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Optical spin readout method in a quantum dot using the ac Stark effect
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We propose a method to read out the spin state of an electron in a quantum dot in a Voigt geometry magnetic
field using cycling transitions induced by the ac Stark effect. We show that cycling transitions can be made
possible by a red-detuned, circularly polarized cw laser, which modifies the spin eigenstates and polarization
selection rules via the ac Stark effect. A Floquet-Liouville supermatrix approach is used to calculate the time
evolution of the density matrix under the experimental conditions of a spin readout operation. With an overall
detection efficiency of 2.5%, the readout is a single-shot measurement with a fidelity of 76.2%.
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I. INTRODUCTION

Quantum information science holds great promise in the
areas of secure communication and rapid computation, but the
physical components of a future quantum computer are still a
work in progress. Any physical realization of a quantum bit,
or qubit, requires several different single-qubit operations: ini-
tialization, manipulation, and readout of its quantum state [1].
There are many candidate systems that may act as qubits,
including the spin degree of freedom of a single electron or hole
trapped in a quantum dot (QD) [2]. Optically active transitions
to many-body excited states allow the spin of the single-
particle ground state to be influenced by external application
of oscillating electric fields, such as lasers. Spin initialization
has been accomplished in a number of experimental situations
involving a magnetic field in either the Faraday configuration,
where the magnetic field is aligned parallel to the optical
axis [3,4], or the Voigt configuration, where the magnetic field
is aligned orthogonal to the optical axis [5–9]. A magnetic
field in the Voigt configuration allows both spin initialization
and coherent manipulation because the field modifies the
polarization selection rules of the optical transitions [9–11].
Statistically significant spin readout has been achieved in both
Voigt and Faraday configurations [6,9,12–17], but the lack
of a cycling transition in the Voigt configuration makes a
single-shot readout of the spin state very difficult.

A single-shot measurement determines the state of the qubit
faster than the back action of the measurement disturbs the
state. In a charged QD in a Voigt magnetic field, there is no
optical transition that would leave the electron state unchanged
with high fidelity [6]. In contrast, the Faraday magnetic field
configuration results in cycling transitions [17,18], which
produce photons but leave the electron spin state largely
unchanged after emission. These cycling transitions allowed
a recent demonstration of single-shot spin-state readout in
the Faraday configuration [19], but the optical selection
rules preclude arbitrary coherent spin manipulation beyond
initialization to an eigenstate. Therefore, in order to realize
the three essential single-qubit operations of initialization,
manipulation, and readout, there is a need to combine the
capabilities of the Voigt and Faraday configurations.
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In this paper, we propose a scheme to read out the spin state
of a single electron trapped in an optically active quantum dot
using a cycling transition induced by the ac Stark effect of a
strong optical field far detuned from resonance. In this scheme,
a constant Voigt configuration magnetic field allows rapid
spin initialization and picosecond spin rotation via stimulated
Raman adiabatic passage [8–11]. We show below that the
ac Stark effect is capable of modifying the allowed optical
transitions resulting in spin-selective cycling transitions, which
could be used for a single-shot measurement.

Here, the ac Stark effect is induced by a circularly polarized
laser that is far detuned from the optical transitions. In the limit
of large detuning, the interaction between the laser and the QD
does not significantly populate the excited states, but still shifts
the energy levels coupled by that transition [6,20–22]. When
this ac Stark shift is much larger than the Zeeman splitting from
the Voigt magnetic field, then the polarization selection rules
are more similar to the Faraday configuration than the Voigt
configuration. Therefore, we call the combined Voigt field with
ac Stark shift the pseudo-Faraday configuration. Because the
pseudo-Faraday configuration is induced by an optical field
rather than a dc magnetic field, the system may be rapidly
switched between Voigt and pseudo-Faraday configurations.
This versatility will allow not only spin initialization and
manipulation, but also single-shot spin readout. We develop
a model to determine the time evolution of the density matrix
under resonant excitation in the pseudo-Faraday configuration,
and use it to demonstrate the feasibility of a single-shot readout
of an electron or hole spin state.

II. DESCRIPTION OF THE SYSTEM

A. Hamiltonian

The ground state of the QD can be the empty state, where
the lowest-lying conduction- and highest-lying valence-band
states are empty of electrons and holes respectively. Or the
ground state can contain a single charge, either an electron
or hole. If the QD is in a diode structure, the QD charge
can be stabilized and adjusted depending on the bias voltage
applied to the diode contacts [23]. While we use the case of
the negatively charged QD below, the situation is the same
for a positively charged QD. In the case of an n-i-Schottky
diode structure, the QD can have a single electron trapped
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FIG. 1. (Color online) Energy level structure of a charged quantum dot with (a) no magnetic field, (b) a Faraday magnetic field, and (c) a
Voigt magnetic field. Dipole-allowed transitions are shown with solid lines; weakly allowed transitions are shown with dashed lines.

in the bound conduction band state. It is the spin state of
this trapped electron that may serve as a qubit [2]. The
single-electron z-projection spin states are optically coupled
to charged exciton (trion) spin states comprising a pair of
electrons in the conduction band and a single heavy hole in the
valence band [24]. Because the electrons form a singlet state,
the spin of the trion is determined solely by the spin of the hole.
One of the electrons may recombine with the hole, emitting a
photon and returning the QD to the single-electron ground
state. We name the relevant eigenstates of the negatively
charged QD as |e,z+〉, |e,z−〉, |t,z+〉, |t,z−〉 where e means
the single-electron state, t means the trion state, and z± is for
the z projection of the spin. Due to conservation of angular
momentum, each trion state has a dipole-allowed transition
only to the electron state of matching spin, and the transition
to the opposite-spin electron state is only weakly allowed due
to slight light-hole/heavy-hole mixing [4,25,26]. The energy
level structure of the charged QD is shown schematically in
Fig. 1(a).

The Hamiltonian of a negatively charged QD in both a
magnetic field and an electric field is

H = �ω0(σ †
+σ+ + σ

†
−σ−) − �μ · �B − �d · �E, (1)

where ω0 is the transition frequency, σ+ and σ− are the
lowering operators for the z-projection spin-up and spin-down
manifolds, respectively, �μ and �d are the magnetic and electric
dipole operators, and �B and �E are the magnetic and electric
field amplitudes. The lowering operators are defined in terms
of the electron and trion z-projection spin states as

σ+ = |e,z+〉 〈t,z+|
(2)

σ− = |e,z−〉 〈t,z−| .
We decompose H into atomic (HA), magnetic dipole (HZ),
and electric dipole (HD) components (H = HA + HZ + HD).
With no magnetic field, the z± spin projection states are
degenerate. A Voigt configuration magnetic field is perpen-
dicular to the propagation direction of the emitted light, which
is typically the z direction, normal to the sample surface.
In that case �B = x̂Bx , and the magnetic dipole, or Zeeman,
Hamiltonian becomes [27]

HZ = μBBx[ge,x(s†e + se) + gh,x(s†h + sh)], (3)

where μB is the Bohr magneton, ge,x and gh,x are the electron
and hole g factors for a magnetic field in the x direction,
and se and sh are the electron and hole spin-flip operators,
respectively. The spin-flip operators couple states of similar
charge configuration but opposite spin. In terms of the electron

and trion z-projection spin states, the spin-flip operators are
defined as

se = |e,z−〉 〈e,z+|
(4)

sh = |t,z−〉 〈t,z+| .
The form of the Zeeman Hamiltonian in the Voigt configura-
tion leads to eigenstates that are superpositions of the zero-field
spin states.

