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Electron-electron interactions, topological phase, and optical properties of a charged artificial
benzene ring
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We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The
ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real
and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot
interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a
half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of
the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show
that the maximally spin-polarized (S = 5/2) and maximally spin-depolarized (S = 1/2) states are the lowest
energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as
interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S = 1/2.
We present a theory of optical absorption spectra and show that the evolution of the ground and excited states,
level crossings, and presence of artificial gauge can be detected optically.
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I. INTRODUCTION

There is currently interest in developing controlled quantum
many-body systems using semiconductor quantum dots and
molecules as means to understand the many-body problem as
well as for applications in nanoelectronics, nanospintronics,
and quantum information processing. Single [1,2], double
[3–5], triple [6–12], and quadruple lateral gated quantum
dot molecules in GaAlAs/GaAs heterojunctions or with
dangling bonds on silicon surface have been demonstrated
experimentally [13–15] and extensively studied theoretically
[16–31]. The capability to localize electrons in artificial lateral
quantum dot molecules opens up the possibility of exploring
the properties of the 1D Hubbard model, a model of strongly
correlated electrons [32–38]. The 1D Hubbard model of
benzene rings is of recent interest in the context of charge
separation in mesoscopic rings [39–42], optical properties
of strongly correlated oxides [38], quantum tunneling in
vertically coupled rings [30], inelastic co-tunnelling in double,
triple, and benzenelike quantum dot molecules [43], electron
localization [44], transport [45,46], quantum interference [47],
and Coulomb blockade [48]. Of particular interest here are
the properties of charged rings where the orbitally degenerate
ground state leads to non-Fermi liquid behavior and the Kondo
effect in transport [46]. Since graphene and graphene derived
nanostructures [49] are built of benzene rings, understanding
artificial benzene rings is also important for the understanding
of graphene. There have been already several experimental
realizations of artificial graphene as a platform to study Dirac
fermions and topological phases [50–52].

The artificial benzene rings could be now realized in
hexagonal semiconductor nanowires. Ballester et al. [44]
investigated theoretically a quasi-2D hexagonal nanostructure
cut out of an AlAs/GaAs/AlAs core shell nanowire. They have
shown that in a such hexagonal ring, the states would weakly
localize at the six corners. However, the weak localization
resulted in features different from what is expected in a
benzene ring, for example, the five-electron ground state was

not doubly degenerate. Recently, Funk et al. [53] demonstrated
confinement of electrons in six one-dimensional electron
channels localized at the six corners of a hexagonal core shell
nanowire. If one was to fabricate a wrap-around gate, shown
in Fig. 1, one could create six quantum dots, one in each
1D channel. Additional gates, not shown, could control the
tunneling of electrons between different dots. The tunnelling
between the dots and the Coulomb interactions could be tuned
by changing the size of the structure to modify the distance
between the dots. After construction, the interactions could be
altered by changing the gate potentials or adding electrodes
to individually control the interactions among specific dots
[16,31,44,54–57]. The advantage of such a system would be
its tunability in comparison to the natural benzene, allowing
for the experimental test of the properties of the 1D Hubbard
model, including the existence of a topological phase in the
strongly interacting ring.

Motivated by the experiments and theoretical interest, we
provide here a theory of the electronic and optical properties of
an artificial, charged benzene ring (ABR) molecule described
by the Hubbard model with tunable parameters; interdot
tunneling t and Coulomb interactions U and V . In the strongly
interacting case, U � t and V = 0, the 1D Hubbard model is
exactly solvable [33–36]. The spectrum of the hole in a half-
filled ABR dressed by the spin excitations of the remaining
electrons can be interpreted in terms of the appearance of
a topological phase associated with an effective gauge field
piercing through the ring [16,19,29,33,41,42]. We classify the
hole spectrum by the total electron spin and we show that
the maximally spin-polarized (S = 5/2) and maximally spin-
depolarized (S = 1/2) states are the lowest energy, orbitally
nondegenerate states. We discuss the evolution of the phase
diagram and level crossings as interactions are switched off
and the ground state becomes spin nondegenerate, S = 1/2,
but orbitally degenerate. We present a theory of the optical
absorption spectra and show that the evolution of the ground
and excited states, level crossings, and artificial gauge can be
detected optically.
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FIG. 1. (Color online) Confining a 2D electron gas in a nanowire.
Proposed model for realization of an artificial benzene ring by
confining electrons to the six corners of a hexagonal nanowire.

