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We analyze the interplay between charge-density-wave (CDW) orders with axial momenta (Q,0) and (0,Q) (�x

and �y , respectively), detected in the underdoped cuprates. The CDW order in real space can be unidirectional
(either �x or �y is nonzero) or bidirectional (both �x and �y are nonzero). To understand which of the two orders
develop, we adopt the magnetic scenario, in which the CDW order appears due to spin-fluctuation exchange, and
derive the Ginzburg-Landau action to the sixth order in �x and �y . We argue that at the mean-field level, the
CDW order is bidirectional at the onset, with equal amplitudes of �x and �y , but changes to unidirectional inside
the CDW phase. This implies that at a given temperature, CDW order is unidirectional at smaller dopings but
becomes bidirectional at larger dopings. This is consistent with recent x-ray data on YBa2Cu3Oy , which detected
tendency towards bidirectional order at larger dopings. We discuss the role of discrete symmetry breaking at a
higher temperature for the interplay between bidirectional and unidirectional CDW orders and also discuss the
role of pair-density-wave (PDW) order, which may appear along with CDW. We argue that PDW with the same
momentum as CDW changes the structure of the bidirectional charge order by completely replacing either �x

or �y CDW components by PDW. However, if a so-called Amperean PDW order, which pairs fermions with
approximately the same momenta, is also present, both �x and �y remain nonzero in the bidirectional phase,
albeit with nonequal amplitudes. This is again consistent with x-ray experiments, which at larger doping found
nonequal �x and �y in every domain.
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I. INTRODUCTION

Understanding of the charge-density-wave (CDW) order in
high-Tc cuprates is an essential step towards the understanding
of the phase diagram of these materials. An incommensurate
CDW order was observed in La-based cuprates a while ago
[1,2] and recently was found to be ubiquitous in the cuprates
[3–13]. The CDW order is incommensurate, with momentum
Q along X and/or Y directions, where Q ∼ (0.2 − 0.3) × 2π .
The charge order observed in zero magnetic field is static but
short ranged (probably pinned by impurities [12]). In a finite
field a true long-range CDW order has been detected [14]. An
incommensurate charge order parameter generally has both
on-site and bond components (a true CDW and a bond order,
respectively [8,11]). To simplify the presentation, we use the
term CDW below for both on-site and bond orders.

The presence of the two axial momenta Qx = (Q,0)
and Qy = (0,Q), and, hence, two distinct U (1) components
�Qx

= �x and �Qy
= �y , naturally raises the question of

whether both are present simultaneously in the CDW state
or only one-component orders [15–18]. If both �x and �y

are present, the CDW order is called bidirectional. If the
amplitudes of �x and �y are equal, bidirectional CDW order
does not break C4 lattice rotational symmetry. If only �x or
only �y develops, the order is unidirectional, and in the ordered
phase the system breaks not only U (1) translational symmetry
but also C4 symmetry down to C2, by spontaneously choosing
�x or �y . At the mean-field level, C4 and U (1) symmetries
get broken at the same T . Beyond mean field, the C4 → C2

symmetry breaking occurs at a higher T than the breaking of
a continuous U (1) symmetry, and this gives rise to a nematic
state at intermediate T ’s, in which the rotational C4 symmetry

is broken down to C2, but the translational U (1) is preserved
[15,19]. The CDW order, either unidirectional or bidirectional,
may also break Z2 time-reversal symmetry, if the phases of
the CDW orders with the same Q but opposite center-of-mass
momenta are not identical [15,20,21]. We discuss one such
state below.

Recent x-ray and scanning tunneling microscopy (STM)
experiments on underdoped cuprates [9–11] point towards a
unidirectional CDW, also known as the stripe order [1,22].
However, x-ray data on YBa2Cu3Oy (YBCO) at larger dopings
were interpreted [10,23] as evidence that at higher hole concen-
trations the order switches from unidirectional to bidirectional.
Specifically, at at lower dopings resonant x-ray scattering data
show only one peak at momenta Qx and Qy in every domain,
while at higher dopings two peaks at momenta Qx and Qy

have been detected in every domain, with unequal intensity.
The difference between the intensities was interpreted to be
due to intrinsic orthorhombicity. The bidirectional CDW order
was also assumed in the interpretation of quantum oscillations
in a magnetic field [24].

In this paper we analyze the interplay between CDW
order parameters with momenta Qx and Qy within the
spin-fluctuation scenario [15,25–27]. In this scenario, axial
CDW order with predominantly d-wave form factor emerges
in a paramagnetic state due to effective attractive interaction
mediated by soft spin fluctuations peaked at or near (π,π ),
much like spin-mediated d-wave superconductivity. Within a
given hot region in the Brillouin zone, the spin-fluctuation
exchange gives rise to CDW order with a small momentum,
much like the one due to small-Q phonon exchange [28].
Magnetically mediated CDW order also naturally gives rise to
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a sign change between CDW orders in different hot regions
separated by (π,π ). This is consistent with the observed
d-wave form factor of the CDW order parameter [11].