To describe the ac Stark shift, we assume an oscillatory
form for the electric field, as in a single-frequency laser beam,
and perform the standard rotating wave approximation [28] to
obtain a Hamiltonian for the unperturbed QD and the electric
dipole interaction:

HA + HD = 1
2 {��1(σ †

+σ+ − σ+σ
†
+ + σ

†
−σ− − σ−σ

†
−)

+ d(E1+σ+ + E1−σ− + H.c.)}, (5)

where �1 = ω0 − ω1 is the detuning of the laser frequency ω1

from the QD resonance ω0; d is the dipole moment of the tran-
sitions; E1+ and E1− are the complex amplitudes of the left and
right circularly polarized components of the electric field; and
H.c. means Hermitian conjugate. We can further simplify this
expression by introducing the complex Rabi frequencies asso-
ciated with the two circularly polarized components: �1+ =
dE1+/� and �1− = dE1−/�. We are primarily interested in
circularly polarized light because it will produce an ac Stark
shift that reduces the effect of the magnetic coupling between
the spin states, as we will demonstrate below. Therefore, we
henceforth assume left-circularly polarized light (�1− = 0),
and without loss of generality we can treat �1+ as purely real.

Using HA, HZ , and HD from above, we can now write the
Hamiltonian from Eq. (1) of the charged QD system in the
rotating frame as

H0 = 1
2 ��1(σ †

+σ+ − σ+σ
†
+ + σ

†
−σ− − σ−σ

†
−)

+μBBx[ge,x(s†e + se) + gh,x(s†h + sh)]

+ 1
2 ��1+(σ †

+ + σ+). (6)

In the basis of the unperturbed QD z-projection spin states in
the rotating frame, the matrix representation of the Hamilto-
nian is

H0 =

⎡
⎢⎢⎢⎣

−��1/2 μBBxge,x ��1+/2 0

μBBxge,x −��1/2 0 0

��1+/2 0 ��1/2 −μBBxgh,x

0 0 −μBBxgh,x ��1/2

⎤
⎥⎥⎥⎦
(7)
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and the unperturbed eigenstates, or z basis, are represented as
vectors

|e,z+〉 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦ |e,z−〉 =

⎡
⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎦

(8)

|t,z+〉 =

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦ |t,z−〉 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦.

The interaction represented by �1+ and �1 is that of the far
detuned laser that will cause the ac Stark effect.

B. Zeeman effect

In the presence of a magnetic field in the Voigt geometry
with Bx > 0 (and no laser field), the eigenstates are no
longer the z± projections of the spin, but the x± projections,
which are superpositions of the z-projection states. We can
diagonalize the system Hamiltonian H0 with �1+ = 0 and
�1 = 0 to obtain the eigenvalues

λ1 = −μBBxge,x

λ2 = μBBxge,x

λ3 = −μBBxgh,x

λ4 = μBBxgh,x

and eigenstates

|e,x−〉 = 1√
2

⎡
⎢⎢⎢⎣

1

−1

0

0

⎤
⎥⎥⎥⎦ |e,x+〉 = 1√

2

⎡
⎢⎢⎢⎣

1

1

0

0

⎤
⎥⎥⎥⎦

(9)

|t,x+〉 = 1√
2

⎡
⎢⎢⎢⎣

0

0

1

1

⎤
⎥⎥⎥⎦ |t,x−〉 = 1√

2

⎡
⎢⎢⎢⎣

0

0

1

−1

⎤
⎥⎥⎥⎦.

These representations of the eigenstates are in the z± basis,
thus we can see that the x± projections are superpositions
of the z-projection states. The left side of Fig. 2 shows the
Zeeman splitting of the electron and trion energy levels for
a Voigt geometry field. In a Voigt configuration, transitions
from either trion spin state to either electron spin state are
allowed, as depicted schematically in Fig. 1(c). There are no
cycling transitions that might allow a single-shot fluorescence
measurement of the electron eigenstate.

C. ac Stark effect

In the absence of a magnetic field and in the large
detuning limit, the energy levels coupled by the electric dipole
interaction are modified by the ac Stark shift [29–32]. We can
see this by determining the eigenvalues of the Hamiltonian H0
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FIG. 2. (Color online) Splitting of the electron and trion spin
states due to the Zeeman effect (left) and the ac Stark effect (right).
The trion eigenfrequencies are plotted relative to the zero-field
transition resonance frequency ω0/2π (dashed), for a fixed laser
detuning of �1/2π = 2000 GHz.

from Eq. (7) with Bx = 0:

λ1 = −�

2
W1

λ2 = −�

2
�1

λ3 = �

2
W1

λ4 = �

2
�1,

where W1 =
√

�2
1 + �2

1+ is the generalized Rabi frequency
for the far-detuned laser. The eigenvectors of the Hamiltonian,
still expressed in the z basis, are

|v1〉 = 1
√

2
√
W2

1 − W1�1

⎡
⎢⎣

�1+
0

�1 − W1

0

⎤
⎥⎦ |v2〉 =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦

|v3〉 = 1
√

2
√
W2

1 + W1�1

⎡
⎢⎣

�1+
0

�1 + W1

0

⎤
⎥⎦ |v4〉 =

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦.

The eigenstates corresponding to the z+ manifold are no
longer purely electronic or trionic, but a superposition of both.
This occurs because they are coupled by the σ+ polarization
of the laser. If we make the assumption that the detuning �1

is much larger than the Rabi frequency �1+, then to first order
in the ratio �1+/�1 the generalized Rabi frequency is

W1 ≈ �1 + �2
1+

2�1
(10)
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and we can approximate the eigenvalues and eigenvectors as
follows:

λ1 = −�

2
�1 − ��2

1+
4�1

+ O

(
�2

1+
�2

1

)

λ3 = �

2
�1 + ��2

1+
4�1

+ O

(
�2

1+
�2

1

)
(11)

|v1〉 =

⎡
⎢⎣

1
0

−�1+/2�1

0

⎤
⎥⎦ + O

(
�2

1+/�2
1

)

|v3〉 =

⎡
⎢⎣

�1+/2�1

0
1
0

⎤
⎥⎦ + O

(
�2

1+/�2
1

)
.