II. THE MODEL

Following previous work [29], the artificial benzene
molecule [58–61] is assumed to have one spin-degenerate
orbital per quantum dot, with the molecule containing up
to Ne = 12 electrons [16,19]. Its electronic properties are
described microscopically within the extended Hubbard model
[17], which in the real-space basis, is given as [29]

Ĥ =
6∑

σ,i=1

Eic
+
iσ ciσ −

6∑
σ,〈i,j〉

tij c
+
iσ cjσ

+
6∑

i=1

Uini↓ni↑ + 1

2

∑
〈i,j〉

Vij�i�j . (1)

Here, c+
iσ (ciσ ) are operators creating(annihilating) a spin-σ

electron on a localized quantum dot orbital i with energy
Ei , while the spin and charge density are expressed as niσ =
c+
iσ ciσ and �i = ni↓ + ni↑, respectively. The on-site interaction

between two electrons on each dot is given by Ui while tij and
Vij characterize the tunneling and Coulomb matrix elements
between dots i and j . We only retain the nearest-neighbor
(NN), 〈ij 〉, elements of both. The Hamiltonian matrix for a
single electron tunneling between six dots is then explicitly
written as

Ĥ =

⎡
⎢⎢⎢⎢⎢⎣

0 t 0 0 0 τ

t 0 t 0 0 0
0 t 0 t 0 0
0 0 t 0 t 0
0 0 0 t 0 t

τ 0 0 0 t 0

⎤
⎥⎥⎥⎥⎥⎦, (2)

where τ represents the tunneling between dot 1 and dot 6.
τ = t for the closed ring and it is τ = 0 for a finite chain.

The Hamiltonian (1), can also be rotated into the Fourier
space of itinerant electrons using a Fourier transform of the
real-space creation/annihilation operators,

a+
κi

= 1√
6

6∑
j=1

eiκi (j−1)c+
j , (3)

where κi = {0,±π/3,±2π/3,π} are the six allowed wave
vectors. The operators a+

κi
(aκi

) create(annihilate) an electron

FIG. 2. (Color online) (a) The ABR structure (b) one-electron
spectrum labeled with wave vectors.

on a Fourier state |κi〉. Assuming all dots on resonance, i.e.,
Ei = E, Ui = U , Vij = V , the rotated Hamiltonian becomes

Ĥ =
6∑

σ,i

εκi
a+

κiσ
aκiσ

+ 1

2

∑
ijklσσ ′

〈κiκj |Vee|κkκl〉a+
κiσ

a+
κj σ ′aκkσ ′aκlσ

. (4)

The transformation into itinerant molecular |κi〉 states di-
agonalizes the Hamiltonian with the following eigenvalues
εκi

= E + 2t cos κi giving the single-particle spectrum shown
in Fig. 2.

The second term in Eq. (4) describes the Coulomb interac-
tion matrix elements between molecular states,

〈κiκj |Vee|κkκl〉 = U + 2V cos (κl − κi)

6
δ(κi + κj ,κk + κl).

(5)
We note that the total wave vector κtot = ∑Ne

i κi , is conserved
in Coulomb scattering.

With the Hamiltonian established, we expand the many-
body states in Ne-electron configurations |α〉, created by
distributing Ne electrons on six molecular orbitals obeying the
Pauli exclusion principle, where |α〉 = ∏

i=1,Ne
c+
iσ |0〉 and |0〉

is the vacuum. Similarly, we construct the many-electron states
using the real space orbitals. By constructing a real-space or a
Fourier-space Hamiltonian matrix for Ne electrons with spin
Sz, and diagonalizing the matrix, we obtain the corresponding
eigenenergies EfNe

and eigenvectors |fNe
〉 in terms of real or

Fourier space orbitals.
The optical properties of the ABR are described using the

Fermi’s golden rule [62]. The transition rate from the ground
state to excited states of the Ne electron system via absorption
of a photon with energy ω is given by

ANe
(ω) =

∑
f

WGS|〈fNe
|P̂ +|GSNe

〉|2δ(EfNe
− EGS − ω

)
,

(6)
where |GSNe

〉 is the Ne electron ground state with energy
EGS, WGS is the probability of its occupation, and |fNe

〉
is the excited state with energy EfNe

. The polarization
operator P + moves an electron from a filled state to a
higher-energy, unoccupied state, while annihilating a photon,
P̂ + = ∑