In this paper we consider the clean system, in which CDW
order emerges as a true long-range order at T = 0 and as an
algebraic order with power-law decays of correlations at a
finite T < TBKT. In the real materials, a CDW order is likely
pinned by impurities [29] and is short range, albeit static.

We derive the Ginzburg-Landau free energy to sixth order
in CDW order parameters �x and �y . These two order
parameters couple to fermions in hot regions on the FS, and the
coefficients in the free energy are given by loop diagrams made
out of hot fermions. We compare mean-field free energies
of unidirectional and bidirectional CDW orders and argue
that, at its onset, the CDW order is bidirectional. However,
the order changes to unidirectional inside the CDW-ordered
phase, once the magnitude of CDW order parameter exceeds
some critical value. Since the onset temperature TCDW is a
decreasing function of doping x, the CDW order, viewed as a
function of doping at a given temperature, is unidirectional at
smaller dopings and bidirectional at higher dopings. This result
is consistent with recent x-ray experiments on YBCO [10,23],
which, as we said, were interpreted as evidence that at higher
hole concentration the order switches from unidirectional to
bidirectional.

We argue that the mean-field free energies of unidirectional
and bidirectional CDW immediately below TCDW differ sub-
stantially at small TCDW but become rather close to each other
at higher TCDW. In this last case, unidirectional CDW may win
over bidirectional CDW already from the onset, once we go
beyond mean field and include nematic fluctuations, which
favor unidirectional CDW. We show the most likely phase
diagram in Fig. 1.

For completeness we also analyze how the doping evolution
of the CDW order is affected by potential presence of the
pair-density-wave (PDW) order. This order has been proposed
in several theory papers [30–36] and was recently reported to
be observed in the tunneling experiments on the cuprates [37].

In the spin-fluctuation scenario, a PDW order with the
same Qx and/or Qy appears to be almost degenerate with
CDW order [34–36] due to approximate particle-hole SU(2)
symmetry [26,27]. The presence of such PDW does not affect
qualitatively the unidirectional phase as CDW/PDW order still
develops with the (relative) momentum Qx or Qy , but it does
affect the structure of CDW in the bidirectional phase. Namely,
CDW develops along one direction, say with the relative
momentum Qx , and PDW order develops along the orthogonal
direction with the relative momentum Qy (Refs. [34,35]).
Such a structure would still show up as unidirectional in
the experiments which probe only the CDW component, in
disagreement with the x-ray data [10,23]. We argue, however,
that the consistency with x-ray data can be restored if the
system also develops PDW order involving fermions from the
same hot region, as Refs. [30,31] suggested. Such an order
mixes particles and holes within a given hot region and, as a
result, CDW component appears with Qx and with Qy , albeit
with nonequal magnitudes.

The structure of the paper is the following. In Sec. II
we discuss the model. In Sec. III we assume that only
CDW order develops, and we analyze the structure of CDW

FIG. 1. (Color online) The schematic phase diagram for the
CDW order. Inset: the CDW phase diagram obtained within the
mean-field theory. The CDW order is bidirectional at the onset but
becomes unidirectional inside the ordered phase. The main figure:
The full phase diagram beyond mean-field theory. The unidirectional
order still appears inside the CDW-ordered phase at low temperatures,
but becomes the only order at higher temperatures due to feedback
effect from the nematic order which sets up prior to CDW order. The
two dashed curves correspond to the onset of the nematic order and
of time-reversal symmetry breaking. The latter occurs independently
of whether CDW order is unidirectional or bidirectional. In the
shaded region, Mott physics develops and the range of charge
ordering shrinks. This phase diagram implies that bidirectional order
is completely eliminated once the onset temperature of the Z2

nematic order exceeds that of U (1) CDW order. Another possibility
(not shown) is that bidirectional order survives below the nematic
transition line, but the magnitudes of CDW orders �x and �y become
nonequivalent, in line with the breaking of C4 symmetry.

order at the onset and inside the CDW-ordered phase. In
Sec. IV we consider potential coexistence of CDW and
PDW orders. Section V presents the summary and the
conclusions.