Note that these eigenvectors are normalized only to first
order in �1+/�1. In the large detuning approximation, one
state, |v1〉, is more electronlike and the other, |v3〉, is more
trionlike. Because the Hamiltonians in Eqs. (5), (6), and (7)
are expressed in the rotating frame in order to make the
rotating wave approximation, the eigenvectors in Eq. (11) are
also expressed in the rotating frame. Therefore, to determine
the energies of the states we must add �(ω0 + ω1)/2 to
the eigenvalues for the trionlike states, λ3 and λ4, and add
�(ω0 − ω1)/2 to those for the electronlike states, λ1 and λ2:

E1 ≈ −��2
1+

4�1
E2 = 0

E3 ≈ �ω0 + ��2
1+

4�1
E4 = �ω0. (12)

We can see from the above expressions that a circularly
polarized far-detuned laser results in a spin-selective ac Stark
shift from the unperturbed energies. For the case of a σ+
polarized field that we consider here, the z+ manifold states
are shifted (E1 and E3), while the z− manifold states are
not (E2 and E4). For red detuning (�1 > 0), the electron z+
energy shifts downward and the trion z+ energy shifts upward
by the same amount. For blue detuning (�1 < 0), the energy
shifts would be the opposite.

The purpose of the ac Stark laser in this application is to
shift the energies without populating the trionlike states. A red-
detuned laser is preferred over a blue-detuned one because of
the lower probability of inelastic absorption for a red-detuned
laser at low temperatures. Inelastic absorption is the absorption
of a photon combined with either emission or absorption of
a phonon from the crystal lattice. Inelastic absorption of a
red-detuned photon would require the simultaneous absorption
of a phonon, which is improbable due to the low temperature
at which optical experiments on QDs are usually performed.
Inelastic absorption of a blue-detuned photon, however, would
require only the emission of a phonon, and that process can still
occur even at zero temperature. Therefore, a red-detuned ac
Stark laser causes the energy states to shift while minimizing
the probability of exciting the QD. Subsequently we will
assume that the ac Stark laser is red detuned.

The amount of state mixing in the z+ manifold is
proportional to �1+/�1, and can thus be reduced arbitrarily
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FIG. 3. (Color online) Evolution of eigenstate frequencies as a
function of first magnetic field, and then Rabi frequency with a
fixed magnetic field of 0.1 T and detuning �1/2π = 2000 GHz.
The diagram to the right shows the energy level structure in the
pseudo-Faraday configuration. Allowed transitions are shown as solid
lines and labeled with their polarizations. Weakly allowed transitions
are shown as dashed lines.

by increasing the detuning. The energy shift, however, is
proportional to �2

1+/�1. Thus, with enough laser power we
can have a situation where the state mixing can be made
negligible while maintaining a nonzero energy shift. The
right side of Fig. 2 shows the shifting of the energy levels
as a function of Rabi frequency �1+ at a fixed detuning of
�1/2π = 2000 GHz. At fixed large detuning, the energy shift
is quadratic in �1+, and for σ+ polarization it only affects the
z+ manifold states.

D. Pseudo-Faraday configuration

The Voigt geometry magnetic field couples the z+ spin
states to the z− spin states, while the ac Stark effect of a σ+
polarized laser shifts only the z+ spin states. In the presence
of both a magnetic field and a strong, far-red-detuned σ+
polarized laser, the spin projection of the eigenstates and the
polarization selection rules result from a competition between
the magnetic coupling between the z+ and z− states and the
ac Stark shift of the z+ states. When the ac Stark shift is very
large compared to the magnetic coupling, then the magnetic
field has little effect on the system. We call this situation the
pseudo-Faraday configuration because the energy structure,
eigenstates, and polarization selection rules are similar to
the Faraday magnetic field configuration where �B = ẑBz. We
can calculate the energy levels from the eigenvalues of the
Hamiltonian H0 from Eq. (7), but because that representation
is in the rotating frame, to obtain the eigenenergies we must
perform the same operation as for Eq. (12), above. The
analytical expressions for the pseudo-Faraday eigenvalues are
the roots of the fourth-order characteristic polynomial of H0,
thus we forgo including them here. Instead, we calculate them
numerically and discuss specific points of interest.

Figure 3 depicts the evolution of the QD eigenstate
frequencies (∝ energy) for finite magnetic field and large
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detuning, �1 � �1+. In the first section (left of the vertical
line) �1+ = 0 and the magnetic field increases, causing the
previously degenerate electron and trion levels to split and
the eigenstates to become the x± spin projections, which are
superpositions of the z± spin states. In this configuration,
transitions from either trion spin state to either electron spin
state are allowed; see Fig. 1(c). In the second section (right
of the vertical line), the magnetic field is fixed at 0.1 T and
�1+ is increased. The ac Stark effect shifts the z+ components
of the electron and trion states, but not the z− components.
When the ac Stark shift becomes much larger than the Zeeman
splitting, the eigenstates are more like those of the Faraday
configuration, except that the z− manifold is unperturbed.
The final pseudo-Faraday energy-level configuration is shown
to the right of the plot. The allowed transitions are circularly
polarized and shown with solid lines, while weakly allowed
transitions are shown with dotted lines.

As depicted in Fig. 3, the two trion states of the QD
each have two possible transitions, and the ratio of their
probabilities—or emission rates—is called the branching ratio.
The branching ratio quantifies the measurement back action
of the transition and will determine the number of cycles that
can be used for a single-shot measurement.

To produce effective cycling transitions suitable for spin
readout, the branching ratio must be much less than unity,
meaning that the spin-preserving transition is far more likely
than the spin-flipping transition. There must be no coherences
generated during the fluorescence process that would reduce
the correlation between fluorescence polarization and electron
spin state. Spontaneously generated coherence [33–35] (SGC)
and quantum interference [36,37] are examples of such
complicating coherent effects. As shown in the Appendix,
for the self-assembled QDs with nonzero in-plane hole g

factor considered here, SGC and quantum interference are
precluded in the Voigt configuration by the orthogonality of
the optical transitions [34,35]; see Fig. 1(c). In the pseudo-
Faraday configuration, they are precluded by the splitting
between the electron states being larger than the transition
linewidth [34,35].