κj ,κi ,σ
d(κj ,κi)a+

κj σ
aκiσ

[62].
The dipole element d(κj ,κi) can be expressed in the basis of

localized orbitals. Since the molecular orbitals |κj 〉 are linear
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combinations of the atomic orbitals, we can expand the dipole
element as

d(κj ,κi) =
N∑

l=1

N∑
f =1

A∗
j,lAi,f 〈l|
ε · 
r|f 〉. (7)

The term 〈l|
ε · 
r|f 〉 in the basis of localized quantum dot
orbitals ψ(r − Rl) is evaluated as

〈l|
ε · 
r|f 〉 = 
ε ·
∫

d
rψ∗(
r − 
Rl)
rψ(
r − 
Rf ). (8)

Shifting 
r → 
r + 
Rl , we arrive at

〈l|
ε · 
r|f 〉 = 
ε ·
∫

d
rψ∗(
r)(
r + 
Rl)ψ(
r − ( 
Rf − 
Rl))

= 
ε ·
∫

d
rψ∗(
r)
rψ(
r − ( 
Rf − 
Rl))

+ 
ε · 
Rl

∫
d
rφ∗(
r)φ(
r − ( 
Rf − 
Rl)), (9)

where the first term is nonzero only if l �= f , and from the
orthogonality of the atomic orbitals the second term is nonzero
only if l = f . Only including nearest-neighbor terms, the
dipole element in the basis of atomic orbitals can be simplified
to

〈l|
ε · 
r|f 〉 = D
ε · ( 
Rf − 
Rl)δ〈lf 〉 + 
ε · 
Rlδlf , (10)

where D = | ∫ d
rψ∗(
r)
rψ(
r − 
R〈lf 〉)| is the dipole strength
coefficient calculated for NN orbitals and 
ε is the polarization
of light. In what follows, we will use the numerical values
obtained for graphene pz orbitals [62].

Due to the hexagonal structure of the ABR, the vectors
extending from the center of the ABR to the localized orbitals
are equal in magnitude, with directions varying as multiples
of 2π/6, as depicted in Fig. 3. As a result, the dot product
between the polarization of light and the vector 
Rm pointing
from the center of the ring to each localized orbital m that
appears in Eq. (10) can be simplified as

ε± · 
Rm = |R|e±im2π/6. (11)

The dipole elements between molecular states are calculated
by writing them out explicitly in terms of the atomic orbitals.
For light that is circularly polarized, ε±, the dipole element

FIG. 3. (Color online) The six dipole moments measured from
the center of a benzene ring.

between molecular states can be expanded as

〈κj |ε± · 
r|κi〉 = 1

6

6∑
p,q

ei(κiq−κj p)〈p|ε± · 
r|q〉, (12)

where p,q are localized pz orbitals. We can open up the sum
using Eq. (10) and retain δpq and δ〈pq〉 elements since we are
only including up to the nearest-neighbor tunneling. Then the
expression above becomes

〈κj |ε± · 
r|κi〉 = 1

6

∑
p

[ei(κi (p−1)−κj p)ε± · D( 
Rp−1 − 
Rp)

+ ei(κip−κj p)ε± · 
Rp

+ ei(κi (p+1)−κj p)ε± · D( 
Rp+1 − 
Rp)]. (13)

Collecting Ri and using Eq. (11) for the dot products, we
obtain

〈κj |ε± · 
r|κi〉 = |R|
6

∑
p

[eip(κi−κj ±π/3)(1 − 2D cos(κi))

+Deip(κi−κj ±π/3)e−i(κi±π/3)

+Deip(κi−κj ±π/3)e+i(κi±π/3)], (14)

which, once simplified gives

〈κj |ε± · 
r|κi〉 = |R|
6

[∑
p

eip(κi−κj ±π/3)

]

×[1 − 2D( cos(κi) − cos(κi ± π/3))]. (15)

If we collect all the terms outside of the summation into C(κi),
the dipole element between molecular levels can be written as

d(κj ,κi) = 〈κj |
ε± · 
r|κi〉 = C(κi)δ

(
κi − κj ± π

3

)
, (16)

to give the selection rule for optical transitions—light only
couples the molecular states |κi〉 and |κf 〉 that differ by ±π/3.

III. ELECTRONIC STRUCTURE OF CHARGED
ARTIFICIAL BENZENE RING

We now focus on the charged artificial benzene ring.
Removing (adding) an electron from the half-filled ABR
creates a hole (electron) in a charge neutral ABR. The hole
can be thought as moving in the presence of Ne = 5 electrons
with the total spin projections of Sz = {5/2,3/2,1/2}.

