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Optical properties of surfaces with supercell ab initio calculations: Local-field effects
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Surface optical and electronic properties are crucial for material science and have implications in fields as
various as nanotechnology, nonlinear optics, and spectroscopies. In particular, the huge variation of electronic
density perpendicular to the surface is expected to play a key role in absorption due to local-field effects.
Numerous state-of-the-art theoretical and numerical ab initio formalisms developed for studying these properties
are based on supercell approaches, in reciprocal space, due to their efficiency. In this paper, we show that the
standard scheme fails for the out-of-plane optical response of the surface. This response is interpreted using
the “effective-medium theory” with vacuum and also in terms of interaction between replicas, as the supercell
approach implies a periodicity which is absent in the real system. We propose an alternative formulation, also
based on the supercell, for computing the macroscopic dielectric function. Application to the clean Si(001) 2 × 1
surface allows us to present the effect of the local fields for both peak positions and line shape on the bulk and
surface contributions. It shows how local fields built up for the in-plane and out-of-plane dielectric responses of
the surface. In addition to their conceptual impact, our results explain why the standard approach gives reliable
predictions for the in-plane components, leading to correct reflectance anisotropy spectra. Our scheme can be
further generalized to other low-dimensional geometries, such as clusters or nanowires, and open the way to
nonlinear optics for surfaces.
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I. INTRODUCTION

Optical and electronic properties of materials result from
the mixed contributions of bulk and surface responses. Indeed,
due to the huge variation of the electronic density, one
expects significative modifications of surface properties as
compared to the bulk and of spectroscopic responses: it is
of major importance to understand how one should modify
the formalisms developed for bulk materials for access to
surface properties. Actually, this fundamental question has
many practical implications: optical spectroscopies are now
used routinely for monitoring and controlling the surface
growth in real time [1]; moreover, it is now well established
that physical properties of nanoscaled systems are strongly
influenced by their surface behavior [2].

Over the last few years, experimental and theoretical
approaches have considerably advanced, deepening our un-
derstanding of the processes occurring at the surface of
materials. However, these optical properties arise from an
intricate interplay of numerous effects, and achieving the
correct theoretical description of surfaces is far from simple.
First of all, the atomic relaxation at the interface with vacuum
is responsible for a change in the electronic properties of
the material, creating, for instance, surface states that can be
located in the gap of the material [3]. Many-body theories
rely on the knowledge of the dynamically screened Coulomb
interaction. How the presence of the surface will influence
this quantity is still debated [4]. Other effects related to
many-particle physics, such as the electron-hole interaction
occurring in all electronic excitations, must be properly
included. However, their precise description for surfaces is
quite involved [5].
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Moreover, due to the induced polarization, the fluctuations
of the total electric field at the atomic scale, the so-called local
fields (LF), play a key role in the physics of surfaces. Indeed,
a strong effect of local fields is expected perpendicular to
the surface plane due to the abrupt change in the electronic
density. The impact of local fields on surface optical spectra
has been discussed for years, especially in the context of the
so-called intrinsic or bulk-originated effects [6,7]. Analytic
expressions for the surface response have been presented, but
their numerical evaluation has often been restricted to simple
cases [8–11].

More recently, accurate calculations have been performed
on complex surfaces [12–14], but most efforts have been
dedicated to in-plane components, and very little information
is available concerning the out-of-plane dielectric response of
surfaces ε⊥ (see, however, Ref. [15]). This knowledge is of
particular importance for nongrazing light incidence and for
all polarization (except for the simple case of s-polarized light)
when both in- and out-of-plane components mix. Moreover, re-
flection coefficients depend on the polarization of the incoming
field, and the mixing of the various components becomes even
more important for nonlinear optics [16]. Knowing how the
presence of LF at the surface will influence all these quantities
is essential to achieving their correct theoretical description.

Due to the ease and efficiency of the plane-wave basis set
in reciprocal space, most numerical implementations used in
condensed matter rely on three-dimensional periodic boundary
conditions. Since the surface keeps two-dimensional in-plane
periodicity, this framework is still considered to be appropriate
to study these systems. The standard way to model a surface
is thus to use a slab. The slab is composed of a slice of bulk
whose thickness has to be large enough that the interaction
between the two surfaces of the slice is small to mimic an
infinitely thick slab. The slab is embedded in a supercell with
vacuum, whose thickness is chosen so that neighboring slabs

1098-0121/2015/92(24)/245308(10) 245308-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.245308
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have negligible interactions. This supercell is repeated to form
a fully three-dimensional periodic structure [17–20].