The transition rates are determined using the eigenstates
{|ψi〉} of the system Hamiltonian H0 from Eq. (7) and the
dipole matrix operator d, which is derived in the Appendix and
is similar to that used in Ref. [38]. To obtain the branching ratio
for one of the trionlike states, |ψ4〉, we take the ratio of the rates
for the spin-flipping transition, |ψ4〉 → |ψ1〉, and the spin-
preserving transition, |ψ4〉 → |ψ2〉. Following the derivation
in the Appendix, this ratio reduces to

rB = |〈ψ1 | d | ψ4〉|2
|〈ψ2 | d | ψ4〉|2 . (13)

In Fig. 4, we plot the branching ratio as a function of Rabi
frequency for fixed magnetic field and typical g factors [39]:
ge,x = 0.47, gh,x = 0.24. At zero Rabi frequency the system
is in the Voigt configuration and the branching ratio is
unity. As the Rabi frequency increases, the branching ratio
reduces significantly, becoming similar to that of the Faraday
configuration. For a magnetic field of 0.1 T, detuning of
�1/2π = 2 THz, and Rabi frequency of �1+/2π = 200 GHz,
we calculate the branching ratio to be 0.02. Measured values of
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FIG. 4. (Color online) Evolution of the branching ratio from the
Voigt configuration (Bx = 0.1 T) to the pseudo-Faraday configura-
tion. In the pseudo-Faraday configuration, the branching ratio is 0.02.

branching ratio for solid-state systems range from 0.001 [40] to
0.04 [41]. Our prediction of the branching ratio for a QD in the
pseudo-Faraday configuration is within this range, suggesting
that it may be possible to perform a single-shot readout of the
electron spin-state via resonantly excited fluorescence.

III. SPIN READOUT OPERATION

A. Overview

We have demonstrated that applying a strong, far-red-
detuned, circularly polarized laser to a charged QD in a Voigt
configuration magnetic field results in a situation similar to
a Faraday magnetic field. We now discuss how a practical
spin readout scheme would work in the pseudo-Faraday
configuration. To perform a spin readout operation, we need
to excite the system in a spin-selective manner and detect the
fluorescence. Detection of a photon would correspond to the
electron being in a certain spin state, and the fidelity of
the measurement depends on the branching ratio and the spin
selectivity of the excitation.

In the pseudo-Faraday configuration, there are two spin-
preserving transitions that are nondegenerate and two weakly
allowed spin-flipping transitions that are nearly degenerate
(see Fig. 3). The spin-preserving transitions are circularly
polarized, σ+ and σ−, and can both be excited by linearly
polarized light. The energy difference between the two spin-
preserving transitions, however, makes resonant excitation
of one of them a spin-selective excitation even when linear
polarization is used. Thus, spin-selective excitation may
be accomplished by a linearly polarized laser tuned to
resonance with one of the spin-preserving transitions. The
fluorescence will be circularly polarized and may, therefore,
be distinguished from the linearly polarized laser scattering
by cross-polarized detection [17]. Alternatively, we can use
a modal discrimination method, as in Refs. [42] and [43],
wherein the resonant laser is introduced into the waveguide
mode of a planar microcavity that confines the laser scattering,
while the QD fluorescence is emitted into the orthogonal cavity
mode.

After the electron has undergone some operations (e.g.,
initialization and/or manipulation) in the Voigt configura-
tion, the ac Stark laser can be applied to transform to the
pseudo-Faraday configuration where readout will occur. The
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application of the ac Stark laser can be rapid compared
to the switching time of a magnetic field, but if the laser
field is applied too fast then the transition from Voigt to
pseudo-Faraday will be nonadiabatic. Prior to the application
of the ac Stark laser, the electron may be in any arbitrary
superposition of the two Voigt eigenstates, which are the
x± projection states of the spin. The transition from Voigt
to pseudo-Faraday configurations will occur adiabatically if
the ac Stark laser is turned on slowly relative to �/δe, where
δe = 2μBge,xBx is the energy splitting of the electron spin
states in the Voigt configuration. For a 0.1 T magnetic field
and typical electron g factor [39] ge,x = 0.47, the electron
spin precession period is �/δe = 120 ps. Therefore, the ac
Stark laser must have a rise time of about 1 ns or greater. If the
adiabatic condition is satisfied, the population of the x± state
in the Voigt configuration transitions without change to the
population of the z∓ state in the pseudo-Faraday configuration.
This is for the case of a σ+ polarized ac Stark laser; for a σ−
polarized laser, the mapping from x basis to z basis would
be the opposite. Due to the adiabatic mapping of the Voigt
x basis to the pseudo-Faraday eigenbasis, detection of the
spin-selectively excited fluorescence in the pseudo-Faraday
configuration is equivalent to a projective measurement of the
spin onto the x± states in the Voigt configuration. Furthermore,
a measurement in any arbitrary spin projection basis can be
performed by preceding the ac Stark laser with a rotation of
the electron spin Bloch sphere via stimulated Raman adiabatic
passage by additional laser pulses [9,11]. The capability of
using multiple measurement bases for identically prepared
states would allow full quantum state tomography [44] to be
performed on the electron spin state.

B. Floquet-Liouville supermatrix approach

To demonstrate the feasibility of a single-shot readout
of the electron spin state we numerically calculate the time
evolution of the QD density matrix ρ(t) under the conditions
outlined in the previous section. This requires the addition
of another electric dipole Hamiltonian describing a second,
near-resonant laser at a frequency ω2 that can spin-selectively
excite population from the electron states to the trion states. In
the rotating frame with rotation frequency ω1, the Hamiltonian
of the second laser interaction is oscillatory:

H1 = �

2

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

�∗
2+ 0 0 0

0 �∗
2− 0 0

⎤
⎥⎥⎥⎦ei(�2−�1)t + H.c., (14)

where �2 = ω0 − ω2 is the detuning of the near-resonant laser,
and �2+ = dE2+/� and �2− = dE2−/� are the complex Rabi
frequencies for the two circularly polarized components of
the electric field. The total Hamiltonian of the charged QD
system, including magnetic and electric field interactions, can
be expressed as

H (t) = H (0) + H (1)ei(�2−�1)t + H (−1)e−i(�2−�1)t , (15)

where H (0) is the time-independent H0 from Eq. (7) and H (±1)

are the two constant matrices in Eq. (14).

The time evolution of the density matrix can be determined
by solving the Liouville equation, which can be extended to
include spontaneous transitions by using a Lindblad superop-
erator L(ρ) [45]:

∂

∂t
ρ(t) = − i

�
[H (t),ρ(t)] + L(ρ). (16)

In solving the Liouville equation numerically using a standard
differential equation solving algorithm, the oscillatory nature
of the Hamiltonian H (t) requires the integration time step to be
much smaller than the oscillation period 2π/(�2 − �1). The
interesting system dynamics, however, occur on a time scale
much longer than the oscillation period. Thus it is inefficient
to use this form of the Liouville equation to numerically
solve for the long-term dynamics of the system. Instead,
we solve the equation using a Floquet-Liouville supermatrix
approach [46], which we describe here for the specific case of
interest. Similar Floquet theory approaches have been used to
describe the spectrum of resonance fluorescence from QDs
under bichromatic near-resonant excitation [47–50]. Here,
however, we need not the emission spectrum but the density
matrix evolution. The Floquet-Liouville supermatrix approach
allows analytical solutions to any order of approximation,
meaning that the density matrix at any time can be calculated
without needing to calculate all the intervening density matrix
values.