We now proceed to discuss the energy spectrum of the hole
dressed by the electronic cloud with different total spin S for
very strong interactions, U = ∞ but V = 0, such that double
electronic occupancy is not allowed. In this strongly interacting
regime, it is convenient to work in the real-space basis of the
ABR. In this limit, the 1D Hubbard model is exactly solvable
[33–36]. We discuss the energy spectrum and wave functions
of the hole in a half-filled ABR dressed by the spin excitations
of the remaining electrons. We focus on the appearance of
a topological phase associated with an effective gauge field
piercing through the ring [16,19,29,33,41,42]. The phase is
only present in a ring topology but absent for a linear chain.
We classify the hole spectrum and the topological phase by
the total electron spin, show that the maximally spin-polarized
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(S = 5/2) and maximally spin-depolarized (S = 1/2) states
are the lowest energy, orbitally nondegenerate states, and
discuss how the topological phase can be detected in optical
experiments.

A. Strong interactions and emergence of an artificial gauge in
the spectrum of a hole

1. Hole in a spin polarized electronic state Sz = 5/2

In the maximally polarized subspace, Sz = 5/2, the 5 spin-
polarized electrons are distributed on six dots, leaving a hole
in the mth dot:

|hm〉 = cm↓
6∏
i

c+
i↓|0〉. (17)

Just like the QQD [29] or the TQD [18], the Hamiltonian for a
hole in a spin-polarized, half-filled system and that of a single
electron given in Eq. (2) are the same except for the change of
sign of t , resulting in the same single-particle energy spectrum
as depicted in Fig. 2 shifted in energy by 5E + 4V due to the
presence of the electrons residing on the five dots.

2. Hole in the presence of a minority spin Sz = 3/2

The Sz = 3/2 configurations contain a minority spin ob-
tained by flipping the spin of one electron in each hole state of
the Sz = 5/2 subspace such that

|j,hm〉 = c+
j↑cj↓|hm〉, (18)

where |hm〉 is the Sz = 5/2 hole state defined in Eq. (17) and j

is the index of the minority electron with a flipped spin. We can
take the Fourier transform of the minority spin state, |j,hm〉,
that tunnels among the five filled states of a quasi-hole state
|hm〉, acquiring a phase of ξ every time it tunnels. Upon this
rotation, we obtain the states |ξ,hm〉 = ∑

j eijξ |j,hm〉 where
allowed values of wave vector ξ are 2π/5{0,1,2,3,4}. The
Hamiltonian becomes block diagonal in ξ , such that each block
is made out of configurations with the hole in one of the six
dots, sensing the minority-spin chirality ξ . Each one of the five
6 × 6 blocks is equivalent to the single-particle Hamiltonian,
Eq. (2), with an artificial gauge field eiξ emerging for the
hole tunneling between quantum dots one and six within the
chirality space of ξ , resulting in a net phase accumulated on
the tunneling matrix element τ , τ = teiξ . The Hamiltonians
can be analytically diagonalized by realizing that the hole
acquires a phase of φξ = ξ/6 every time it tunnels from one
dot to another within each minority-spin chirality ξ . Then the
eigenvectors |α,ξ 〉 are obtained as

|α,ξ 〉 = 1√
6

6∑
m

eimφξ eimα|ξ,hm〉 (19)

and Eα,ξ = 5E + 2tcos(α + φξ ), respectively, for α =
2π/6{0,1,2,3,4,5}. We see that the wave vector of the hole is
a combination of the bare wave vector α and the wave vector
φξ of the minority-spin current of the background electrons.

3. Hole in the spin-depolarized Sz = 1/2 state

The Sz = 1/2 subspace requires flipping the spin of two
electrons in every Sz = 5/2 quasihole configuration. This can

FIG. 4. (Color online) (a) and (b) Permutation configurations for
two minority spins, Sz = 1/2, in a five-electron ABR. For a quasihole
at the lower left dot, (a) two adjacent minority electrons together
and (b) two minority electrons separated by a majority spin. (c) A
spin-current state with the beating of minority spin phases kn1 and
kn2 . (d) Hole tunneling under the influence of spin-current chirality.

be done in two ways. We can (A) flip the spins of two
adjacent electrons or (B) two electrons that are separated.
For example, starting with the |h6〉 state as defined in
Eq. (17), the spin of the two electrons can be flipped to
give |A6

