∣∣
Nc

F(Nc − 1,+; Nc,+). (9)

Next, we need to evaluate the matrix element F(Nc −
1,+; Nc,+) which is given by Eq. (7). As B → 0,

C↑
N,+ ≈ −

√√√√1

2
+ �

2
√

2NE2
1 + �2

(10)

and

C↓
N,+ ≈

√√√√1

2
− �

2
√

2NE2
1 + �2

. (11)
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Substituting these into Eq. (7) for F(Nc − 1,+; Nc,+), we
obtain

F(Nc − 1,+; Nc,+) ≈
[
−1

2

√
2E2

1Nc

2E2
1Nc + �2

− E0
√

Nc√
2E1

]2

.

(12)

Using the relation between Nc and μ:

μ = E0Nc +
√

2NcE
2
1 + �2, (13)

we can write

Nc = C(μ)

E0
, (14)

where

C(μ) = μ + mv2
F −

√(
μ + mv2

F

)2 + �2 − μ2. (15)

The optical spectral weight of interest (which is simply the
Drude weight WD for B → 0) is then

WD = e2

�

E2
1

8

[√
2mv2

FC(μ)

�2 + 2mv2
FC(μ)

+
√

2C(μ)

mv2
F

]2

×
(

∂EN,+
∂N

)−1
∣∣∣∣∣
Nc

. (16)

But,

∂EN,+
∂N

∣∣∣∣
Nc

= E0

⎡
⎣1 + mv2

F√
�2 + 2mv2

FC(μ)

⎤
⎦ (17)

and hence

WD = e2

4�
C(μ)

⎡
⎣1 + mv2

F√
�2 + 2mv2

FC(μ)

⎤
⎦, (18)

with C(ω) given by Eq. (15). Analogous algebra applies to the
case of negative μ. The final formula for the Drude weight
which applies to μ ≶ 0 is

WD = e2

4�
C(μ)

∣∣∣∣∣∣1 + sgn(μ)
mv2

F√
�2 + 2mv2

FC(μ)

∣∣∣∣∣∣. (19)

Figure 7 shows results for the Drude weight WD of Eq. (19)
when g = 0 and � = 7 meV as a function of |μ| for μ >

0 (solid red), μ < 0 (dashed blue), and the pure Dirac case
(E0 = 0) (dash-dotted green) for comparison. It is clear that,
while the nonrelativistic term is subdominant to the Dirac
contribution, it nevertheless makes a significant contribution
to the Drude weight as the magnitude of the chemical potential
is increased. The deviations from the dash-dotted green curve
are downward for μ < 0 and upward for μ > 0. Finally, we
note that, for � = 0, all curves would start at μ = 0 rather than
|μ| = � = 7 meV for the case presented here. We verified that
Eq. (19) reduces to the known result [58] when � = 0. In this
case, Eq. (15) can be rewritten in the simpler form

C(μ) = mv2
F

2

(
1 −

√
1 + 2μ

mv2
F

)2

. (20)

0 10 20 30 40
|μ| (meV)

0

1

2

3

4

5

6
E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

g=0, Δ=7 meV 
μ>0
μ<0
Pure Relativistic

FIG. 7. (Color online) Spectral weight of the Drude peak as a
function of |μ| for positive and negative chemical potential. The
results of a gapped TI are compared to that of a gapped Dirac system.
Particle-hole asymmetry is observed.

Using this, the Drude weight for � = 0 is

WD = e2

8�
mv2

F

∣∣∣∣∣
(

1 −
√

1 + 2μ

mv2
F

)√
1 + 2μ

mv2
F

∣∣∣∣∣, (21)

which agrees with the known result. Another limit we have
checked is the gapped relativistic system (m → ∞). After
some straightforward algebra, we obtain

WD = e2

8�

μ2 − �2

|μ| . (22)

When discussing the B → 0 limit, it is of interest to
examine how the interband contribution evolves into an
absorption background. Numerical results obtained from
Eq. (6) for Reσxx(�) are presented in Fig. 8. Here, we use
g = 0, η = 0.5 meV, B = 0.1 T, and � = 7 meV. In frame
(a), |μ| = 10 meV and we show both positive (solid red)
and negative (dashed blue) μ. Again, we include the pure
relativistic result for comparison (dash-dotted green). From
this we note that the Schrödinger term has a negligible effect
on the background for positive μ. Later, we will show that
this is expected for small μ. In Fig. 7, we saw a similar result
for the Drude weight, where deviations become strong only
for larger values of μ. Returning to Fig. 8, we observe that,
as � is reduced towards 20 meV (i.e., 2|μ|), the background
(defined as the envelope through the center of oscillations)
increases above the universal value [e2/(16�)] seen at higher
�. In addition, for a TI, we do not have particle-hole symmetric
responses. The onset of the background for μ > 0 is lower in
energy that that of μ < 0. This difference in onset frequency
is clearly seen in frame (b) where we use |μ| = 30 meV. In
this case, the solid red curve has its interband edge at an
energy considerably below that of the pure relativistic system
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|μ|=10 meV

(a)

(b)

0 10 20 30 40 50
Ω (meV)

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100 120
Ω (meV)

0

0.02

0.04

0.06

0.08

0.1

E1/√B=10.4 meV/√T

g=0, η=0.5 meV
E0/B=1.1 meV/T

μ>0
μ<0
Pure Relativistic

B=0.1T, Δ=7 meV

|μ|=30 meV

16

FIG. 8. (Color online) Longitudinal magneto-optical conductiv-
ity for small B and large |μ|. The usual B = 0 interband background
becomes resolved as μ increases [frame (b)]. The results for a gapped
TI and μ ≶ 0 are compared to a gapped Dirac system. Particle-hole
asymmetry is evident.

