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Phase diagram of a quantum Coulomb wire
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We report the quantum phase diagram of a one-dimensional Coulomb wire obtained using the path-integral
Monte Carlo method. The exact knowledge of the nodal points of this system permits us to find the energy
in an exact way, solving the sign problem which spoils fermionic calculations in higher dimensions. The
results obtained allow for the determination of the stability domain, in terms of density and temperature, of
the one-dimensional Wigner crystal. At low temperatures, the quantum wire reaches the quantum-degenerate
regime, which is also described by the diffusion Monte Carlo method. Increasing the temperature, the system
transforms to a classical Boltzmann gas, which we simulate using classical Monte Carlo. At large enough density,
we identify a one-dimensional ideal Fermi gas which remains quantum up to higher temperatures than in two-
and three-dimensional electron gases. The obtained phase diagram and the energetic and structural properties of
this system are relevant to experiments with electrons in quantum wires and to Coulomb ions in one-dimensional
confinement.
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I. INTRODUCTION

Few systems are more universal than electron gases. Their
study started a long time ago, and the compilation of knowl-
edge that we have now at hand is very broad, with impressive
quantitative and qualitative results [1]. Phase diagrams for
electron gases in two and three dimensions appear now to be
quite well understood thanks to progressively more accurate
many-body calculations using mainly quantum Monte Carlo
methods [2]. However, theoretical knowledge of an electron
gas in the one-dimensional (1D) geometry is more scarce, and
a full determination of the density-temperature phase diagram
is still lacking. The present work is intended as a contribution
towards filling this gap by means of a microscopic approach
based on the path-integral Monte Carlo (PIMC) method.

The quasiparticle concept introduced by Landau in his
Fermi-liquid theory is able to account for the excitations of
the electron gas in two and three dimensions. This is not the
case in one dimension, where the enhancement of correlations
makes all excitations, even at low energy, collective. The
appropriate theoretical framework is an effective low-energy
Tomonaga-Luttinger (TL) theory [3–5], properly modified
by Schulz [6] to account for the long-range nature of the
Coulomb interaction. Probably, the most noticeable prediction
of the TL theory is the separation between spin and charge
degrees of freedom, whose excitations are predicted to travel
at different velocities. At the same time, a Coulomb wire
is fundamentally different from other TL systems in that at
low densities it forms a Wigner crystal, as manifested by
the emergence of quasi-Bragg peaks [6]. Also, the strongly
repulsive nature of interactions might lead to the formation of a
Coulomb Tonks-Girardeau gas [7]. In spite of the experimental
difficulties in getting real 1D environments, strong evidence
of having reached the TL liquid and the 1D Wigner crystal has
been reported in recent years [8–16]. Therefore, the continued
theoretical interest in this 1D system is completely justified
and can help us to understand future experimental findings.

The ground-state properties of the 1D Coulomb gas have
been studied in the past using several methods, with the most
accurate results being obtained using the diffusion Monte

Carlo (DMC) method [17–20]. One of the main goals of these
calculations was the estimation of the interaction energy of the
gas with as high a precision as possible to generate accurate
density functionals to be used within density functional theory
of quasi-one-dimensional systems. All these calculations have
been carried out assuming a quasi-1D geometry imposed by
a tight transverse confinement, normally of the harmonic
type. In the latter case, one assumes that electrons occupy
the ground state of the transverse harmonic potential, so in
the resulting effective Coulomb interaction the divergence at
x = 0 is eliminated. Proceeding in this way, the effective one-
dimensional interatomic potential can be Fourier transformed.
However, a recent DMC calculation [21] has shown that the
use of the bare Coulomb interaction is not a problem for the
estimation of the energy and structural properties because the
wave function becomes zero when |x| → 0. More importantly,
the presence of a node at x = 0 makes Girardeau’s mapping
applicable [22], which means that the many-particle bosonic
wave function is the absolute value of the fermionic one,
with the same Hamiltonian. In other words, the nonintegrable
divergence of the interaction at small distances acts effectively
as a Pauli principle for bosons. From the computational point of
view, this is highly relevant because knowing the exact position
of the nodes allows us to perform an exact simulation without
the usual upper-bound restriction imposed by the fixed-node
approximation when the nodal surfaces are unknown.