In this paper, within the ab initio framework of time-
dependent density-functional theory (TDDFT) [21], we
demonstrate that, when taking into account local-field effects,
the supercell framework applied in the standard way does
not give the correct dielectric response function for the
component perpendicular to the surface, in contrast to the
in-plane components, and we propose a modified procedure to
solve this problem.

This paper is organized with the following outline: in Sec. II,
we show that the response, calculated including the local-field
effects within the standard supercell approach, does not give
the correct dielectric function for the out-of-plane component.
This result is confirmed using a mixed-space approach in
Sec. III, and we demonstrate in Sec. IV that the dielectric
response function for the out-of-plane component given by
the standard supercell approach actually corresponds to an
“effective-medium” calculation with matter and vacuum and
not to the response of the slab. In Sec. V, we propose an
alternative method that is based on the supercell approach but
allows us to obtain the correct dielectric function for all the
components.

II. STANDARD SUPERCELL CALCULATIONS

We have chosen to study the clean Si(001) 2 × 1 surface,
which is characterized by asymmetric dimers formed between
the two topmost Si atoms. The surface has been studied
with the experimental lattice constant of 5.43 Å, and the
slab is composed of N = 16 atomic layers, occupying a
volume Vmat, corresponding to a material slab of 21.72 Å.
The out-of-plane direction refers to the z axis and is defined
in the crystallographic direction [001], whereas the plane of
the surface corresponds to the x axis ([11̄0]) and the y axis
([110]), as shown in Fig. 1 (left panel).

As a first step, we use density-functional theory (DFT),
within the local-density approximation (LDA), to obtain
the structure and ground-state electronic properties. DFT

FIG. 1. (Color online) Left: The supercell corresponding to void
1, as explained in the text. Right: Electronic density in the x-z plane
obtained from the DFT calculation. The x and z axes are defined
as the crystallographic directions, [11̄0] and [001], respectively. The
density is more important in the dark regions. Red lines correspond
to the limit of the matter, obtained for the supercell void 1.

calculations and structural optimizations were performed with
the ABINIT code [22], using norm-conserving Troullier-Martins
pseudopotentials for the interaction of the electrons with
the ionic cores, and the exchange-correlation interaction is
described within the Teter-Pade parametrization [23]. We have
obtained a dimer buckling of 0.721 Å and a dimer length of
2.301 Å, which is similar to previous studies [24].

In the second step, the quantity governing the optical
properties of a crystal, namely, the macroscopic dielectric
function εM , is obtained in the framework of TDDFT [21].
In frequency and reciprocal space, εM is related to the inverse
of the microscopic dielectric matrix ε−1 by [25]

εM (ω) = lim
q→0

1

ε−1
G=G′=0(q; ω)

, (1)

where q denotes a vanishing wave vector and G, G′ are
reciprocal lattice vectors corresponding to the volume of the
supercell. The inverse of the microscopic dielectric matrix is
given by ε−1

GG′(q; ω) = 1 + v(q + G)χGG′(q; ω), where v(q +
G) = 4π/|q + G|2 is the Coulomb potential and χ is the
density response function. χGG′(q; ω) is obtained by solving a
Dyson-like matrix equation [25]:

χGG′(q; ω) = χ0
GG′(q; ω)

+
∑

G′′G′′′
χ0

GG′′ (q; ω)(v + fxc)G′′G′′′ (q; ω)

×χG′′′G′(q; ω), (2)

where the Coulomb potential v is at the origin of the LF and fxc

is the exchange-correlation kernel. In the following, we will
restrict ourselves to the random-phase approximation (RPA),
where fxc = 0, as we are interested here in the description
of the local fields. Nevertheless, our results are general and
can be used for any kernel fxc. χ0 is the independent-particle
response function, defined as

χ0
GG′(q; ω)

= 2

NkVcell

∑
mnk

(fn,k − fm,k+q)

×〈n,k|e−i(q+G)r|m,k+q〉〈m,k+q|ei(q+G′)r|n,k〉
(Enk−Emk+q+ω+iη)

, (3)

where fn,k is the Fermi occupation number of the Bloch state
|n,k〉 with the energy Enk. Nk is the number of k points in the
first Brillouin zone, Vcell refers to the volume of the supercell, ω
is the frequency, and η is a vanishingly small positive quantity.
Dielectric functions have been calculated using the TDDFT
code DP [26]. These results have been carefully converged,
and the convergence parameters are given in Table I, where
Nb is the number of bands and NG is the number of G vectors.

TABLE I. Parameters used for obtaining the spectra.