The unperturbed electron and trion eigenstates form a
complete orthonormal basis {|α〉} in the Hilbert space of the
QD states. In this basis, the density matrix operator can be
expressed using the matrix elements ραβ(t) ≡ 〈α|ρ(t)|β〉:

ρ(t) =
∑
αβ

ραβ(t) |α〉 〈β| . (17)

This expression is often considered a matrix in the state
basis {|α〉}, but it can also be considered a supervector
�ρ(t) in the operator basis {|α〉 〈β|} with elements ραβ(t).
This interpretation unfolds the 4 × 4 density matrix into a
16-dimensional density supervector. A similar transformation
can be performed on the Liouville equation, which is a 4 × 4
matrix equation in the Hilbert space of the QD states. Utilizing
the completeness of the {|α〉} basis,

1 =
∑

α

|α〉 〈α| (18)

we can express Eq. (16) as

∂

∂t

∑
αβ

ραβ |α〉 〈β|

=
∑
αβ

(
− i

�

∑
k

(Hαkρkβ −ραkHkβ)+[L(ρ)]αβ

)
|α〉 〈β| .

(19)

For clarity we have dropped the explicit time dependence
of H (t) and ρ(t). While the Hamiltonian can be expressed
as a 4 × 4 matrix operating on the density matrix, as in
the above equation, the Lindblad superoperator cannot. L(ρ)
represents population relaxation processes (e.g., spontaneous
emission) and decoherence processes (e.g., pure dephasing
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and all population relaxation). Population relaxation, or T1

processes, are the α = β elements of [L(ρ)]αβ :

[L(ρ)]αα =
∑

q

(−�αqραα + �qαρqq), (20)

where �αβ is the spontaneous transition rate from state |α〉 to
state |β〉. The first term in Eq. (20) represents transitions from
state |α〉 to all the other states; the second term is transitions
to state |α〉 from all the other states. The population relaxation
rates form a 4 × 4 matrix with elements �αβ that is not
generally symmetric: transitions from trion states to electron
states occur spontaneously, but not the reverse. Examining
Eq. (20), the effects of the diagonal elements �αα cancel out,
and therefore without loss of generality we can set them all to
zero. Decoherence, or T2 processes, are the α = β elements of
[L(ρ)]αβ :

[L(ρ)]αβ =
(

−1

2

∑
q

(�αq + �βq) − γαβ

)
ραβ, (21)

where γαβ is the pure dephasing rate for the coherence ραβ

between the states |α〉 and |β〉. The terms in the sum are the
decoherence caused by population relaxation. The second term
is pure dephasing, also called homogeneous broadening. The
pure dephasing rates form a 4 × 4 matrix with elements γαβ

that is symmetric: γαβ = γβα .
In contrast with the Hamiltonians, the Lindblad superoper-

ator cannot be expressed as a single 4 × 4 matrix operating on
the density matrix. However, with the above decompositions
of L(ρ) and identities such as

ραβ =
∑
μν

δαμδβνρμν, (22)

where δij is the Kronecker δ, we can rearrange Eq. (19) into
a supermatrix equation that allows the both the commutator
with H (t) and the Lindblad superoperator to be expressed as
a single 16 × 16 supermatrix operating on �ρ(t):

∂

∂t
�ρ(t) = − i

�
L(t) �ρ(t). (23)

Or, expressed using the supervector and supermatrix elements:

∂

∂t
ραβ(t) = − i

�

∑
μν

Lαβ;μν(t)ρμν(t). (24)

The elements of the Liouville supermatrix L(t) are

(α = β) Lαα;μν(t) = (Hαμ(t)δαν − Hνα(t)δαμ)

+ i�

(
�μαδμν −

∑
q

�αqδαμδαν

)

(α = β) Lαβ;μν(t) = (Hαμ(t)δβν − Hνβ(t)δαμ)

+ i�

(
−1

2

∑
q

(�αq + �βq) − γαβ

)

× δαμδβν. (25)

Although in Eq. (23) the Liouville equation is now
expressed as an ordinary differential equation with a single
matrix, the matrix still has an oscillatory time dependence.

Similar to how the Hamiltonian is separated in Eq. (15), we
can separate L(t) into a constant term and two oscillatory
terms:

L(t) = L(0) + L(1)ei(�2−�1)t + L(−1)e−i(�2−�1)t , (26)

where L(0) contains the constant part of H (t) and all of
the relaxation terms from L(ρ), and L(±1) contains only the
Hamiltonians H (±1). In detail, the supermatrix terms in L(t)
are

L
(±1)
αβ;μν = H (±1)

αμ δβν − H
(±1)
νβ δαμ

(α = β) L(0)
αα;μν = (

H (0)
αμδαν − H (0)

να δαμ

)
+ i�

(
�μαδμν −

∑
q

�αqδαμδαν

)
(27)

(α = β) L
(0)
αβ;μν = (

H (0)
αμδβν − H

(0)
νβ δαμ

)
+ i�

(
− 1

2

∑
q

(�αq +�βq)−γαβ

)
δαμδβν.

The Hamiltonian and thus the Liouville supermatrix both
oscillate at a frequency ν ≡ �2 − �1. Therefore, the density
supervector �ρ(t) will have oscillatory components at frequen-
cies that are harmonics of ν. We can use a Floquet expansion to
express the supervector as a sum of slowly varying supervector
coefficients multiplied by oscillatory functions:

�ρ(t) =
+∞∑

m=−∞
�ρ(m)(t)eimνt . (28)

Substituting Eqs. (26) and (28) into Eq. (23) results in an
infinite series of coupled linear differential equations for the
supervector coefficients:

∑
m

(
∂ �ρ(m)

∂t
+ imν �ρ(m)(t)

)
eimνt = − i

�

∑
np

L(n) �ρ(p)ei(n+p)νt .

(29)

We invoke single-mode Floquet theory [46] to simplify
this infinite series of equations. To describe the rapidly
oscillating factors, we define a Fourier state space B(F ) =
{|∞〉 , . . . , |1〉 , |0〉 , |−1〉 , . . . , |−∞〉} where the state |m〉
represents oscillation at the mth harmonic of the Hamiltonian
oscillation frequency ν:

〈t |m〉 = eimνt . (30)

We also define operators on the Fourier space:

Fz |m〉 = m |m〉 Fz ≡
+∞∑

n=−∞
n |n〉 〈n|

(31)

Fm |n〉 = |n + m〉 Fm ≡
+∞∑

n=−∞
|n + m〉 〈n| .