II. METHOD

We consider a system composed of N particles with charge
e and mass m in a 1D box of length L with periodic boundary
conditions that interact by means of a pure Coulomb potential.
We work in atomic units; the Bohr radius a0 = �

2/(me2) for
the length, and the Hartree Ha = e2/a0 for the energy. In these
reduced units, the Hamiltonian is given by

H = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑

i<j

1

|xi − xj | . (1)
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At finite temperature T , the knowledge of the partition function
Z = Tr e−βH (β = 1/T ) gives access to a microscopic de-
scription of the properties of the system. The partition function
satisfies a convolution property which allows for its estimation
via a PIMC scheme,

Z =
∫

dR1 · · · dRM

M∏
α=1

ρ(Rα,Rα+1), (2)

where ρ(Rα,Rα+1) stands for an approximate density matrix
at higher temperature MT , with M being the number of terms
(beads) into which the total action at temperature T is split.
In the present work, we use a fourth-order approximation
for ρ [23] that has already proved its efficiency in the
study of other systems such as liquid 4He [24]. The number
of beads M is adjusted for any temperature and density
to ensure unbiased results; it is rather large at the lowest
temperatures and high densities, M = 500, and it becomes
smaller when the temperature increases and the density is
low, M = 20. The fourth-order dependence of the energy on
1/M is recovered at larger M values than in 4He due to the
pathological behavior of the Coulomb potential for the lowest
approximation for the action (primitive approximation) [25].
Nevertheless, the high-order PIMC method is able to explore
the major part of the density-temperature phase diagram with
accuracy and without any bias coming from the fixed-node
constraint.

Our main goal is the calculation of the phase diagram
of the 1D Coulomb quantum wire. To this end, we mainly
determine the energetic and structure properties of this system.
For the energy we use the virial estimator, which relies on
the invariance of the partition function under a scaling of
the coordinate variables, thus providing good results at large
values of M , where the thermodynamic estimator fails to
provide converged results [24]. The structure properties of the
system are obtained from the behavior of the static structure
factor, S(k) = N−1〈ρ̂kρ̂−k〉, with ρ̂k = ∑N

l=1 exp(ikxl) being
the density operator.

III. RESULTS

The energies obtained at different temperatures and densi-
ties are shown in Fig. 1. When both the temperature and density
are low, the potential energy dominates, and the total energy
can be estimated by summing up all pair Coulomb potential
energies for a set of particles at the fixed positions of a Wigner
crystal. For a given number of particles N , the leading term in
the energy is linear with the density n [26],

EW

N
= e2n ln N. (3)

If one fixes the density and changes the number of particles,
Eq. (3) predicts an energy per particle which diverges loga-
rithmically with N . This is, in fact, a well-known effect of the
long-range behavior of the Coulomb potential in strictly 1D
problems [21]. When the density increases, the kinetic energy
increases faster than the potential energy due to its quadratic
dependence with n. Then, the system reaches a regime where
the energy is well approximated by the ground-state energy of

FIG. 1. (Color online) Energy per particle as a function of the
density for N = 10. Symbols, PIMC results at different temperatures;
dashed line, energy of a Wigner crystal at T = 0; dash-dotted line,
IFG energy at T = 0. Solid lines, classical limit E/N = T/2.

an ideal Fermi gas (IFG),

E IFG

N
= �

2k2
F

6m
, (4)

with kF = πn being the 1D one-component Fermi momen-
tum. Both limiting behaviors, EW/N [Eq. (3)] and E IFG/N

[Eq. (4)], are shown as straight lines which cross at n � 1 in
the log-log plot of Fig. 1. The ground-state energy obtained
with the DMC method for T = 0 is recovered in our PIMC
simulation when the temperature drops below some critical
temperature, whose value depends on the density. Increasing
the density in the ground state, the system evolves from a
Wigner crystal to a zero-temperature ideal Fermi gas [21].
For a fixed finite temperature, T � 1 Ha, the dilute regime of
low density corresponds to a classical gas with the energy
per particle given by the classical value EC = T/2 (solid
horizontal lines), the Wigner crystal is realized at larger
densities, and finally, the quantum wire behaves as an ideal
Fermi gas for n � 1. For temperatures T � 1 Ha, the Wigner
crystal behavior is no longer observed, and the system evolves
directly from a classical gas to a Fermi one.