Parameters Void 1 Void 2 Void 3

Nk 256 256 256
Nb 300 300 400
NG 299 391 399
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FIG. 2. (Color online) Imaginary part (top panel) and real part
(bottom panel) of the in-plane (ε||) and out-of-plane (ε⊥) dielectric
functions for three different sizes of the supercell. Local-field effects
are not included.

The calculation without local field (NLF) corresponds to
the case where all the components of the Coulomb potential
vG, except the long-range term v0, have been set to zero in
Eq. (2). In that case, it can be shown that εM = 1 − v0χ

0
00,

with χ0 defined by Eq. (3).
We have performed three calculations, changing the size of

the vacuum in the supercell while the thickness of matter is kept
fixed, equal to 21.72 Å (N = 16 atomic layers). The different
supercells correspond to vacuum sizes of 21.72 Å (void 1),
43.44 Å (void 2), and 65.17 Å (void 3), as schematically shown
in Fig. 2.

The results of the NLF calculation for both imaginary and
real parts are presented in Fig. 2 for the three supercells.
The out-of-plane component ε⊥ is along the z direction,
and we have chosen to show only the x direction for the
in-plane component, denoted ε||, since the component along
y has the same behavior. We also present the result of a
renormalized supercell calculation, using Vmat instead of Vcell

for the normalization volume in Eq. (3). In that case, the results
of the calculations for the different cells are the same, showing

FIG. 3. (Color online) Imaginary part (top panel) and real part
(bottom panel) of ε⊥ for the three different sizes of the supercell,
including local fields. The inset shows the bulk response for
comparison.

that the only dependence on the volume of the cell is in the
explicit volume prefactor in Eq. (3).

Including the local-field effects, the results of these calcu-
lations for the in-plane components (x or y, not reported here)
are very similar to Fig. 2, showing mainly a dependence on
the vacuum size in terms of a normalization factor Vmat/Vcell.

In Fig. 3, we report the out-of-plane dielectric response
ε⊥ of the Si(001) 2 × 1 surface in the presence of local
fields [see Eq. (2)] for the three different sizes of the vacuum
region previously defined. The position of the peak shifts in
energy, above 10 eV, and the results strongly depend on the
size of the vacuum introduced in the supercell in a way that
cannot be attributed to the normalization volume. Real parts
behave like imaginary parts. Note also the drastic change in
the peak position and amplitude compared to the bulk silicon,
presented in the inset (black solid line) with one of the supercell
calculations (void 1, red dashed curve). The absorption peak
for the out-of-plane direction moves towards the plasmon of
the slab, given by −Im ε−1

M , as it comes from Eq. (1) when
the volume of the supercell is close to infinity (in that case
Re ε−1

M → 1 and Im ε−1
M → 0; see Fig. 3). But this result does

not correspond to the dielectric function of a silicon surface
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or a silicon thin film. Experimental data show only a small
variation of the absorption compared to bulk silicon [27]. The
origin of this behavior of the out-of-plane component will be
explained later (see Sec. IV).

III. MIXED-SPACE APPROACH

In order to understand the results obtained by solving Eq. (2)
for the supercell slab model, i.e., the different behaviors of the
NLF and LF responses, we use another approach which really
considers an isolated slab. Real-space calculations allow us
to treat isolated systems, removing the problem of periodic
replicas, and they have been successfully applied to a large
number of nonperiodic systems [28,29]. However, numerical
calculations within the real-space approach for surfaces are
very cumbersome, as we have to keep the infinite (periodic)
structure for the in-plane directions. We therefore use a
“mixed-space scheme” to calculate the surface response from
a slab geometry. In this framework, response functions are
expressed in terms of (q|| + G||,z), with the reciprocal vectors
q|| and G|| lying in the plane of the surface and z being the
coordinate along the normal to the surface. The Dyson-like
equation [Eq. (2)] in the RPA reads

χG||G′ || (q||,z,z′) = χ0
G||G′ || (q||,z,z′)

+
∑
G′′ ||

∫
dz1 dz2 χ0

G||G′′ || (q||,z,z1)

× vG′′ || (q||,z1,z2)χG′′ ||G′ || (q||,z2,z
′), (4)

where vG|| (q||,z,z′) = 2πe−|q||+G||||z−z′ |/|q|| + G||| is the two-
dimensional Fourier transform of the three-dimensional
Coulomb potential. The frequency dependence has been
omitted in this section for ease of notation.