The supermatrix L(t) is an operator on the 16-dimensional
Hilbert space defined by B(H ) = {|α〉 〈β|}. We define the Flo-
quet space as the tensor product between the Hilbert space and
Fourier space: BF = B(F ) ⊗ B(H ). Using Floquet space, we
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can express the finite-dimensional time-dependent Liouville
supermatrix evolution equation (23) as an infinite-dimensional
but time-independent Floquet-Liouville supermatrix equation:

∂

∂t
�ρF (t) = − i

�
LF �ρF (t), (32)

where the Floquet-Liouville supermatrix is

LF =
+∞∑

n=−∞
(Fn ⊗ L(n)) + �ν(Fz ⊗ I(H )) (33)

and I(H ) is the identity operator in Hilbert space. Expressed as
a matrix in Fourier space, LF is

LF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0 0 0 0 0

. . . L(0) + 2νI(H ) L(1) 0 0 0 0

0 L(−1) L(0) + νI(H ) L(1) 0 0 0

0 0 L(−1) L(0) L(1) 0 0

0 0 0 L(−1) L(0) − νI(H ) L(1) 0

0 0 0 0 L(−1) L(0) − 2νI(H )
. . .

0 0 0 0 0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

Each element of the above expression is a 16 × 16 Liouville
supermatrix in the operator basis of Hilbert space. The Floquet
space density supervector is an infinite-dimensional vector:

�ρF (t) =
∑
m

�ρ(m)(t) |m〉 =
∑
mαβ

ρ
(m)
αβ (t) |m〉 ⊗ |α〉 〈β| . (35)

Expressed as a vector in Fourier space, �ρF (t) is

�ρF (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

�ρ(1)(t)

�ρ(0)(t)

�ρ(−1)(t)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Because the Floquet-Liouville supermatrix in Eqs. (33)
and (34) is time independent, the solution to Eq. (32) is simple
and well known:

�ρF (t) = e−iLF t/� �ρF (0), (37)

where �ρF (0) is the initial Floquet supervector, which can be
expressed in terms of the initial Liouville supervector, �ρ(0), as

�ρF (0) = ( |0〉 ⊗ �ρ(0)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0

�ρ(0)

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

We can now determine the Floquet space density super-
vector at any arbitrary time simply by applying the evolution
operator UF (t) ≡ e−iLF t/� to the initial conditions �ρF (0). In
the end, however, what is needed is the Hilbert space density
supervector, which can be obtained from �ρF (t) by applying

the operator

OF (t) ≡
∑

n

einνt 〈n| ⊗ I(H ). (39)

The operator OF (t) traces over just the Fourier space, leaving
the Hilbert space density supervector. It is an infinite row
vector in Fourier space, whose elements are Hilbert space
supermatrices:

OF (t)= [· · ·, ei2νt I(H ), e
iνt I(H ), I(H ), e

−iνt I(H ), e
−i2νt I(H ), · · ·].

(40)

Finally, the Hilbert space density supervector at an arbitrary
time with arbitrary initial conditions can be determined from
the expression

�ρ(t) = OF (t)UF (t)[|0〉 ⊗ �ρ(0)]. (41)

Though the supermatrices involved are in principle infinite
dimensional, in practice the Fourier space only needs a few
dimensions, after which the space can be truncated without
significantly altering the results of the computation. The
solution �ρ(t) in Eq. (41) can be calculated in a computationally
efficient manner because it requires no numerical integration,
only specification of the initial conditions and matrix algebra.

C. Simulations

We can now numerically calculate the density matrix evolu-
tion under experimental conditions. A spin readout operation
will consist of resonant excitation in the pseudo-Faraday
configuration where the QD is in one of the two electronlike
eigenstates, z+ or z−. Each electronlike eigenstate has one
strong and one weakly allowed optical transition. To perform a
projective measurement on the z− eigenstate, for example, the
resonant laser is tuned to the allowed σ− polarized transition
(see Fig. 3) and the fluorescence is detected. Detection of a
photon is interpreted as confirmation that the electron was in
the z− eigenstate. The fidelity of the spin readout depends
on the specificity of the excitation and fluorescence. If the
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resonant laser is tuned to the σ− polarized transition, but the
electron is in the z+ spin state, photon emission may still be
detected, giving an erroneous signal.

To predict the fidelity of the spin readout operation,
we simulate it using typical QD parameters and a linearly
polarized resonant laser tuned to the σ− cycling transition.
The experimentally controllable parameters used are: Bx =
0.1 T, �1+/2π = 200 GHz, �1/2π = 2 THz, �2+/2π =
�2−/2π = 0.5 GHz. Note that the ac Stark mixing parameter
is kept small (�1+/2�1 = 0.05), but the ac Stark shift is still
large: �2

1+/2�1 = 2π (10 GHz). In order to have the excitation
laser in resonance with the σ− cycling transition, the detuning
�2 is chosen to match the difference between the eigenvalues
of the time-independent pseudo-Faraday Hamiltonian H (0) that
correspond to the z− electronlike and trionlike states. The
QD parameters would not be controllable in practice, except
by the choice of QD, but typical values are used here. The
electron and hole g factors [39] are ge,x = 0.47, gh,x = 0.24.
The population relaxation rates �αβ used in the simulation are
all zero except for: the spontaneous emission rates [51] �31 =
�42 = 1.54 GHz; the weakly allowed emission rates [19]
�41 = �32 = 3.42 MHz; and the electron spin decay rates [3]
�21 = �12 = 50 Hz. The dephasing rates γαβ used are: trion
dephasing [52] γ31 = γ13 = γ42 = γ24 = 1.72 GHz; electron
spin dephasing [53] γ12 = γ21 = 12.6 MHz.

Using the typical QD parameters above, we can recalculate
the branching ratio using the formalism developed in the
previous section. It agrees with the value of 0.02 calculated
using Eq. (13). It can also be checked that at zero magnetic
field the system reduces to two nearly uncoupled two-level
systems. The remaining weak coupling comes from the weakly
allowed spin-flipping transitions caused by slight heavy-
hole/light-hole mixing found in typical InGaAs/GaAs QDs
[4,26,38,39,54–57].