1〉 = |c+
1↑c+

2↑c+
3↓c+

4↓c+
5↓〉 and |B6

1 〉 = |c+
1↑c+

2↓c+
3↑c+

4↓c+
5↓〉

as depicted in Figs. 4(a) and 4(b), respectively, where the
superscript six represents the position of the quasihole and
subscript 1 represents the configuration index. Applying
a permutation operator P̂ , which moves all electrons to
the right by one dot [33], P̂ |A6

1〉 = P̂ |c+
1↑c+

2↑c+
3↓c+

4↓c+
5↓〉 =

|c+
1↓c+

2↑c+
3↑c+

4↓c+
5↓〉 = |A6

2〉, we obtain four other permutations
of |A6

1〉 and |B6
1 〉. The Hamiltonian separates into blocks of

|A〉 and |B〉 configurations. Configurations A (B) correspond
to a pair of minority-spin electrons moving on the ring of five
electrons. Just as in the Sz = 3/2 case, for a given hole state
we can take the Fourier transform of the five Ah(Bh) minority
spin pair configurations to obtain the states differentiated by
the phase ϕ = 2π/5{0,1,2,3,4}, and generate 6 × 6 blocks for
each ϕ representing a quasihole tunneling under the influence
of an artificial gauge field in the form of Eq. (2) with τ = teiϕ .
Upon rotating each block, one finds that the A and B subspaces
are degenerate. Although the permutation operator provides a
convenient way to describe the dressed quasihole states, the
states obtained by this method are not eigenvectors of the total
spin operator Ŝ2.

4. Total spin classification of Sz = 1/2 hole states

In order to obtain the eigenstates of the total spin operator,
we introduce the spin current operator Ĵn. The spin-current
operator takes an electron from an Sz = 5/2 quasihole state
|hm〉, flips its spin and moves it among the occupied dots,
adding a phase of eikn each time it tunnels such that

Ĵn =
∑

j

eiknj c+
j↑cj↓, kn = 2π

5
n, n = {1,2,3,4,5}. (20)
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For Sz = 1/2 subspace, one needs to apply spin-current
operators twice,

Ĵn2 Ĵn1 =
∑

j

∑
l

ei(jkn1 +lkn2 )c+
l↓cl↑c+

j↓cj↑, (21)

on to the spin-polarized |hm〉 state. In this process there appear
25 (j,l) pairs of minority spin electrons at sites j and l and
25 current states (kn1 ,kn2 ). Not all of these configurations have
nonzero amplitudes. The spin-current states {kn1 ,kn2} and the
(j,l) pairs created from the beating of the two phases kn1 and
kn2 carried by the minority spins [Fig. 4(c)] are orthogonalized,
removing duplicates that emerge due to indistinguishable
nature of electrons. Out of the 25 (j,l) pairs, five do no exist
since c+

l↓cl↑c+
j↓cj↑|hm〉 = 0, and the remaining 20 are made out

of duplicates since c+
l↓cl↑c+

j↓cj↑ = c+
j↓cj↑c+

l↓cl↑, leaving only
ten distinct (j,l)-pairs. However, removing the five nonexistent
(j,l) pairs destroys the orthogonality of the spin-current states,
which require reorthogonalization.

Upon closer examination of the spin-current states, one can
see that {kn1 ,kn2} = {kn2 ,kn1}, which automatically removes
ten out of these 25 spin-current states leaving 15 to work with.
Though at first glance these 15 spin-current states seem to be
distinct, we expect to have only ten states at the end of this
process, and upon reorthogonalization, we will see that there
are five duplicates, leaving ten distinct spin-current states. We
start by grouping the spin-current states {kn1 ,kn2} according to
their total spin current, ktot = kn1 + kn2 = 2π

5 {1,2,3,4,5} (in
units of 2π/5):

ktot = 1 2 3 4 5

{k1,k5} {k2,k5} {k3,k5} {k4,k5} {k5,k5}
{k3,k3} {k1,k1} {k4,k4} {k2,k2} {k1,k4}
{k2,k4} {k3,k4} {k1,k2} {k1,k3} {k2,k3}

Above states are orthogonal to one another if they belong
to different total-spin-current subspaces, yet within each
subspace they are not. Acting with the Ŝ2 operator, one can
see that all {kn1 ,k5} states belong to the S = 3/2 space, except
for {k5,k5}, which is the only state with S = 5/2. When the Ŝ2

operator acts on the remainder of the states, we see that they are
not eigenfunctions of the total S operator. These states, with
no definite spin, are orthogonalized using the Gram-Schmidt
method revealing that both of the undefined total spin states
within a given subspace are actually one another’s duplicate,
resolving the problem of five excess spin-current states.