(dash-dotted green). Conversely, the μ < 0 onset has been
pushed upwards by an even greater amount.

The onset (and its variation with μ, �, and m) can be calcu-
lated with the help of the illustrative band structures inserted in
Fig. 9. The interband transition with minimum photon energy
ωmin is shown as a red arrow for μ > 0 and the longer blue
arrow corresponds to μ < 0. For positive chemical potential,
the momentum kc associated with this transition is given by
μ = E+(kc), while for μ < 0 it is μ = E−(kc). In both cases,
ωmin = E+(kc) − E−(kc). After much algebra, we find

ωmin = 2

√√√√�2 + 2
(
mv2

F

)2

[
1 + μ

mv2
F

−
√

1 + 2μ

mv2
F

+ �2(
mv2

F

)2

]
,

(23)

ωmin

μ>0

μ<0
ωmin

0

20

40

60

80

100

120

ω
m

in
(m

eV
)

0 10 20 30 40
|μ| (meV)

0

20

40

60

80

100
m

ax
(2

Δ,
 ω

m
in

)(
m

eV
)

E0/B=1.1 meV/T
E1/√B=10.4 meV/√T

g=0, B=0 
μ>0
μ<0
Pure Relativistic

ωmin

μ>0

μ<0
ωmin

μ=02Δ

|μ|>Δ

|μ|<Δ

Δ=7 meV

Δ=0(a)

(b)

|μ|=Δ

FIG. 9. (Color online) Minimum energy required for interband
transitions in a (a) gapless and (b) gapped TI as a function of |μ|. The
results for μ ≶ 0 are compared to the pure Dirac system. Particle-hole
asymmetry is observed. Insets: schematic plots of the low-energy
band structure for ±|μ|. The lowest energy interband transition is
marked by the blue (μ � 0) or red (μ > 0) arrow.

which is valid for μ ≶ 0. When � = 0, this reduces correctly
to the known result [58]

ωmin = 2mv2
F

∣∣∣∣∣1 −
√

1 + 2μ

mv2
F

∣∣∣∣∣ (24)

and to 2|μ| when m → ∞ [59–62] (i.e., the Schrödinger
contribution is neglected). Finally, we note that the
interband transitions are also bounded above. As long as
the nonrelativistic contribution is much smaller than the
relativistic part of the Hamiltonian, an upper cutoff will come
from cutting off at the Brillouin zone boundary where the
low-energy Hamiltonian ceases to be valid.

We now derive a simple analytic expression for the
interband background in the limit of B → 0. More precisely,
we assume that the magnitude of the chemical potential |μ|
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is much greater than E1 and E0. This is the same limit used
in the previous discussion of WD . We start with our general
expression for Reσxx(�) at finite B [Eq. (6)] and take the
appropriate limit. For simplicity, we assume μ > 0 (μ < 0
is analogous). The two interband transitions of interest for
a given Ns are N− → (N + 1)+ and (N + 1)− → N+. For
B → 0, the E0 term in the energy transition drops out and
both transitions have the same energy 2

√
2NE2

1 + �2. Taking
η → 0 in the Lorentzians, we arrive at

Reσxx(�) = e2

�

E2
1

2

∑
N

1

�
δ
(
� − 2

√
2NE2

1 + �2
)

× [F(N,+; N + 1,−) + F(N − 1,−; N,+)],
(25)

where we have assumed the final state (N + 1)+ or N+ to
be unoccupied while the initial state of the transition was
occupied. This allows us to replace the thermal factors by 1 or
0. In doing so, a critical value of N is defined with μ = E+(Nc).
This defines a minimum energy for interband transitions
(namely � = 2

√
2NcE

2
1 + �2). As a result of the δ function

in Eq. (25), we need photon energies � � 2
√

2NcE
2
1 + �2

to get a nonzero result. For μ < �, it is clear from the inset
of Fig. 9(b) that Nc = 0 and we need � > 2|�|. Conversely,
for μ > �, Nc is not zero but is instead given by Eq. (14);
hence Reσxx(�) will be zero until the photon energy �

is � 2
√

2NcE
2
1 + �2 = 2

√
2mv2

FC(μ) + �2, which reduces
to our previous result for ωmin [Eq. (23)] obtained from
momentum space considerations. Here it is derived from the
Kubo formula with LLs in the limit B → 0. For |μ| � E1 and
E0, Nc is large and consequently, Eq. (25) reduces to

Reσxx(�) = e2

�

E2
1

2�

∑
N

δ
(
� − 2

√
2NE2

1 + �2
)