We numerically calculate the density matrix evolution
during spin readout for two initial conditions: the z− and z+
electronlike states. The photon emission rate is proportional to
the population in the trion states and is given by:

R(t) = �31ρ33(t) + �42ρ44(t). (42)

The average number of detected photons is the overall
detection efficiency ε multiplied by the time integral of R(t)
over the duration T of the detection window:

D(T ) = ε

∫ T

0
R(t)dt. (43)

Figure 5(a) shows the photon emission rate R(t) as a
function of time after resonant excitation begins. When the
initial state is the z− electron state (solid red curve) the
emission starts strong and decays as the population is pumped
into the z+ state, which is not being resonantly excited. When
the initial state is the z+ electron state (dotted blue curve)
the emission rate starts very low but rises slightly as a small
amount of population is pumped into the z− electron state.
Figure 5(b) shows the average number of photons detected
D(T ) as a function of the detection window duration for
the two initial conditions. When the initial state is the z+
electron state (dotted blue curve), photon emission is relatively
unlikely because the excitation laser is not resonant with the
allowed σ+ transition; emission is still possible, however, due
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FIG. 5. (Color online) Spin readout operation under σ− resonant
excitation. In (a) and (b) the two initial conditions are the z−
electron state (solid red curve) and the z+ electron state (dashed blue
curve). (a) Photon emission rate after σ− resonant excitation begins.
(b) Average number of photons detected as a function of detection
window duration. (c) Fidelity of the spin measurement as a function
of detection window duration. The vertical dashed line indicates the
optimum detection window.

to weak remaining magnetic spin mixing. When the initial
state is the z− electron state (solid red curve), photon emission
is relatively likely. The fidelity of the spin measurement
is F = (1 − pz+ + pz−)/2 where pz± is the probability of
detecting at least one photon when the initial state is z±. The
fidelity is plotted in Fig. 5(c) as a function of detection window
duration. The maximum fidelity occurs for a detection window
of 165 ns, indicated by a vertical dashed line, beyond which
the value of pz− saturates but pz+ keeps increasing. For the
optimum detection window duration the calculated fidelity is
76.2%, which is slightly lower than the 82.3% measured in the
true Faraday configuration in Ref. [19]. The fidelity would be
improved with larger ac Stark shift, smaller Voigt magnetic
field, smaller electron spin dephasing and decay rates, or
smaller trion dephasing rate. The values chosen here are either
typical or feasible for real experiments.

When the average number of photons detected is greater
than unity, we can say that a single-shot measurement of the
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electron spin state is possible [19]. For these calculations,
we have chosen an overall detection efficiency ε = 2.5% that
results in an average number of detected photons greater
than 1 for the optimum detection window duration: for
T = 165 ns, D(T ) = 1.01. Such an efficiency is relatively
high, but should be achievable in recently developed photonic
trumpet waveguides [58], which have a demonstrated first-
lens collection efficiency of 75%. Because application of
a nonresonant laser is necessary for the ac Stark effect, a
sample design such as the trumpet that achieves high collection
efficiency through nonresonant effects is necessary, which
eliminates most microcavities from consideration.

IV. CONCLUSION

We have described a scheme to accomplish a single-shot
readout of the spin state of an electron trapped in a quantum
dot while maintaining the capability to perform arbitrary
coherent manipulation of the spin state. A pseudo-Faraday
configuration is produced by application of a Voigt geometry
magnetic field and a far-red-detuned, circularly polarized
laser that causes a spin-dependent ac Stark shift. The spin
readout is accomplished in the pseudo-Faraday configuration
via spin-selective fluorescence from spin-preserving cycling
transitions. For typical quantum dot parameters and feasible
detection efficiency, the spin measurement can be accom-
plished faster than the state is disturbed by the back action,
resulting in a single-shot readout. The fidelity of the readout
is limited by the remaining spin-state mixing in the pseudo-
Faraday configuration that is caused by the Voigt geometry
magnetic field. Because the laser that produces the ac Stark
shift can be switched on and off rapidly compared to the
spin lifetime, this scheme offers the possibility to perform
coherent spin manipulation in the Voigt configuration and then
single-shot spin readout in the pseudo-Faraday configuration.
These capabilities comprise all three necessary single-qubit
operations and will allow the investigation of more complex
control and manipulation sequences.
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APPENDIX: BRANCHING RATIO

The branching ratio for the pseudo-Faraday configuration
can be derived by considering the four-level charged QD sys-
tem interacting with the quantized multimode electromagnetic
field. Extending the derivation in reference [28] to four levels,
the state of the system as a function of time is

|�(t)〉 = C4(t) |ψ4,vac〉 + C3(t) |ψ3,vac〉
+

∑
k

{C2k(t) |ψ2,k〉 + C1k(t) |ψ1,k〉} (A1)

and the interaction Hamiltonian in the rotating wave approxi-
mation is

V = �

∑
k

∑
i=1,2

j=3,4

{gij,kσij a
†
ke

−i(ωji−ωk)t + H.c.}, (A2)

where the |ψi〉 are the eigenstates of the system, σij =
|ψi〉 〈ψj | is the QD lowering operator, ak is the photon
annihilation operator for the electromagnetic field mode with
wave vector k and frequency ωk , ωji is the transition frequency
between states |ψj 〉 and |ψi〉, gij,k is a coupling constant, and
H.c. means the Hermitian conjugate. The coupling constant is
given by

gij,k ≡ − �Pij · ε̂kEk/�, (A3)

where �Pij ≡ e 〈ψi | r |ψj 〉 is the electric dipole matrix element
in the eigenbasis and in general is a complex vector, ε̂k is the
polarization vector of the k mode, and

Ek =
(

�ωk

2ε0V

)1/2

, (A4)

where ε0 is the permittivity of free space, and V is the
quantization volume.

To determine the time evolution of the amplitude coeffi-
cients of |�(t)〉 we substitute Eq. (A1) into the interaction
picture Schrödinger equation and equate the coefficients of
similar kets. The result is a series of coupled linear differential
equations:

Ċ4 = −i
∑

k

(g∗
14,ke

i(ω41−ωk)tC1k + g∗
24,ke

i(ω42−ωk)tC2k)

(A5)

Ċ3 = −i
∑

k

(g∗
13,ke

i(ω31−ωk)tC1k + g∗
23,ke

i(ω32−ωk)tC2k)

(A6)

Ċ2k = −i
∑

k

(g24,ke
−i(ω42−ωk)tC4 + g23,ke

−i(ω32−ωk )tC3)

(A7)

Ċ1k = −i
∑

k

(g14,ke
−i(ω41−ωk)tC4 + g13,ke

−i(ω31−ωk)tC3).