It is instructive to place our work in the context of other stud-
ies of the interplay between unidirectional and bidirectional
CDW/PDW order in doped cuprates. The structure of CDW
order without PDW has been analyzed before [15,16,20],
but only at its onset and at the lowest T . In this work we
extend the analysis of CDW order at the onset to larger T and
also analyze the structure of CDW order inside the ordered
phase. The coexistence of PDW and CDW orders with Qx and
Qy immediately below the CDW/PDW instability has been
analyzed in Refs. [34–36], again at small T . The PDW order
with total momenta approximately equal to twice the hot spot
value was considered in Ref. [30] without reference to the hot
spot scenario and in Ref. [31] within the hot spot model. (In the
latter case the total momentum of a pair is actually along one of
Brilliouin zone diagonals; i.e., it is Qdiag = (Q, ± Q), because
hot spots are located at the intersection with the magnetic
Brillouin zone boundary.) We analyze the interplay between
Qx/Qy and Qdiag orders when both are present.
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FIG. 2. (Color online) The Brillouin zone (BZ) of a typical
cuprate system and the hot spots ±(1,2,3,4), which are defined
as points on the Fermi surface separated by the antiferromagnetic
momentum K = (π,π ). The Fermi velocity at a hot spot, say 1,
is given by v = (vx,vy). The CDW order parameters, labeled by
A,B,C,D, couples with hot fermion pairs in the axial direction.
CDW order parameters with the same momentum, for example, �A

and �B , are not equivalent since they have opposite center-of-mass
momentum ±k0.

II. THE MODEL

We follow earlier works and consider a two-dimensional
metallic system with the Fermi surface shown in Fig. 2.
We define CDW order parameters �x and �y as �i

kj
=∑

k≈kj
〈c†k+Qi /2ck−Qi /2〉, where i = x,y and the summation

over center-of-mass momentum k is restricted to the vicinity
of one of eight kj points, for which kj ± Qi/2 are both at the
Fermi surface (see Fig. 2; these points are often called the hot
spots). The momenta kj are not high symmetry points in the
Brillouin zone [15,31]; hence �i

kj
and �i

−kj
are generally not

identical, although they have the same Qi . If spin fluctuations
are peaked at (π,π ), then kj is along the X direction for
Q = Qy[kj = ±kx = (±(π − Q),0)] and kj is along the Y

direction for Q = Qx (kj = ±ky = [0, ± (π − Q)]).
We label hot regions in Fig. 2 as ±1, ± 2, ± 3, ± 4 and

define the Fermi velocity at hot spot 1 as (vx,vy), the one at
hot spot 2 as (vx, − vy), etc. The magnitude of the velocity
v =

√
v2

x + v2
y is the same for all hot spots. The fit of ARPES

data for Bi2212 by tight-binding dispersion yielded [38] a
large ratio of velocities vy and vx : vx/vy = 13.6. We use this
as an input and set vy � vx in our calculations. The fermionic
dispersion εi,k̃ near a given hot spot i is linear in momentum
deviation k̃ from the hot spot, e.g., ε1,k̃ = vxk̃x + vyk̃y , ε2,k̃ =
vxk̃x − vyk̃y , etc. We assume that the linear dispersion holds

up to energy scale � which we set as the upper cutoff in our
low-energy theory.

III. UNIDIRECTIONAL VS BIDIRECTIONAL CDW ORDER

We first assume that only CDW order develops and derive
the Free energy for four CDW order parameters �A,B = �

Qy

±kx

and �C,D = �
Qx

±ky
to order �6.

The CDW order parameters couple to hot fermions via

H′ = �A[c†2(k̃)c1(k̃) − μc
†
4(k̃)c3(k̃)]

+�B [c†−1(k̃)c−2(k̃) − μc
†
−3(k̃)c−4(k̃)]

+�C[μc
†
1(k̃)c−2(k̃) − c

†
3(k̃)c−4(k̃)]

+�D[μc
†
2(k̃)c−1(k̃) − c

†
4(k̃)c−3(k̃)] + H.c., (1)

where the minus sign within each bracket accounts for the
sign change of CDW order under kj → kj + (π,π ) and μ > 1
describes the difference in magnitudes between CDW orders
between, e.g., hot spots 1–2 and 3–4 in Fig. 2: �1–2 = �A,
�3–4 = −μ�A (for details, see Refs. [15,16]). When μ = 1,
CDW order has a pure d-wave form; when μ differs from
one, it has both d-wave and s-wave components (�A(1 + μ)
and �A(μ − 1), respectively). The d-wave component is
always larger. The model calculations of Refs. [15,16] yield
μ = √

log (vy/vx).