It was shown in Ref. [30] for the magnesium surface that
neglecting the influence of the local fields in the plane of the
surface gives reliable results for surface calculations. In this
mixed-space calculation, because we expect the local fields
to be weak in the surface plane, we have chosen to apply
this approximation, i.e., to consider only G|| = G′|| = 0 for
the in-plane reciprocal lattice vectors, while keeping the z

dependence to account for the local fields,

χ (q||,z,z′) = χ0(q||,z,z′) +
∫

dz1dz2χ
0(q||,z,z1)

× v(q||,z1,z2)χ (q||,z2,z
′). (5)

The matrix χ0(q||,z,z′), entering Eq. (5), is obtained by
performing the inverse Fourier transform for Gz,G

′
z of the

matrix χ0(q||,Gz,G
′
z) calculated with the DP code for the

supercell. In practice, Eq. (5) is solved on a real-space grid,
with spacing �z, becoming therefore a matrix equation. The
solution of this matrix equation reads formally

χ (q||) = 1

�z

M−1(q||)χ0(q||), (6)

where the matrix M(q||) is

Mij (q||) = M(q||,zi,zj )

= δij

�z

−
∑

k

χ0(q||,zi,zk)v(q||,zk,zj )�z. (7)

FIG. 4. (Color online) Imaginary part of ε|| and ε⊥ for the NLF
standard supercell and LF mixed-space approaches.

The inverse of the microscopic dielectric function is given by

ε−1(q||,z,z′) = δ(z,z′) +
∫

dz1v(q||,z,z1)χ (q||,z1,z
′). (8)

Finally, the z-spatial macroscopic average of the micro-
scopic dielectric function [31] is obtained as

ε−1(q) = 1

Lz

∫
dz

∫
dz′e−iqzzε−1(q||,z,z′)eiqzz

′

≈
∑
zi ,zj

e−iqz(zi−zj )ε−1(q||,zi,zj )
�2

z

Lz

(9)

and is inserted in Eq. (1).
The in-plane and out-of-plane optical response computed

using Eqs. (5), (8), and (9) is presented in Fig. 4 (mixed space,
blue crosses). We used �z = 0.0635 Å, corresponding to 1400
Gz vectors, in order to reach convergence. For comparison,
we report also the response computed within NLF (black solid
line), normalized to the volume of matter, as presented in the
previous section. Note that the mixed-space calculation does
not suffer from any renormalization problem. We observe that
the spectrum for ε⊥ is pushed back to 4 eV, in agreement
with the absorption of a silicon sample. The comparison with
the NLF curve allows us now to see the influence of LF
effects perpendicular to the surface. Besides that, it is recalled
that we have neglected the in-plane LF in the mixed-space
approach. Nevertheless, due to the inversion of the matrix,
all the elements couple together, and one could expect LFE
on both ε|| and ε⊥. On the contrary, there is no effect of
out-of-plane LF on ε||.

We stress here that the results, obtained within the mixed-
space approach, are by construction independent of the size of
the vacuum region. This can be understood by looking at Fig. 1
(right panel), which shows the electronic density in the x-z
plane, as obtained from the DFT calculation. The contribution
to the integral in Eq. (5) comes only from the region where the
density spreads. In contrast, in reciprocal space, integrals are
replaced by sums over Gz vectors, but these vectors are defined
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according to the size of the supercell and thus are different for
each size of the vacuum.

IV. EFFECTIVE-MEDIUM THEORY

From the previous results, it is clear that the mixed scheme
and the standard supercell approach do not describe the same
physical quantity. The mixed-space approach gives satisfying
results, even if we did not include the in-plane local fields,
which are, nevertheless, expected to be small. To get more
insight into the results shown in Figs. 2 and 3 and understand
which quantity is calculated in the supercell approach, we have
compared our results for the dielectric function obtained with
the reciprocal space calculation with the so-called effective-
medium theory (EMT) as presented in Ref. [32]. Two limiting
cases can be distinguished in this approximation, namely, no
screening (NS) and maximum screening (MS), sometimes also
referred to as parallel and perpendicular cases. In the former
case, the effective dielectric function of a supercell, made of
a bulk part and vacuum, is obtained through a simple volume
average,

εNS
supercell = f + (1 − f )εbulk, (10)

where f refers to the amount of vacuum introduced in the
supercell and εbulk is the dielectric function of the matter part,
as obtained from a standard bulk calculation. For maximum
screening, one averages the inverse of the dielectric function:

1

εMS
supercell

= f + (1 − f )

εbulk
. (11)

The results presented without local fields, in Fig. 2, can
be interpreted in terms of Eq. (10), as it explains how the
dielectric function of the supercell scales with the amount of
vacuum. On the other hand, the results presented in Fig. 3 for
the different vacuum sizes behave as predicted by Eq. (11), as
shown in Fig. 5.

FIG. 5. (Color online) Comparison between the imaginary part
of ε⊥ obtained from the supercell approach (solid lines, as in Fig. 3)
and the result obtained through the EMT (dashed lines), using bulk
silicon and Eq. (11).