(A8)

These equations can be solved following the usual Weisskopf-
Wigner theory [28]. First, we directly integrate Eqs. (A7)
and (A8) and substitute them into Eqs. (A5) and (A6). Then
we assume that the k modes are closely spaced, which changes
the sum over k into an integral over k space. The result is two
coupled linear differential equations for C4 and C3, one of
which is

Ċ4 = − 2V

(2π )3�2

∫
d3kE2

k

∫ t

0
dt ′

× {| �P14 · ε̂k|2ei(ω41−ωk)(t−t ′)C4(t ′) + ( �P∗
14 · ε̂k)

× ( �P13 · ε̂k)ei(ω41−ωk)t e−i(ω31−ωk)t ′C3(t ′)

+ | �P24 · ε̂k|2ei(ω42−ωk)(t−t ′)C4(t ′) + ( �P∗
24 · ε̂k)

× ( �P23 · ε̂k)ei(ω42−ωk)t e−i(ω32−ωk)t ′C3(t ′)}. (A9)
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Each term of the integrand in Eq. (A9) has a factor of the
form

(u · ε̂k)(v · ε̂k), (A10)

where, e.g., u = �P∗
14 and v = �P13. Since ε̂k is a unit vector

these factors only depend on the angular part of the integral
over k space. We define a general integral as follows:

A ≡
∫

d2�k(u · ε̂k)(v · ε̂k), (A11)

which can be directly integrated to give

A = 4π

3
u · v. (A12)

Thus, the angular parts of the k-space integral in Eq. (A9) can
be replaced using Eq. (A12) with appropriate substitutions.
We can continue the Weisskopf-Wigner theory with the
approximation that the coefficients C4(t) and C3(t) evolve
much slower than the oscillation frequency ω (see Ref. [28]
for details). This allows us to perform the integrals over k and
t ′ in Eq. (A9) to obtain

Ċ4 = − 1
2 (�41 + �42)C4(t) − 1

2 (β31 + β32)eiω43tC3(t),
(A13)

where the spontaneous decay rates �41 and �42 are

�ji ≡ 1

4πε0

4ω3
ji

3�c3
| �Pij |2 (A14)

and the transition rates β31 and β32 are

βji ≡ 1

4πε0

4ω3
ji

3�c3
( �P∗

il · �Pij ), (A15)

where l = 4 when j = 3 and vice versa. An expression similar
to Eq. (A13) can be obtained for Ċ3 by switching all the indices
3 and 4.

Equation (A13) directly shows the possibility of quantum
interference through coupling of the trion states by the βji

terms [36,37]. The possibility of spontaneously generated
coherence [33–35] (SGC) in the electron spin states can
be demonstrated by solving Eq. (A13) and the companion
equation for C3, and then substituting them into Eqs. (A5)–
(A8). To use fluorescence as a spin readout, we must avoid
both SGC and quantum interference. These quantum coherent
processes require two necessary conditions [34–37]: (i) the
relevant transition dipole moments must be nonorthogonal, and
(ii) the frequency splitting between the coherent states must
be less than the radiative linewidth. For SGC, the relevant
dipole moments are those of the transitions from one trion
state to the two electron states, meaning �P∗

14 · �P24 = 0. SGC
also requires the frequency splitting between the electron
states to be small compared to the radiative rate, meaning
|ω21| � �41 + �42. For quantum interference, the relevant
dipole moments are those that appear in Eq. (A15), and the
frequency splitting between the trion states must be small
compared to the radiative rate, meaning |ω43| � �41 + �42.
In the pseudo-Faraday configuration, the ac Stark splitting
is greater than the typical radiative linewidth of 1 GHz
(see Fig. 3). Therefore, in the pseudo-Faraday configuration
condition (ii) is not fulfilled for either SGC or quantum

interference, and fluorescent spin readout will be free from
their complicating effects.

To determine whether condition (i) is fulfilled for either
SGC or quantum interference, we need to know the form of
the appropriate dipole moments, �Pij . From the definition of
�Pij , above, we can use the completeness of the Faraday basis
{|α〉} from Eq. (8) to obtain

�Pij =
∑
αβ

〈ψi |α〉 〈β|ψj 〉 qαβ, (A16)

where qαβ ≡ e 〈α| r |β〉 is the electric dipole vector matrix
element in the Faraday basis. Note that qαβ = q∗

βα and some
of the qαβ are zero. For example, qαα = 0 by parity for
all values of α. Also, q43 = q21 = 0 at optical frequencies.
From conservation of angular momentum we know that the
polarization selection rules of the Faraday configuration are
such that the allowed transitions are |1〉 ↔ |3〉 and |2〉 ↔ |4〉;
see Figs. 1(a)–1(b). Thus, we can assert that only four of
the remaining qαβ are nonzero: q13, q31, q24, and q42. We
know that in the Faraday configuration the allowed transitions
are circularly polarized when the photon is emitted in the z

direction. The dipole moments for such transitions are

q13 = 1√
2
(x̂ + iŷ)

(A17)
q24 = 1√

2
(x̂ − iŷ).

Combining Eqs. (A16), (A17), and (2) we can define the
electric dipole operator in the Faraday basis as

d = q13σ+ + q24σ− + H.c. (A18)

Now for any Hamiltonian H0 from Eq. (7) with eigenstates
{|ψi〉} we can calculate the dipole moments using

�Pij = 〈ψi | d |ψj 〉 . (A19)

For the self-assembled QDs considered here, the in-plane
hole g factor is nonzero [39]. Therefore, in the Voigt con-
figuration the eigenstates are the x-projection spin states of
Eq. (9) for both the trion and electron states. Using Eq. (A19)
and the Voigt configuration eigenstates, we can show that
in the Voigt configuration condition (i) is not fulfilled for
either SGC or quantum interference. This is due to the
orthogonality of the transitions; see Fig. 1(c). In contrast to
the self-assembled QDs considered here, interface fluctuation
QDs such as those considered in Refs. [33,34] have zero
in-plane hole g factor, resulting in nonorthogonal transition
dipole moments in the Voigt configuration, which cause
SGC.

In the pseudo-Faraday configuration, both the allowed and
weakly allowed transitions from one trion state are circularly
polarized with the same helicity; the transitions from the other
trion state have the opposite helicity. Thus, condition (i) is
fulfilled for SGC, though only weakly because one of the
transitions is only weakly allowed. For quantum interference,
condition (i) is fulfilled in the pseudo-Faraday configuration,
but numerical calculations show that β31 and β32 have opposite
signs and similar magnitudes, so the quantum interference term
in Eq. (A13) is negligible.

In summary, neither SGC nor quantum interference are a
concern for spin manipulation and fluorescent spin readout
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as described here. For the Voigt configuration with small
magnetic field, condition (ii) is fulfilled, but condition (i)
is not. For the pseudo-Faraday configuration, condition (i)
is weakly fulfilled, but condition (ii) is not. In the regime
between the Voigt and pseudo-Faraday configurations there
is the possibility of coherent effects, but the system will
spend negligible time there. Regarding spin readout, only
the pseudo-Faraday configuration is used; therefore, we
do not expect coherent effects to complicate the correla-
tion between fluorescence polarization and electron spin
orientation.

The branching ratio is the ratio of the spontaneous decay
rates �14 and �24, which depend on the dipole moments

according to Eq. (A14). The difference between the transition
frequencies ω41 and ω42 is much smaller than their magnitude,
so we can approximate the branching ratio rB as

rB = | �P14|2
| �P24|2

. (A20)

Substituting Eq. (A19) into (A20) we obtain Eq. (13)

rB = |〈ψ1 | d | ψ4〉|2
|〈ψ2 | d | ψ4〉|2 .
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