× [F(N,+; N,−) + F(N,−; N,+)]

× 
(� − max[2�,ωmin]). (26)

In the limit of interest,

C↑
N− =

√√√√1

2
− �

2
√

2NE2
1 + �2

(27)

and

C↓
N− =

√√√√1

2
+ �

2
√

2NE2
1 + �2

. (28)

Using Eqs. (10) and (11), we see that the combination
√

N (C↑
N−C

↑
N+ + C↓

N−C
↓
N+),

which enters the optical matrix elements is zero leaving us
with F(Ns; Ms ′) = (C↑

Ms ′C↓
Ns)

2. Therefore, the sum of F’s
which enters Eq. (26) becomes (�2 + 4�2)/(2�2). Changing
the sum over N into an integral, the δ function contributes a
factor of �/(4E2

1) so that

Reσxx(�) = e2

16�

�2 + 4�2

�2

(� − max[2|�|,ωmin]). (29)

This correctly reduces to the known result that the background
conductivity is e2/(16�) (excluding spin and valley degenera-
cies) when � = 0, independent of the value of m [58]. In the
limit of finite � and m → ∞, we get another known result
[60]

Reσxx(�) = e2

16�

�2 + 4�2

�2

(� − max[2|�|,2|μ|]), (30)

which differs from Eq. (29) in that 2|μ| replaces ωmin. Note
when |μ| < |�|, the interband background is twice its value
for � � �. In Fig. 9(a), we show our results for ωmin(μ)
when � = 0. The red curve applies to μ > 0 and the dashed
blue to μ < 0. Both curves deviate from the dash-dotted green
case which applies to the pure relativistic limit when m →
∞. Frame (b) shows similar results for � = 7 meV where
max[2|�|,2|μ|] is plotted. As expected, for large |μ| compared
to |�|, the results do not significantly depend on the gap value.
These results show that the onset of interband transitions is
changed by the introduction of a subdominant nonrelativistic
term in our Hamiltonian, while there is no change in the height
of the interband background even when a gap is present. We
also see significant particle-hole asymmetry in the interband
onset for large |μ|.

VI. DISCUSSION AND CONCLUSION

We have calculated the magneto-optical conductivity of a
topological insulator with particular attention paid to the inter-
play between a gap (�) and the subdominant nonrelativistic
Schrödinger mass (m). When the gap is zero, the nonrelativistic
quadratic-in-momentum piece of the Hamiltonian is known
to split the interband optical absorption lines into doublets
because the energy of the Ns = N− to (N + 1)+ transition is
not degenerate with (N − 1)− to N+ as they would be in the
pure Dirac system. The magnitude of the splitting is given by
the Schrödinger magnetic scale E0 = �eB/m. For � = 0, the
optical spectral weight under each doublet line is nearly equal.
This is changed when a finite gap is included. The change in
spectral weight depends on the sign of the gap. For � > 0, the
lower energy line loses much of its intensity while the upper
line gains spectral weight. For � < 0, the opposite occurs.
Differences are also present in the real part of the dynamical
Hall conductivity for which the structures associated with
interband transitions show peaks with broadened tops. This
is distinctly different from the pure relativistic material. An
additional effect of introducing a gap and Schrödinger mass is
the shift in position of the absorption lines in Reσxx(�) and
the corresponding structures in Reσxy(�).

The mass term is known to drop out completely from the
height of the universal interband background when � = 0 and
the magnetic field B is zero. When a gap is included in the
pure relativistic system, it is known to introduce a modulating
factor (�2 + 4�2)/�2 to the background. Here, we derive an
analytic expression for the interband transitions when B = 0
and � and m are both finite. We proceed directly from our
general expression for the finite B conductivity and formally
take B → 0. We find that the Schrödinger mass drops out
from the background and the modulating factor due to the gap
remains unchanged. Consequently, only the onset frequency
of interband transitions is affected by m. This onset depends
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on �, m, and μ. It does not depend on the sign of the gap;
however, the sign of the chemical potential is integral making
it particle-hole asymmetric.

A similar situation is found for the real part of the Hall
conductivity. In general, it is modified through the introduction
of a mass term or a gap. However, the dc limit which gives
the quantized Hall plateaus is not altered. Of course, both
the gap and mass change the value of chemical potential at
which a transition to a new plateau occurs. This transition is
also dependent on the sign of the gap. At charge neutrality,
the Hall quantization (in units of e2/h) is −1/2 for � < 0,
while for � > 0 it is 1/2. This can be traced to the N = 0
level which sits at (1 + g)E0/2 − � (where g is the Zeeman
splitting) which is negative for � > 0 and |�| > (1 + g)E0/2,

but is positive for � < 0. For � > 0, the magnetic field can
be increased sufficiently to push the N = 0 Landau level
from negative to positive energy. This leads to a switch
in sign of the μ = 0 Hall conductivity. The critical value
of B is Bc = (2�m)/([1 + g]�e). At this value of B, the
charge neutral intraband absorption line in the longitudinal
conductivity shows a jump in spectral weight and onset energy
for � > 0. When � < 0, no such singular behavior is found.
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