In spite of the absence of real phase transitions in this 1D
system, one can identify different regimes with well-known
limiting cases. As we show in Fig. 1, the energy shows a
rich variety of behaviors as both the density and temperature
are changed. However, it is the study of the structural
properties which provides us with a deeper understanding of
the difference between regimes. To this end, we use the PIMC
method to calculate the density and temperature dependence
of the static structure factor S(k). Its behavior at a constant
temperature (T = 10−2 Ha) and different densities is shown in
Fig. 2. At the lowest density n = 0.01a−1

0 , the quantum PIMC
results are nearly indistinguishable from the classical S(k)
obtained with the classical Monte Carlo method (Boltzmann
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FIG. 2. (Color online) Static structure factor for N = 20 and T =
10−2 Ha for different densities. At the lowest density, we compare
the PIMC result with a classical Monte Carlo simulation (CLS). For
densities n � 0.1a−1

0 , we make a comparison with the ground-state
properties obtained by the DMC method (T = 0). For densities n �
1a−1

0 , we compare the PIMC results with the ideal Fermi gas.

distribution) at the same density and temperature. Increasing
the density further, the static structure factor shows clearly
the emergence of a Bragg peak at k/kF = 2, signaling the
formation of a Wigner crystal in 1D [6]. At low temperatures,
the quantum degeneracy is reached, and S(k) agrees with that
of a DMC estimation at T = 0 at the same density. Similar to
what happens at zero temperature [21], increasing the density
even more, the system evolves to an ideal Fermi gas. In Fig. 2,
we also compare the PIMC result for S(k) at n = 1a−1

0 with
the IFG S(k) at the same density and T = 0: the agreement
between both curves is excellent.

It is important to understand how the temperature affects the
structural properties when the density is fixed and the temper-
ature is progressively increased. Figure 3 reports PIMC results
obtained at low density, n = 10−3a−1

0 . At low temperatures,
one identifies the characteristic Bragg peaks at k/kF = 2l

with integer l. At the lowest considered temperature, T =
10−5 Ha, we observe a quantum crystal, and S(k) is in good
agreement with the T = 0 result obtained with the DMC
method. Increasing the temperature by a factor of 10, the
presence of Bragg peaks confirms the formation of a Wigner
crystal, while its structure is very different from the quantum
one, observed at T = 0. Importantly, we find out that the
correlations at T = 10−4 Ha are the same as in a crystal with
electrons obeying Boltzmann statistics.

Once in the classical regime, as the temperature increases,
the crystal melts and becomes a gas. In Fig. 3, one can observe
that PIMC and classical simulations predict the same S(k)
in a gas at temperature T = 10−3 Ha. It becomes clear from
Figs. 2 and 3 that the transition between different regimes can
be induced by changing the density or the temperature.

From the PIMC results for both energy and structure we
establish the temperature-density phase diagram of the 1D

FIG. 3. (Color online) A semilogarithmic plot of the static struc-
ture factor for N = 20 and n = 10−3 for different temperatures. At
the lowest temperature we compare the PIMC result with the DMC
result of T = 0. At high temperature, we compare the PIMC result
with a classical Monte Carlo simulation (CLS).

Coulomb wire. The phase diagram is shown in Fig. 4 and
constitutes the main result of our work. We identify three
different regimes: classical Coulomb gas, Wigner crystal, and
ideal Fermi gas, where the last two regimes show a crossover
from quantum to classical behavior. The Wigner crystal is

FIG. 4. (Color online) Temperature-density phase diagram. The
long-dashed line shows the gas-Wigner crystal crossover, the dash-
dotted line locates the crossover between a quantum Fermi gas and a
classical thermal gas (TF ∝ n2), and the short-dashed line separates
the classical (CLS) and quantum (QNT) regimes within the Wigner
crystal, T ∝ n3/2; symbols connected with a thin line (guide to the
eye) show the position of the classical-quantum crossover estimated
as Ekin = T . Ideal Fermi gas and Wigner crystal regimes for the
considered number of particles are separated by n ≈ 1. Within the
Wigner phase, the ratio of the peak value in S(k) for N = 20 and
N = 10 is shown with a contour plot (white, no difference; black,
large difference).
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identified by calculating the ratio of the peak’s height of S(k)
at k/kF = 2 for two values of the number of particles (N = 20,
10). When the height of the peak increases with N , the system
behaves as a Wigner crystal. In Fig. 4, we use a contour plot
to show that ratio in gray scale, where black stands for a large
ratio and white stands for a ratio equal to 1. In the T -n plane,
the Wigner crystal phase shows a triangular shape, with the
strongest signal localized in the vertex of lowest density and
temperature, delimited by transitions to a Coulomb or an ideal
Fermi gas. This quantum Wigner crystal is well described by
the zero-temperature theory, as we show in Figs. 2 and 3.
Increasing the temperature, one can see how the quantum
crystal transforms into a classical Wigner lattice. In both
regimes, particles move around the lattice points, but these
fluctuations are of quantum and thermal nature in quantum and
classic crystals, respectively. Starting from a high-temperature
crystal, by decreasing the temperature we see that the system
becomes more ordered and the height of the peaks increases.
Indeed, at zero temperature the classical system would always
form a perfect crystal with no fluctuations. Instead, we see
that the height of the peaks stops growing when we decrease
the temperature down to the quantum-degeneracy regime. By
lowering the temperature further the system remains in the
ground state. In fact, the classical crystal regime is realized
when the temperature is high compared to the height of the
first Brillouin zone EBZ, EBZ � T . EBZ can be estimated
from the phonon spectrum (A2) at the border of the Brillouin
zone, EBZ = Eph(kBZ) ≈ �c|kBZ|, with kBZ = kF = πn. The
speed of sound c is related to the chemical potential through
the compressibility relation mc2 = n∂μ/∂N . As μ in the
Wigner crystal is linear in n, one can locate the transition
from the quantum to the classical Wigner crystal as T ∼ n3/2