This simple model shows that the standard calculation in
a supercell approach amounts to averaging over the whole
supercell including vacuum. The supercell approach modifies
the amplitude of the response (see Fig. 2), and it can also
change its shape, in particular the position of the peak. Using
Eq. (11) and expanding εMS

supercell in terms of f , for f → 1, one
gets

εMS
supercell ≈ 2 − f − (1 − f )

εbulk
. (12)

In the limit f → 1, we obtain Im{εMS
supercell} = −(1 −

f )Im{ε−1
bulk}, explaining thus that the supercell spectrum for

the out-of-plane component converges to the plasmon peak of
silicon.

There remains a small difference between the effective-
medium and the supercell results. It evidences another effect
arising from the supercell approach: beyond the presence
of vacuum, which has just been illustrated by the effective-
medium theory, the supercell approach is a fully periodic
scheme, meaning that the slab of matter is infinitely repeated
along the z axis. These replicas interact when the local fields
are included due to the long-range Coulomb interaction, and
we attribute the difference between the effective-medium and
the supercell results to the interaction between the replicas,
which leads to a shift towards low energy. Note that in the
mixed-space approach, there is no replica and therefore no
spurious effect due to the interaction with replicas.

Finally, by inverting (11), we define ε̂bulk as

ε̂bulk = 1 − f

1/εsupercell − 1
, (13)

where εsupercell is taken from our supercell calculation (see
Fig. 3) so that we can compare ε̂bulk with the true dielectric
function of the bulk silicon, as shown in Fig. 6.

As we can see, the position of the peak in the extracted
spectrum (around 2 eV) is at much lower energy compared to
Fig. 3 (15 eV for void 1). Nevertheless, it is also at lower
energy and has a higher amplitude than that for the bulk

FIG. 6. (Color online) Comparison between the imaginary part
of εbulk and ε̂bulk obtained from the supercell approach and Eq. (13).
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absorption (at 3.7 eV in the RPA, solid black line). This is due
to the interactions between replicas, present in the supercell
calculation, which pushes the peak towards low energy. As
mentioned before, this shift in energy was already visible in
Fig. 5. The peak around 1.3 eV in the absorption edge is a
signature of the surface states.

V. SELECTED-G APPROACH

The previous results have shown that the calculation of
the dielectric function of a material slab within the supercell
approach is spoiled by the presence of vacuum introduced
in the cell and by the replicas. This indicates that the slab
has to be treated as an isolated object in the out-of-plane
direction to evaluate the optical properties. However, the
supercell approach in reciprocal space remains one of the
most efficient numerical methods, in which the computational
burden is optimized compared to real-space methods. In the
following, we propose an alternative version of the Dyson
equation in reciprocal space, accounting for the effect of the
local fields for the isolated slab.

We assume that the electronic density is localized in the
z direction between −Lmat

z and 0 (see Fig. 1) and introduce
two auxiliary functions, χ̃0 and χ̃ , which are identical to χ0

and χ , respectively, for (z,z′) in [−Lmat
z ,0] × [−Lmat

z ,0]. The
difference between χ0 and χ̃0 (χ and χ̃ ) comes from the fact
that these new functions are defined as periodic with a period
Lmat

z , instead of Lz. Their Fourier transform is then given by

χ̃G̃,G̃′(q; ω) = 1

Lmat
z

∫ 0

−Lmat
z

dz

∫ 0

−Lmat
z

dz′e−i(qz+G̃z)z

× χ̃G||,G′ || (q||,z,z′; ω)ei(qz+G̃′
z)z′

, (14)

χ̃G||,G′ || (q||,z,z′; ω) = 1

Lmat
z

∑
qz

∑
G̃z,G̃′

z

ei(qz+G̃z)z

× χ̃G̃,G̃′(q; ω)e−i(qz+G̃′
z)z′

, (15)

where G̃z is defined according to the size of the material slab,
G̃z = n 2π

Lmat
z

. One can show that the auxiliary response function
χ̃ satisfies a modified Dyson equation (demonstration given in
Appendix A):

χ̃G̃G̃′(q; ω) = χ̃0
G̃G̃′(q; ω) +

∑
G̃1G̃2

χ̃0
G̃G̃1

(q; ω)

× ṽG̃1G̃2
(q)χ̃G̃2G̃′(q; ω), (16)

with a modified potential,

ṽG̃1,G̃2
(q) = 1

Lmat
z

∫ 0

−Lmat
z

dz1

∫ 0

−Lmat
z

dz2e
−i(qz+G̃z1)z1

× vG1 || (q||,z1,z2)ei(qz+G̃z2)z1δG1 ||,G2 || . (17)