A. Selection of CDW order near its onset

The free energy in terms of � is obtained by integrating out
fermions in the partition function for H given by the sum of
free-fermion Hamiltonian and H′ from (1) and re-expressing
the result as

∫
d�e−FCDW/T . Expanding FCDW to fourth order

in �A,B,C,D we obtain [15,16]

FCDW =α(|�A|2 + |�B |2 + |�C |2 + |�D|2)

+ β0(|�A|4 + |�B |4 + |�C |4 + |�D|4)

+ β1
(|�A|2 + �2

B

)
(|�C |2 + |�D|2)

+ β2(�A�C�∗
B�∗

D + H.c.), (2)

where α = ᾱ(T − TCDW) and ᾱ = ᾱ(T ) ∼ �/(vxvyT ).
The coefficients βi are obtained by evaluating square

diagrams made out of fermions. It is straightforward to verify
that β2 is positive at all T . For such β2, the system favors the
order with a negative �A�C�∗

B�∗
D = −|�A�C�∗

B�∗
D|.

We further notice that the free energy is symmetric under
A ↔ B, and C ↔ D and that there are no additional couplings
between �A and �B and between �C and �D . Accordingly,
we set |�A| = |�B | = |�y | and |�C | = |�D| = |�x |. The
free energy (2) then becomes

FCDW =2α
(|�x |2 + |�2

y |
) + 2β0(|�x |4 + |�y |4)

+ (4β1 − 2β2)|�x |2|�y |2 + O(�6). (3)

An elementary analysis then shows that CDW order is
unidirectional when 2(β1 − β0) > β2 and bidirectional when
2(β1 − β0) < β2.

The coefficients βi have to be computed along α = 0 line,
i.e., for T = Tcdw(x). In practice, it is more convenient to keep
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T initially as a parameter and set T = Tcdw(x) at a later stage.
At the lowest T � vx�, the coefficients βi have been obtained
previously [15,16]. In this limit

β0 = 1

16π2v2
xvy�

,

(4)

β1 = μ2

4π2v2
xvy�

log
vx�

T
, β2 = μ2

16vxvyT
.

Clearly, at the lowest temperature, β2 � 2(β1 − β0), i.e., the
CDW is bidirectional.

We extended the analysis of βi to higher temperatures.
Because vy � vx , there are two characteristic energy and
temperature scales, T1 = vx� and T2 = vy� � T1. Equation
(4) is valid for T � T1. At T2 � T � T1 we obtained, up to
small corrections,

β0 = C
�

2T 2
, β2 = 2β1 = Cμ2 �

T 2
, (5)

where C = 7ζ (3)/(16π4vy) and ζ (3) is the Riemann ζ

function. We see that, again, β2 − 2(β1 − β0) is positive, i.e.,
the CDW is bidirectional.

At even higher temperatures T � T2, we have

β0 = (1 + μ4)C̃, β1 = β2 = 2μ2C̃, (6)

where C̃ = �2/(192π2T 3). In this situation β2 − 2(β1 −
β0) ∝ (1 + μ4) − μ2 = (1 − μ2)2 + μ2. This is again posi-
tive, i.e., CDW order at the onset is again bidirectional.

We see therefore that CDW order at the onset is bidirectional
for all T , when T is considered as a parameter. Obviously then,
the CDW order is bidirectional along the whole TCDW(x) line.

Although the structure of CDW order remains the same
along TCDW(x), the type of the order changes. At the lowest
temperature, β2 is much larger than β1 and β0, and the CDW
transition is first order. In this situation, the analysis based on
the comparison of coefficients of the quartic terms is, strictly
speaking, incomplete, as one has to include higher order terms
in � and analyze the structure of CDW order for finite �x

and �y immediately below first-order transition. At higher
T > T1, the CDW transition is second order and the analysis
based on the comparison of the quartic terms is perfectly valid
near the onset.

Before we proceed to include higher orders in �’s, we note
that the condition

�A�C�∗
B�∗

D = −|�A�C�∗
B�∗

D| (7)

actually holds for arbitrary magnitude of �. To see this,
we recall that the free energy in Eq. (2) is obtained from
the original model with fermion-fermion interaction by
introducing �A,B,C,D as the Hubbard-Stratonoivich fields,
performing Hubbard-Stratononich transformation, integrating
over fermions, and expanding in powers of �. One can vary
the relative phases between the �A,B,C,D and minimize the
free energy before expanding in �. The part of the free energy
that depends on the relative phases for hot spots 1,2, − 1, − 2

is

Fϕ = − log

⎡
⎢⎢⎣det

⎛
⎜⎜⎝

G−1
1 �A �∗

C 0
�∗

A G−1
2 0 �∗

D

�C 0 G−1
−2 �B

0 �D �∗
B G−1

−1

⎞
⎟⎟⎠

⎤
⎥⎥⎦, (8)

where Gi = G(ωm,εi,k) = 1/(iωm − εi,k) is the Green’s func-
tion. In Eq. (8) the summation over ωm and k is assumed.