Then, from each Sz = 5/2 quasihole state, applying the
spin-current operator twice, one arrives at ten total-spin current
states, with five distinct ktot. Just as in the Sz = 3/2 case,
we can now divide the Hamiltonian into ten subspaces, each
belonging to a different total-spin-current, total-spin {ktot,S}
pair. Again, the Hamiltonians of each {ktot,S} subspace, made
out of six vectors |ktot,S,hm〉 for each hole position, are similar
to that of a single-electron Hamiltonian [see Eq. (2)] with an
additional 5E + 4V energy on the diagonals and the tunneling
matrix element between dots 1 and 6 modified by the phase
the quasihole acquires when dressed by the spin current,

FIG. 5. (Color online) Energies of the S = 5/2 and 3/2 states as
a function of total wave vector α + φ or total phase. Each energy
level shown above is degenerate with energy levels of S = 1/2 states
as discussed in the text. U → ∞ limit, V = 0.

τ = teiktot [Fig. 4(d)]. From the phase, one can deduce that the
energy spectrum is doubly degenerate since there is a S = 1/2
and a S = 3/2 or 5/2 subspace for each ktot. The following
eigenfunctions

∣∣χα
ktot,S

〉 = 1

6

6∑
m

ei·m·φktot ei·m·α|ktot,S,hm〉, (22)

in which the hole gains one-sixth of the total phase, φktot =
(ktot)/6, every time it tunnels from one dot to another, diagonal-
ize the Hamiltonian [Eq. (2)] with the phase τ = teiktot , where
α = 2π

6 {0,1,2,3,4,5}. Figure 5 depicts the allowed energy
levels. As derived above, the Sz = 1/2 subspace contains
all possible total spin states, S = {5/2,3/2,1/2}, and every
S = 1/2 state has a degenerate, higher spin pair. Then the
spectrum for the Sz = 3/2 subspace, which covers both the
S = 3/2 and the S = 5/2 total spin states, includes all allowed
energy levels. We see that the hole moving in the space of
polarized spins (Sz = S = 5/2) is restricted to only five energy
levels. Whereas when we introduce a minority spin, its chirality
acts as an additional wave vector and allows the hole to be on
more than five different states.

B. Quasihole in a weakly interacting system

Let us now study a weakly interacting system, U � t ,
where the electronic properties are determined primarily by
the kinetic energy, with interactions acting as a perturbation.
Thus working in the Fourier space, where the kinetic energy
has already been diagonalized simplifies our discussion con-
siderably.

In the noninteracting limit, U → 0, we place electrons on
the single-particle levels while satisfying the Pauli exclusion
principle. For a half-filled ABR the reference state, a Fermi sea,
illustrated in Fig. 6(a), is our starting configuration. Removing
an electron creates a hole below the Fermi level. There are two
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FIG. 6. (Color online) The ground-state configuration in the
weakly interacting regime plotted in Fourier space. For U = 0,
all electrons will occupy the lowest kinetic energy levels. For six
electrons, that translates to double occupancy. When an electron
is removed, there is a degenerate ground state. Flipping a spin
from either one of them will generate an S = 3/2 ground state.
Fully polarized electrons will occupy the lowest levels with single
occupancy.

degenerate configurations for the hole as depicted in Fig. 6(b).
Since κ = ±π/3 levels are degenerate, creating a hole in either
one costs the same energy. From each of these degenerate
states with spin S = 1/2, one can create the lowest energy
S = 3/2 configurations with energy EGS

3/2 = −5t as depicted
in Fig. 6(c) (S = 3/2). Just like the S = 1/2 ground state, the
S = 3/2 ground state is also degenerate due to the degeneracy
of the κ = ±2π/3 levels. Finally, the lowest energy S = 5/2
state is obtained by placing a single electron on each one of
the lowest five levels, resulting in EGS

5/2 = −2t and κGS
5/2 = 0

as shown in Fig. 6(c) (S = 5/2). Unlike its lower total spin
counterparts, this ground state is nondegenerate since there is
only one way of placing five spin-polarized electrons on to
the lowest five levels. Then, in the weakly interacting regime,
the ground state of the charged ABR has a unique total spin
but the degeneracy arises from the degeneracy of the orbitals.
This is to be contrasted with the strongly interacting regime
where the two unique total spin states, S = 1/2 and 5/2, are
degenerate. The difference in the nature of the ground state in
the two limits implies level crossing as a function of the
interaction strength.