The explicit expression of ṽ is given in Appendix B. The
inverse dielectric function ε−1 [see Eq. (8)] can then be
expressed in terms of χ̃ ,

ε−1(q||,z,z′; ω) = δ(z,z′)+
∫ 0

−Lmat
z

dz1v(q||,z,z1)χ̃(q||,z1,z
′; ω),

(18)

where we have used the fact that χ is restricted to [−Lmat
z ,0] ×

[−Lmat
z ,0] and is equal to χ̃ in this range. The macroscopic

average of the inverse dielectric function reads

ε−1(q; ω) = 1 +
∑

q ′
zG̃zG̃′

z

ṽ0G̃z
(q||,qz)χ̃G̃zG̃′

z
(q||,q ′

z; ω)

× e−i(q ′
z−qz+G̃′

z)
Lmat

z
2 sinc

(
[q ′

z − qz + G̃′
z]

Lmat
z

2

)
,

(19)

with ṽ being the modified Coulomb potential defined in
Eq. (17).

The optical properties of a surface are obtained by taking
the limit Lmat

z → ∞. In this case, one shows

ṽG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

= vG̃1
(q)δG̃1,G̃2

, (20)

where v is the usual Coulomb potential. This leads to the
simple result

χ̃G̃G̃′(q; ω) = χ̃0
G̃G̃′(q; ω) +

∑
G̃′′G̃′′′

χ̃0
G̃G̃′′(q; ω)

× vG̃′′G̃′′′ (q; ω)χ̃G̃′′′G̃′(q; ω) (21)

and

ε−1(q; ω) = 1 + v0(q)χ̃00(q; ω), (22)

where the only difference from Eqs. (2) and (3) within the
standard supercell approach lies in the definition of the G
vectors, corresponding to the material slab volume, instead of
the supercell itself, as depicted in Fig. 7 (left panel). Although
this formalism allows us to describe thin films and surfaces,
we will consider only the case of surfaces in the following.

The physical interpretation of the selection of the G vectors
is schematically illustrated in Fig. 7 (right panel). For a periodic
system, the periodic quantities oscillate with wave vectors
that are multiples of the reciprocal basis vectors. When we
transform the isolated slab into a periodic supercell (beyond the
problem of the interaction of the replicas), we add oscillations
corresponding to the artificial supercell. By selecting G vectors
defined through the size of the matter, one suppresses only
the oscillations corresponding to the supercell and keeps the
oscillations corresponding to the physical system we want to
describe.

FIG. 7. (Color online) Selected-G method for Lz = 2Lmat
z .
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FIG. 8. (Color online) Imaginary part of ε|| (in plane) and ε⊥ (out
of plane) for the surface, with and without local fields.

The results of this new framework, called selected G,
are presented in Fig. 8. First, we have checked that solving
the Dyson equation with the selected-G method but keeping
G|| = 0 gives the same results as the mixed-space approach
(not shown). We do not report the results for several sizes of
the vacuum region as they are indistinguishable. The difference
between the selected-G and the mixed-space calculations
originates from the approximation introduced in the latter
approach (G|| = 0). The selected-G result for the in-plane
component is a simple reduction in amplitude. For the
out-of-plane component, the effect is larger since the peak
is shifted towards high energy. This result shows that the
quantities calculated in these two approaches are the same,
the importance of the local fields being only slightly larger
within the selected-G approach due to the inclusion of all the
G|| vectors.

Moreover, these results allow us to understand how local
fields built up, in terms of G|| and Gz. It appears that
ε⊥ depends on both G|| and Gz (see blue crosses and red
dashed curve). On the contrary, ε|| is mainly influenced by
G||, as the curves labeled “NLF” and “mixed-space” are
superimposed.

We come now to the influence of the local fields in the
absorption spectra for surfaces, as shown in Fig. 9, where we
compare the imaginary part of ε⊥, ε|| (εxx

|| and ε
yy

|| ) for the
Si(001) 2 × 1 surface and for the silicon bulk. First, we note
that the difference between our results within RPA and NLF
is very weak for the in-plane components. This is due to the
above-mentioned weak influence of Gz for these components.
This result is of particular importance as it explains why the
standard supercell calculations have always led to the correct
description of various spectroscopies (reflectance anisotropy
spectroscopy; see Refs. [33,34], for instance), although we
have shown that the set of Gz is not adapted to the material
slab. The second outcome of this calculation is the influence
of the local fields on the signature of the surface in the
absorption spectra. The structure appearing at low energy
(around 1.3 eV) in Fig. 2 is due to the so-called surface states

FIG. 9. (Color online) Imaginary part of εxx
|| , ε

yy

|| (in plane) and
ε⊥ (out of plane) for the surface and bulk responses, with local fields
included.

appearing in the gap of the material. It is clearly visible in
the NLF calculation, for all components, but it is strongly
reduced when local fields are included for εxx

|| and ε⊥. The
structure remains unchanged when we consider ε

yy

|| , with
the y axis being parallel to the dimer chains: this reveals
the absence of inhomogeneity along the dimer chains. This
shows also that the effect of LF is of the same order of
magnitude perpendicular to the dimers and perpendicular to the
surface.