In the bidirectional state we define |�A,B,C,D| = |�| and
�A�C�∗

B�∗
D = |�|4eiϕ . We then expand the determinant in

Eq. (8) and obtain

Fϕ = −T
∑
ωm,k

log
[(

ω2
m + ε2

1

)(
ω2

m + ε2
2

)

+ 4ω2
m|�|2 + 2(1 − cos ϕ)|�|4], (9)

where we have used the fact that to linear order in momentum,
counted from a hot spot, ε−i,k = −εi,k . Minimizing Fϕ we ob-
tain that ϕ = π , i.e., that �A�C�∗

B�∗
D = −|�A�C�∗

B�∗
D|.

The free energy for � between hot spots 3,4, − 3, − 4 is
analyzed in a similar way and the condition on the phase is the
same ϕ = π . Hence the condition (7) indeed minimizes the
free energy for arbitrary magnitudes of �A,B,C,D . This in turn
allows us to fix the phase before expanding in powers of �.

B. Unidirectional vs bidirectional order inside the CDW phase

We now analyze how the order changes inside the CDW
phase. For this, we extend the free energy to include the terms
of the sixth order in �. The full free energy to this order is

FCDW = α(|�A|2 + |�B |2 + |�C |2 + |�D|2)

+β0(|�A|4 + |�B |4 + |�C |4 + |�D|4)

+β1
(|�A|2 + �2

B

)
(|�C |2 + |�D|2)

− 2β2|�A�C�∗
B�∗

D|
+ γ0(|�A|6 + |�B |6 + |�C |6 + |�D|6)

+ γ1[(|�A|4 + |�B |4)(|�C |2 + |�D|2)

+ (|�C |4 + |�D|4)(|�A|2 + |�B |2)]

+ γ2[|�A|2|�B |2(|�C |2 + |�D|2)

+ |�C |2|�D|2(|�A|2 + |�B |2)]

− 2γ3(|�A|2 + |�B |2 + |�C |2 + |�D|2)

× |�A�C�∗
B�∗

D| + O(�8), (10)

and we already applied the condition on the relative phases,
Eq. (7). The prefactors for different �6 terms are obtained by
evaluating six-leg fermion loop diagrams, which we show in
Fig. 3. To simplify the calculations we set μ = 1, i.e., assume
a purely d-wave form factor for CDW. This simplifies the
evaluation of the integrals but does not qualitatively affect the
outcome. For μ = 1, the expressions for γi are

γ0 = 1

3

∫
G3

1G
3
2 + 1

3

∫
G3

3G
3
4,

γ1 =
∫

G3
1G

2
2G−2 +

∫
G3

3G
2
4G−4, (11)

γ2 = γ3 =
∫

G2
1G

2
2G−1G−2 +

∫
G2

3G
2
4G−3G−4,
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FIG. 3. Representative of four types of six-leg diagrams for
γ0,1,2,3. Only one diagram of each type is shown. Others are obtained
by replacing, e.g., 2 to −2, etc.

where the integration over k and summation over ωm are
assumed. The evaluation of these coefficients is standard
but the formulas are quite cumbersome and we refrain from
presenting them. As our primary goal is to understand what
happens with bidirectional order as the magnitude of CDW
order parameter gets larger, we restrict with T � vx�. In
this limit one can safely extend the upper limit of momentum
integration to infinity. Both γ0 and γ1 then vanish due to triple
poles in the integrands. On the other hand, the momentum
integral for γ2 = γ3 contains poles in different momentum
half-planes and hence remains finite. This integral diverges
in the infrared, and the divergence is cut by T . An explicit
calculation shows that γ2 = γ3 is negative:

γ2 = γ3 = − 1

768vxvyT 3
. (12)

The free energy is again symmetric under A ↔ B, and
C ↔ D and we set |�A| = |�B | = |�y | and |�C | = |�D| =
|�x |. Neglecting β1 compared to β2 (recall that β1 � β2 at
T � v�; see Eq. (4)) and keeping only γ2 and γ3 terms in
(10) we simplify the free energy to

FCDW = 2α(|�x |2 + |�y |2) + β0(|�x |4 + |�y |4)

− 2β2|�x |2|�y |2 + 4|γ2||�x |2|�y |2(|�x |2 + |�y |2).

(13)

Because β2 � β0 at T � v�, the system initially develops
a bidirectional CDW order via a first-order transition at a
positive αcr = β2

2/(32γ2). At the same time, the sign of the
sixth-order term is opposite to that of the quartic term, and
hence, the energy gain associated with bidirectional order gets
weaker as the magnitude of �x,y grows. When the sixth-order
term gets larger than the quartic term, it becomes energetically
advantageous for the system to switch to a unidirectional
order. Comparing the free energies (13) of unidirectional and
bidirectional CDW orders we find that the transition from
bidirectional to unidirectional order occurs approximately at
α = 0. We have explicitly verified that, within the range
0 < α < αcr , the quartic term −2β2|�x |2|�y |2, which favors
the bidirectional order, is larger by magnitude than the sixth
order term 4|γ2||�x |2|�y |2(|�x |2 + |�y |2), which favors the
unidirectional order. This implies that although the CDW
transition is first order, the system still initially develops
bidirectional order and only later (at larger �) does the order
switch to unidirectional.