IV. NUMERICAL RESULTS FOR INTERMEDIATE
INTERACTION STRENGTH 0 < U < ∞ AND V > 0

For finite t, U, and V , we diagonalize numerically the
Hamiltonian matrix in the space of five electron configurations
in Fourier space. The evolution of the low-energy levels with
increasing U is shown in Fig. 7. Starting from the weakly
interacting regime, the first level crossing as we turn on
the interactions is found in the excited S = 3/2 subspace
where the wave vector of the lowest energy state changes
from κ = ±2π/3 to ±π/3. Next, the crossing between the
degenerate {S = 3/2,κtot = ±π/3} states and the lowest {S =
5/2,κtot = 0} state changes the total spin order of excited
states. As we keep increasing the interaction strength, the

FIG. 7. (Color online) Transitions in the lowest energy levels
with increasing interaction strength U . The black arrows highlight the
transition points. Blue, red, and gray colors correspond to S = 1/2,
3/2, and 5/2 states, while solid and dashed lines distinguish the κtot

of these subspaces.

ground state of the ABR undergoes a transition from the
S = 1/2, degenerate in momentum κ = ±π/3 states to a
nondegenerate S = 1/2, κ = 0 state. As U grows, the energy
of the S = 1/2 ground state approaches the {S = 5/2,κtot = 0}
state, eventually becoming degenerate as predicted and derived
in the previous section.

V. ABSORPTION SPECTRUM OF A CHARGED
ARTIFICIAL BENZENE RING

Here, we will analyze how the electron-electron interaction
driven transitions in the ground and excited states can
be detected by optical spectroscopy. The transition from
a degenerate, κ = ±π/3, ground state to a nondegenerate
κ = 0 angular momentum ground state can be captured in
the absorption spectrum using the selection rules on angular
momentum. We have already derived the selection rules for
angular momentum and photons conserve the total spin of the
system in the absence of spin-orbit interaction.

A. Absorption spectrum of a weakly interacting charged
artificial benzene ring

In the noninteracting limit, U = 0, the absorption is solely
dictated by the single particle level selection rules. Starting
with either one of the two κtot = ±π/3, S = 1/2 states (κtot =
−π/3 shown as inset in Fig. 8), an electron from the κ = 0
level can be excited to the singly occupied κ = ∓π/3 level via
a photon with energy ω = t . For the cost of 2t , either one of
the electrons in the doubly occupied κ = ±π/3 can be moved
to κ = ±2π/3. In the noninteracting regime, other transitions
are not allowed due to optical selection rules, leading to two
absorption lines at ω = t and ω = 2t shown in Fig. 8(a).

When the interactions are turned on, multiple configu-
rations contribute to the absorption spectrum as shown in
Fig. 9(a) for U = t . Starting with the state with S = 1/2,
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FIG. 8. (Color online) Absorption spectrum of charged ABR.
V is kept fixed at V = t/3. (a) Absorption spectrum for U = 0.
(b) Absorption spectrum for U = 10t , depicting the splitting of
low-energy transitions into many lines and emergence of transitions at
E ≈ U , the excited Hubbard band. (c) Optical spectrum for U � t . At
U = 125t , only a single, low-energy transition is allowed as derived in
the text. The inset highlights the fact that as the interaction strength
increases the many-electron states become highly correlated and a
real space representation is necessary for a better understanding of
the problem.

κtot = π/3, a photon can only couple this state to κtot = 2π/3,0
states. Due to interactions, one needs to consider correlated
states within each total wave vector subspace.

Let us concentrate on the configurations with the greatest
contribution to the absorption spectrum within each of the
κtot subspace. For the weakly interacting regime, these are
the lowest kinetic energy configurations. There are four
configurations with kinetic energy −5t in the κtot = 2π/3
subspace as depicted in green boxes in Fig. 9(a). They all
have two electrons in the lowest, κ = 0, molecular state and
the remaining three electrons are distributed on the degenerate
levels. Absorption transitions from the κtot = π/3 ground state
to a superposition of the κtot = 2π/3 configurations are plotted
in green in Fig. 9(b). Although some of the configurations
shown in the boxes are not directly optically accessible from
the ground state, they contribute to the correlated states and
hence acquire finite oscillator strength. Since the cost of
moving an electron across the degenerate levels is 2t , the green
peaks in the absorption spectrum are around 2t , shifted left and
right due to correlations.