Finally, we stress that the blueshift observed for the main
peak of ε⊥ (E ≈ 4 eV, �E ≈ 0.3 eV) has to be considered
with great care. As a matter of fact, this shift depends on the
thickness of the slab and can be evidenced experimentally
only for thin films. As a complete description of the situation
involves also a careful study of quantum confinement [35],
it is beyond the scope of the discussion presented here. The
decrease in the intensity of the main absorption peak is more
pronounced for ε⊥ than for ε||. This effect was already visible
in the NLF calculation (see black curves in Fig. 2), and for this
reason, it can be attributed to the presence of the slab itself and
not to the local fields.
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VI. CONCLUSION

In this paper, we have shown that supercell calculations used
in the standard way, i.e., using reciprocal lattice vectors defined
by the height of the supercell, are not adapted to the description
of the local-field effects for the out-of-plane component of
the absorption spectrum of a surface because they imply a
periodicity which is absent in the real system.

The first consequence is the interaction between artificial
replicas due to the long-range Coulomb potential when local
fields are included, which slightly shifts the peak towards low
energy. But the main effect comes from the presence of vacuum
introduced in the supercell: it leads to the fact that the system
behaves like an effective medium composed of matter and
vacuum. The calculated Im εM

⊥ is close to the plasmon peak
of the slab due to the increasing size of vacuum but does
not correspond to the absorption spectrum of the slab, as has
been shown thanks to the mixed-scheme approach, where the
geometry is by construction well suited for a slab.

Since these mixed-space calculations are cumbersome and
in order to keep the efficiency of plane-wave basis sets used
in reciprocal space, we have developed an alternative method,
called selected G, where the G vectors are defined according to
the matter height and not the supercell one. In this framework,
the Dyson equation, relating the independent-particle response

function and the susceptibility of the isolated slab, is a matrix
equation based on the reduced set of G vectors, with a modified
Coulomb potential.

Within this method, we have calculated the out-of-plane
response of a surface when the local fields are included. The
analysis of the role of the in-plane and out-of-plane G vectors
in the building of local fields has allowed us to explain why
the standard supercell calculations for in-plane components
provide accurate results and have been so successful for
interpreting different kinds of spectroscopies, as long as only
in-plane components are involved.

The striking point is that these local-field effects are also
quite small for the component perpendicular to the surface,
even if they are slightly stronger than for their in-plane
counterpart. This result has allowed us to study the local-field
effects on the surface states.

This method opens the way to spectroscopies in which
out-of-plane components mix with in-plane ones, like for p-
polarized light and nonlinear spectroscopies [36].
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APPENDIX A: DEMONSTRATION OF THE MODIFIED DYSON EQUATION FOR THE SELECTED-G APPROACH

The Dyson equation linking the independent-particle response function and the microscopic susceptibility for an isolated slab
is given by Eq. (4):

χG‖G′
‖ (q‖,z,z′; ω) = χ0

G‖G′
‖
(q‖,z,z′; ω) +

∑
G′′

‖

∫ ∞

−∞

∫ ∞

−∞
dz1dz2 χ0

G‖G′′
‖
(q‖,z,z1; ω) vG′′

‖ (q‖,z1,z2) χG′′
‖G′

‖(q‖,z2,z
′; ω), (A1)

where we have already done the Fourier transforms for the periodic in-plane coordinates (‖). For reasons of simplicity, we rewrite
it only with the variables along the direction perpendicular to the slab:

χ (z,z′) = χ0(z,z′) +
∫ ∞

−∞

∫ ∞

−∞
dz1 dz2 χ0(z,z1) v(z1,z2) χ (z2,z

′), (A2)

which can be restricted to

χ (z,z′) = χ0(z,z′) +
∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1 dz2 χ̃0(z,z1) v(z1,z2) χ̃(z2,z
′) (A3)

since (i) χ0(z,z′) and χ (z,z′) are equal to zero outside [−Lmat
z ,0] × [−Lmat

z ,0] and (ii) χ̃0(z,z′) ≡ χ0(z,z′) and χ̃(z,z′) ≡ χ (z,z′)
in this range.