C. The CDW phase diagram

We use the results from the previous section to construct
the phase diagram. The mean-field phase diagram is shown

in the inset of Fig. 1. Upon lowering temperature or doping,
the system first develops a bidirectional CDW order via a
second-order transition at a higher TCDW and via first-order
transition at a lower TCDW. However, CDW order goes back to
the unidirectional as the system moves some distance into
the CDW-ordered phase. As a consequence, unidirectional
order exists in the large potion of the CDW phase. We
did not extend CDW region in Fig. 1 down to T = 0. At
T → 0, the prefactors of �4, �6, etc. terms diverge with
progressively higher powers of 1/T and one has to analyze
the interplay between unidirectional and bidirectional orders
without performing the Landau expansion.

The transformation from unidirectional and bidirec-
tional CDW order at higher dopings has been detected in
Refs. [10,23]. Reference [10] found that the order goes back
to unidirectional inside the CDW phase. Our results are fully
consistent with these data.

Beyond mean field, the interplay between unidirectional
and bidirectional CDW is influenced by the additional nematic
transition which occurs above the temperature at which
unidirectional CDW order sets in and breaks C4 rotational
symmetry down to C2. The microscopic rationale for the
existence of such transition has been presented before, both
for the cuprates [15] and Fe-pnictides [19], and we do
not repeat it here. The feedback effect from the nematic
transition on the primary CDW order increases the onset
temperature of the unidirectional order compared to that in
the mean-field approximation. Once the nematic transition
temperature Tnem exceeds TCDW, bidirectional order either gets
completely eliminated or the magnitudes of �x and �y within
bidirectional phase become nonequal as the consequence of
the broken C4 symmetry. To distinguish between the two
possibilities, one needs to compute free energies beyond the
mean field, which is beyond the scope of the current paper.
On general grounds, the condition Tnem > TCDW is unlikely
to be satisfied at small TCDW because there the difference
between the free energies of the uni and bidirectional phases
immediately below TCDW are the largest, but it well may get
satisfied at higher TCDW, when the free energy difference
between the two phases right below TCDW gets smaller. We
show the phase diagram beyond the mean field in Fig. 1,
assuming that bidirectional phase gets eliminated once Tnem

exceeds TCDW.
Another dashed line in Fig. 1 marks the temperature at

which the system breaks time-reversal symmetry. This line
lies on top of both unidirectional and bidirectional phases.
For the unidirectional phase, its presence is associated with
the fact that CDW orders with the same Q but opposite
center-of-mass momentum, e.g., �A and �B , are uncoupled
within the hot-spot model but become linearly coupled via
a term ∼�A�∗

B + H.c. in a more generic model in which
CDW coupling is extended to fermions away from hot spots.
A model calculation (see Ref. [15,34]) has found that the
relative phases between �A and �B are locked at ±π/2.
The selection of π/2 or −π/2 breaks the Z2 symmetry.
Because �A and �B transform into each other under time
reversal, the selection π/2 or −π/2 implies the breaking of
time-reversal symmetry. In the bidirectional phase, the phases
of the order parameters �A, �B , �C , and �D are locked by
�A�∗

B�C�∗
D = −|�A�∗

B�C�∗
D| [Eq. (7)]. Once the system
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selects the relative phase between �A and �B to be π/2 or
−π/2, the phase difference between �C and �D is adjusted
to be the same as between between �A and �B . This implies
that the time-reversal symmetry breaking does not differentiate
between unidirectional and bidirectional CDW orders.

The existence of the nematic phase above the left half of
the CDW dome has been confirmed by in-plane resistivity
measurements [39]. It would be interesting to compare its
location with the onset of the Kerr effect [40] and the intra-
unit-cell order observed in neutron scattering [41], which both
detect time-reversal symmetry breaking. From the theoretical
perspective, the critical temperature of time-reversal symmetry
breaking can be either higher or lower than Tnem, depending
on model parameters.

IV. THE EFFECT OF THE PDW ORDER

In this section we discuss the structure of CDW order
in a situation when CDW order develops along with PDW
order, or when PDW order, of one kind or another, develops
before CDW order. The PDW order is a superconducting
order with a nonzero total momentum of a pair [like in a
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, but in zero
field]. Signatures of the PDW order have been detected in
the tunneling experiments on the cuprates [37], and PDW
order has been obtained in various analytical [30–36,42–44]
and numerical [45] theoretical calculations. It was argued that
the presence of a PDW order explains several experimental
features in the pseudogap phase [30–32,35].