The same analysis can be done for the κtot = 0 subspace.
The lowest-energy configurations within this subspace are
depicted in red boxes in Fig. 9. The lowest kinetic energy,
t , excitation, in which an electron from the κ = 0 molecular
level is moved up to the κ = −π/3 molecular level, interacts
with higher energy, 2t , excitations through off-diagonal terms.
The red absorption peak around E = |t | corresponds to a state
mainly composed of the low-energy configuration. Since the
cost of moving an electron across the degenerate levels costs
2t , the other two peaks that are mainly composed of the higher
energy κtot = 0 states, are around E = 2|t |.

FIG. 9. (Color online) The optically allowed configurations (a)
and the absorption spectrum from the weakly interacting, degenerate
ground state (b). The configurations responsible for the low-energy
peaks in the spectrum are shown in green and red boxes. Starting
with the ground state with κtot = π/3, the peaks in the absorption
spectrum that correspond to κtot = 2π/3 (in green) and the κtot = 0
(in red) excitations are identified and separated. t = −3.0 eV, U = t ,
and V = t/3.

Let us return to the absorption spectrum for the interacting
ABR shown in Fig. 8(b). In the calculated absorption spectrum
for the interacting ABR (U = 10t), the two peaks at t and 2t

that are characteristic of the noninteracting system, split into
many lines. At higher energies, E ∼ U , there appears a new
band of transitions to the first Hubbard band. These excited
states correspond to creation of “holons” (empty sites) and
“doublons” (doubly occupied states) [38].

As we increase U/t further, the S = 1/2 ground state of
the charged ABR changes from the degenerate κtot = π/3
states to the nondegenerate κtot = 0 state, which approaches
the spin-polarized S = 5/2 state as shown in Fig. 7. The optical
transitions to the first Hubbard band move to higher energies
and the low-energy absorption spectrum from the S = 1/2,
κtot = 0, ground state simplifies to an absorption peak at
E = t as shown in Fig. 8. We can understand the absorption
spectrum for U → ∞ and its relationship with the quasihole
energy spectrum (Fig. 5), determined by the emergence of the
artificial gauge, by evaluating the dipole elements between
total-spin-current eigenvectors. Upon evaluation of the dipole
matrix elements between total-spin-current quasihole states,

〈
k1

tot,S1,hm1

∣∣ε± · 
r∣∣k2
tot,S2,hm2

〉 = Cm2
m1

δ
(
k1

tot − k2
tot

)
, (23)

the conservation rule on ktot is obtained. In the equation above,
Cm2

m1
is the dipole strength that depends on the positions of the

hole. Conservation of ktot means that, only absorption within
states with the same total-spin-current subspaces are allowed.
Now, if the dipole matrix elements between total-spin-current
eigenvectors, |χα

ktot,S
〉, are calculated remaining within the same
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total-spin-current subspace we get〈
χ

α1
ktot,S

∣∣ε± · 
r∣∣χα2
ktot,S

〉 = 1

6

∑
m1

ei·m1(α2−α1±1)

× [1 + Ceiktotδ(m1,1) + C∗e−iktotδ(m1,6)].

Even though there seems to be a condition α2 = α1 ± 1 on the
total-spin-current eigenvector index, it is destroyed by the fact
that there is hole-position dependence in δ(m1,1) and δ(m1,6).
However, for the ground state where ktot = 0 and α = 0, the
condition holds true allowing only α2 = α1 ± 1 transitions.
Since the α = 1 and 5 states are degenerate, we find a single
peak in the absorption spectrum obtained numerically for U =
125t in Fig. 8(c).

VI. CONCLUSION

We presented here a theory of a charged artificial benzene
ring (ABR) described by the extended Hubbard model. We

discussed an exact expression for the energy spectrum of
the quasihole in a half-filled ABR in terms of the emergent
topological gauge field in the limit of strong interactions and
showed the dependence of the spectrum on the total spin of
background electrons. Using exact diagonalization techniques,
we have described the evolution and transitions in the ground-
state spin and momentum as a function of the interaction
strength. The evolution of the ground and excited states with
interaction strength as observable in the optical absorption
spectrum was predicted and analyzed. It is hoped that the
results presented here will stimulate research on artificial
benzene rings fabricated using semiconductor quantum wires
as models of strongly correlated electron systems.
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