Finally, for (z,z′) ∈ [−Lmat
z ,0] × [−Lmat

z ,0], one has

χ̃(z,z′) = χ̃0(z,z′) +
∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1 dz2 χ̃0(z,z1) v(z1,z2) χ̃ (z2,z
′). (A4)

By Fourier transforming Eq. (A4), one gets

χ̃G̃zG̃′
z
(qz) = χ̃0

G̃zG̃′
z

(qz) + 1(
Lmat

z

)3

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz dz′
∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1 dz2

∑
q1

∑
G̃1

∑
G̃2

∑
q2

∑
G̃3

∑
G̃4

× e−i(G̃z+qz)zei(G̃1+q1)zχ̃0
G̃1G̃2

(qz)e
−i(G̃2+q1)z1v(z1,z2)ei(G̃3+q2)z2 χ̃G̃3G̃4

(qz)e
−i(G̃4+q2)z′

ei(G̃′
z+qz)z′

, (A5)

where qi,G̃i are vectors along the z axis and G̃z = 2πn
Lmat

z
.
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After integration on dz and dz′, one has

χ̃G̃zG̃′
z
(qz) = χ̃0

G̃zG̃′
z

(qz) + 1

Lmat
z

∑
G̃1G̃2

χ̃0
G̃zG̃1

(qz)
∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1dz2 e−i(G̃1+qz)z1 v(z1,z2)ei(G̃2+qz)z2 χ̃G̃2G̃′
z
(qz). (A6)

Denoting ṽ by

ṽG̃1G̃2
(qz) = 1

Lmat
z

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1dz2 e−i(G̃1+qz)z1 v(z1,z2)ei(G̃2+qz)z2 , (A7)

one finally obtains

χ̃G̃zG̃′
z
(qz) = χ̃0

G̃zG̃′
z

(qz) +
∑
G̃1G̃2

χ̃0
G̃z,G̃1

(qz)ṽG̃1G̃2
(qz)χ̃G̃2G̃′

z
(qz). (A8)

This modified Dyson equation links the independent-particle response function and the susceptibility for the isolated slab
by means of the associated quantities of the periodic system. The modifications appear on two levels: (i) it requires a modified
expression for the Coulomb potential, and (ii) the basis vector for the reciprocal space along the z direction is G̃z = 2π

Lmat
z

instead of

Gz = 2π

L
supercell
z

. For this reason we call it selected G, where the selected G vectors are the ones for the matter and not the supercell.

APPENDIX B: ANALYTICAL EXPRESSION OF ṽG̃1,G̃2
(q)

In this Appendix, we report the analytical expression of the modified Coulomb potential. The modified Coulomb potential is
defined by Eq. (17).

Let us first define some notations in order to ease the derivation:

kz1 = qz + G̃z1, kz2 = qz + G̃z2, k|| = |q|| + G1|||, R = Lmat
z

2
.

After some tedious algebra, we obtain the expression for the modified Coulomb potential:

ṽG̃1,G̃2
(q) = 2πei(kz1−kz2)R

[
sinc([kz1 − kz2]R)(

k2
z2 + k2

||
) + sinc([kz1 − kz2]R)(

k2
z1 + k2

||
)

]
δG1 ||,G2 ||

+ 2πei(kz1−kz2)R

Rk||
(
k2
z2 + k2

||
)(

k2
z1 + k2

||
) [− cos([kz1 − kz2]R)(k2

|| − kz1kz2)

+ e−2k||R{(k2
|| − kz1kz2) cos([kz1 + kz2]R) − k||(kz1 + kz2) sin([kz1 + kz2]R)}]δG1 ||,G2 || . (B1)

It is possible to simplify this expression further using the fact that G̃z1 = n1
2π
Lmat

z
and G̃z2 = n2

2π
Lmat

z
, n1,n2 ∈ Z. We have

sinc

(
[kz2 − kz1]

R

2

)
= sinc([n2 − n1]π ) = δkz1,kz2 , (B2)

where sinc is defined as sinc(x) = sin(x)
x

.
Putting everything together, we obtain

ṽG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

+ 4πδG1 ||,G2 ||

|q + G̃1|2|q + G̃2|2
[

− e−|q||+G1 |||Lmat
z sin(qzR)

Lmat
z

(2qz + G̃z1 + G̃z2)

+ e−|q||+G1 |||Lmat
z cos(qzR) − 1

Lmat
z |q|| + G1|||

[|q|| + G1|||2 − (qz + G̃z1)(qz + G̃z2)]

]
. (B3)
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