A. PDW order within the spin-fermion model

Within the spin-fluctuation scenario, one can introduce two
different kinds of PDW order. One connects the pairs of hot
spots that are separated in momentum by Qx or Qy , like CDW
order does. The corresponding PDW order parameters are, e.g.,
�̄A ∼ iσ

y

αβc1α(k̃)c2β(−k̃), where k̃ is the momentum deviation
from the corresponding hot spot. The PDW order of this kind is
a partner of CDW in the same way as CDW order with diagonal
momenta (Q, ± Q) is a partner of magnetically mediated d-
wave superconductivity [26,27]. The partnership means that
the two orders (PDW and CDW with Qx and Qy in our case)
are degenerate in the hot-spot-only model due to underlying
SU(2) particle-hole symmetry [26]. The symmetry between
CDW and PDW orders enlarges the order parameter manifold
for each hot spot pair from U (1) to SO(4).

An SO(4)-covariant Ginzburg-Landau free energy that
incorporates both CDW and PDW components has been
derived and analyzed in Refs. [34,35]. For completeness, we
briefly review the results here.

In the presence of PDW, the U (1) CDW order parameter,
say �A, is replaced by a 2 × 2 matrix which has both CDW
and PDW components

�A ≡
(

�̄A �∗
A−�A �̄∗
A

)
. (14)

This SO(4) order parameter �A couples to particle-
hole doublets 1(k) = [c1↑(k),c†1↓(−k)]T and 2(k) =

[c†2↓(−k),c2↑(k)]T via

H′
�A

= 
†
1μ�

μν

A 2ν . (15)

The other CDW/PDW order parameters �B,C,D can be
similarly defined and coupled to fermions. The free energy
is quite similar to that in Eq. (2):

FCDW/PDW = α Tr(�†
A�A + �

†
B�B + �

†
C�C + �

†
D�D)

+β0 Tr(�A�
†
A�A�

†
A + �B�

†
B�B�

†
B

+�C�
†
C�C�

†
C + �D�

†
D�D�

†
D)

+β1 Tr[(�A�
†
A + �B�

†
B)(�C�

†
C + �D�

†
D)]

+β2[Tr(�†
A�B�

†
C�D) + H.c.]. (16)

The structure of the full CDW/PDW order is also quite
similar to that for a pure CDW order. Namely, the CDW/PDW
order can be either unidirectional (state I), when CDW/PDW
develops either on bonds A,C or on bonds B,D (see Fig. 1),
or bidirectional (state II), when CDW/PDW develops for all
bonds A,B,C,D. The CDW/PDW states I and II are the
counterparts of the unidirectional and bidirectional pure CDW
order, and the selection of state I or state II is determined by
the same interplay between the coefficients β0, β1, and β2 as
in the previous section. Borrowing the results, we argue that
CDW/PDW order is bidirectional at the onset. The structure
of the CDW/PDW order inside the ordered phase is again
determined by the interplay between terms of order �4 and
of order �6. We extended the analysis of the �6 terms in
the previous section to SO(4) CDW/PDW model and found
the same result as earlier, namely that the order changes to
unidirectional inside the CDW/PDW state. This implies that
the phase diagram of the SO(4) CDW/PDW model is at least
qualitatively the same as for the pure CDW order; see Fig. 1.

A more subtle issue is the distribution of CDW and PDW
order parameters in the CDW/PDW state, particularly in the
bidirectional state, where the combined CDW/PDW order
develops with both Qx and Qy . The Landau functional for
SO(4) CDW/PDW order parameter is highly degenerate as
for each bond the system can develop an arbitrary mixture
of CDW and PDW. The degeneracy gets broken when one
includes into consideration the fact that CDW order with, say,
Qx and PDW order with orthogonal Qy generate a secondary
homogenous superconducting order, and this gives rise to
additional lowering of the free energy (see Ref. [35]). As a
result, the true ground state for state II is the one for which
CDW only forms along one bond direction, say (A,B), while
PDW only forms along the other bond direction, (C,D). Such
a state breaks C4 lattice rotational symmetry down to C2, and
for CDW order, such a state is still unidirectional in the sense
that CDW only develops with either Qx or Qy . Then, x-ray
experiments, which only probe CDW order, should not detect
any changes with doping, despite that the full CDW/PDW
order becomes bidirectional.