(short-dashed line in Fig. 4). When the temperature is high
enough, thermal fluctuations become large compared to the
potential energy of the Coulomb crystal, and thus, the Wigner
crystal melts to a classical Coulomb gas. As the energy of the
Wigner crystal is linear with the density [for a fixed number
of particles N ; Eq. (3)], this melting transition line follows
approximately the law T ∼ n (long-dashed line in Fig. 4).

By changing the density while keeping the temperature
fixed to a very low value, the system evolves from a Wigner
crystal towards an ideal Fermi gas. This evolution is driven by
the different dependences of the potential and kinetic energies
on the density. The kinetic energy grows quadratically,
Ekin/N ∝ n2, instead of the linear dependence of the potential
energy, EW ∝ n ln N . At n ≈ 1, we observe this transition
both in energy and in the shape of the static structure factor
S(k). For temperatures smaller than T � 10−2 Ha, we observe
two different transitions: at low densities an evolution from
a thermal classical gas to a Wigner crystal and at n ≈ 1 the
melting of the crystal towards the Fermi gas. These transitions
are shown in Fig. 5, where we plot the ratio of peak heights at
three different temperatures and as a function of the density.
When T > 10−2 Ha, the Wigner crystal is no longer stable,
and the evolution with the density is from a classical gas
to an IFG for densities n > 1. On the other hand, the
finite-size dependence is very weak, which can be seen from
the logarithmic dependence of the Wigner crystal energy on
N , Eq. (3). Still, it becomes important when the number of
electrons is large. It is expected that the stability region of the

FIG. 5. (Color online) Ratio of main peak height of S(k) at
N = 10 and 20 as a function of the density and for three different
temperatures. At the lowest T , the behavior is monotonously
decreasing, from a Wigner crystal to a Fermi gas. At the two higher
temperatures, a double crossing of gas-crystal-gas is observed.

Wigner crystal will increase with N both in density [21] and
in temperature.

The transition from the zero-temperature ideal Fermi gas to
a classical gas is governed by a single parameter, namely, the
ratio of the temperature and the Fermi temperature, T/TF =
T/[π2n2/2m]. When this ratio is much smaller than 1, the
system stays in the ground state of a quantum degenerate gas.
When this ratio is much larger than 1, the energy approaches
that of a Boltzmann classical gas. In between, the system
properties are those of a finite-temperature quantum ideal
Fermi gas. A special feature of the one-dimensional world
is that the stability of the quantum degenerate regime is
greatly increased. Indeed, the stability regime grows rapidly
as the density is increased since T/TF ∝ n2. This should be
contrasted with T/TF ∝ n in two dimensions and even weaker
n2/3 dependence in three dimensions.

In a quantum wire of a finite width b, the effective
one-dimensional interaction still has a Coulomb long-range
tail, while the short-range part is no longer divergent and is
limited by the width of the wire, Vmax ∝ e2/b [17,18]. The
strictly one-dimensional model (1) still remains applicable if
the kinetic energy is small compared to the maximum of the
interaction potential Vmax. The system properties are the same
if the temperature is not too high and the density is not too large.
Specifically, the restriction on the temperature is kBT � e2/b.
In a Wigner crystal, the kinetic energy is proportional to
the energy of the zero-point motion of plasmons Eplasmon =
C(na)3/2 [see Eq. (A4) in the Appendix], posing the restriction
on the density, na0 � (a0/b)2/3. In an ideal Fermi gas, the
Fermi energy EF should be small compared to Vmax, leading
to n � 1/

√
a0b. In typical experiments with semiconductor

quantum wires the thickness is b/a0 = 0.1 − 1, so that the
major part of the phase diagram presented in Fig. 1 remains
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valid. The situation is even better for experiments with carbon
nanotubes placed on SrTiO3 substrates [27], for which values
of b/a0 = 0.0001 can be reached.

Experimental results with which to make a comparison
are mainly located in the Wigner crystal domain. This phase
has been observed at the following points: T = 10−9 Ha, n =
3.5 × 10−8a−1

0 [8]; T = 10−6 Ha, n = 0.001a−1
0 [9]; T = 5 ×

10−6 Ha, n = 0.002a−1
0 [12]; and T = 10−5 Ha, n = 0.001a−1

0
[13]. Only the latter one fits inside our studied regime and
agrees with the prediction of a crystal; the other are deeper
inside the Wigner crystal phase and presumably will be in
agreement with theory.

IV. CONCLUSIONS

Summarizing, we have carried out a complete PIMC study
of the density-temperature phase diagram of a 1D quantum
Coulomb wire. The singularity of the Coulomb interaction
at x = 0 allows us to solve the sign problem and makes it
possible to carry out an exact calculation of the electron-gas
problem since we know a priori the exact position of the Fermi
nodes. This is clearly a special feature of the 1D environment
which cannot be translated to higher dimensions. There, in
two and three dimensions, one can only access approximate
solutions to the many-body problem which worsen when the
temperature is not zero. Focusing our analysis on energetic
and structural properties, we have been able to characterize
the different regimes of the electron wire. In spite of the lack
of real phase transitions due to the strictly 1D character of
the system, we have been able to define different physical
regimes, including the Wigner crystal (classical and quantum),
the classical Coulomb gas, and the universal ideal Fermi gas.
Two relevant features make this phase diagram especially
interesting: the large stability domain of the ideal Fermi gas
and the double crossing of gas-crystal-gas with increasing
density within a quite wide temperature window. Our results
are relevant to current and future experiments with electrons
in a quantum wire and to Coulomb ions in one-dimensional
confinement.
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APPENDIX

In order to get insight into the properties of a quantum
Wigner crystal it is important to derive the equation of state
as a perturbative series in terms of powers of na0. The

leading term is provided by the potential energy of a classical
crystal and is pathologic in the sense that it diverges in the
thermodynamical limit. On the other hand, this divergency
is caused by the long-range part of the Coulomb energy and
effectively does not change the short-range physics, which
is important, for example, for understanding the applicability
of the bare Coulomb potential to quantum wires of a finite
width. Thus, it is important to derive the subleading term
in the equation of state, which will behave properly in the
thermodynamic limit and will be relevant for the short-range
physics. This is done in this Appendix using the harmonic
crystal theory.

The leading term E(0) in the equation of state of a Wigner
crystal, na0 → 0, is given by the potential energy of a crystal
with perfect packing, E(0) = 1/2

∑N
i �=j e2n/|i − j |. For N

electrons in a box with periodic boundary conditions the
Wigner crystal energy is

E(0)

N
= (na0) Ha ×

{
H N

2 −1 + 1
N

, for even N,

H N−1
2

, for odd N,
(A1)

where Hn = ∑n
i=1

1
i

is the nth harmonic number. That is,
the leading term grows linearly with the density na0, and it
suffers from a logarithmic divergence caused by the long-
range Coulomb interaction, E(0)/N = Ha(na0) ln(γ ′N/2) +
O(N−2), where γ ′ = 1.781 is Euler’s constant.

In the physical description of the subleading term, the
electrons oscillate close to the minima in the potential energy,
generating excitations ω(k) with the plasmonic dispersion
relation, which can be obtained from the harmonic theory
[21,28][

�ω(k)

Ha/2

]2

= (na0)3
[
4ζ (3) − 2Li3

(
e

ik
n

) − 2Li3
(
e− ik

n

)]
, (A2)

where Lin(z) = ∑∞
k=1 zk/kn is the polylogarithm function.

The quantum correction to the energy of a Wigner crystal
(A1) comes from the zero-point motion of plasmons in the first
Brillouin zone (BZ) [29],

E(1)

N
=

∫
BZ

�ω(k)

2

dk

VBZ
, (A3)

where VBZ = 2kBZ = 2πn is the volume of the first Brillouin
zone. Finally, we obtain the subleading term in the form of

E(1)

N
= C(na0)3/2 Ha, (A4)

with the constant equal to

C =
∫ π

0

1

2

√
4ζ (3) − 2Li3(eix) − 2Li3(e−ix)

dx

π
= 0.50.

In particular this means that the kinetic energy scales as
(na0)3/2 with the density.
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