Note in passing that in a more general analysis, which
(i) includes the Fermi surface curvature into the dispersion
and (ii) goes beyond the hot spot model, the CDW and PDW
are not degenerate but remain strong competitors [34]. The
inclusion of the Fermi surface curvature favors PDW order
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FIG. 4. The triangular diagram representing the coupling be-
tween CDW/PDW orders for the same bond connecting hot spots
(bond A in this case) and the Amperean pairing order , which
involves two fermions with approximately the same momenta. k̃ is
the momentum deviation from a hot spot.

whose mean-field onset temperature becomes higher than that
for CDW order. The extension of the model beyond hot spots,
on the other hand, favors CDW order due to feedback from
the time-reversal symmetry breaking at a higher T . Such an
order does not develop for PDW. The analysis in Refs. [34,35]
shows that, in the bidirectional CDW/PDW state, the system
either develops a pure bidirectional CDW or PDW order, or
develops an order with CDW along one bond direction and
PDW along the other direction.

B. PDW order from Amperean pairing

Another type of PDW order was originally introduced in
Ref. [30] in the framework of strong-coupling (Mott) scenario
[46] and was termed as Amperean pairing. This PDW order
involves fermions with close momenta k ± δk, such that the
total momentum of a pair is 2k. It was later reintroduced for a
hot spot model [31] and was shown, among other things, to give
rise to the breaking of time-reversal symmetry. In Ref. [31], hot
spots kh were not identified precisely with the crossing points
of fermionic dispersion and magnetic Brillouin zone boundary,
and 2kh was set to be a generic momentum (Q1,Q2). In our
spin-fluctuation model, hot spots are of magnetic origin and the
hot spot momenta are kh = (k,π ± k). Accordingly, the total
momentum of a pair 2k = 2kh = (2k, ± 2k) = (Q, ± Q) is
along one of the two Brillouin zone diagonals. We label such
pair-density-wave order as PDW∗.

An interesting situation develops when PDW∗, with
diagonal momentum (Q,Q), is present along with the
bidirectional CDW/PDW order. In terms of hot spots, PDW∗

introduces a term ∼iσ
y

αβc
†
i,α(k̃)c†i,β(−k̃) into the fermionic

dispersion. In the presence of such a term, the particle and the
hole at a given hot spot get mixed. As the consequence, the
CDW order in particle-hole channel and the PDW order in
particle-particle channel get hybridized, and the development
of one immediately generates the other; i.e., the PDW order
along a given bond induces CDW order along the same
bond and vice versa. Mathematically, this hybridization is
reflected in the fact that CDW with Qx = (Q,0), PDW with
Qy = (0,Q), and PDW∗ (which we denote as ) with (Q,Q)
can be combined into a triangular diagram shown in Fig. 4.

This triple diagram generates the term in the free energy which
is bilinear in CDW and PDW orders. As a result, if we define a
CDW component along a particular bond as � cos θ and PDW
component along the same bond as � sin θ , the free energy
becomes

Fθ =A sin 2θ + B sin2 2θ + · · · , (17)

where A is proportional to the magnitude of PDW∗ order .
Minimizing with respect to θ we immediately obtain in equi-
librium sin 2θ = −A/(2B), which implies that both CDW and
PDW are present along each direction, but the magnitude of
CDW order in one direction is not equivalent to that in the other
direction. This is consistent with x-ray experiments, which at
larger doping found nonequal �x and �y in every domain.

The hybridization between CDW and PDW orders in our
case is quite similar to that between singlet and triplet pairing
channels either in the context of spin-orbit coupling [47] or
in the spin-density-wave state of the Fe-pnictides [48], when
spin is no longer a conserved quantum number.

V. SUMMARY

In this work we adopted the spin-fluctuation formalism
and analyzed in detail the interplay between unidirectional
and bidirectional charge orders with axial momenta Qx and
Qy in the cuprates. We derived the Landau free energy to
sixth order in CDW order parameters �x and �y . These two
order parameters couple to fermions in hot regions on the
FS, and the prefactors in the Landau free energy are obtained
by evaluating loop diagrams made out of hot fermions. We
found that the CDW order is bidirectional at its onset but
changes to unidirectional inside the CDW-ordered phase, once
the magnitude of the order parameter exceeds some critical
value. This is consistent with recent x-ray data on YBCO
[10,23].

We also discussed the effect of a PDW order. An axial PDW
order also emerges from the spin-fluctuation scenario and is
degenerate with the axial CDW order in the hot spot model,
due to particle-hole SU(2) symmetry. Within this model, the
bidirectional state is actually unidirectional for CDW as it
only develops with Qx or Qy , the order along the orthogonal
direction is PDW. We analyze the case when, in addition
to axial CDW/PDW, the system also develops, by different
reasons, an Amperean PDW with diagonal momentum (Q,Q).
We found that Amperean PDW couples axial CDW and
PDW along each bond. As a result, in the bidirectional
state, CDW order develops on each bond and hence by itself
becomes bidirectional. Then unidirectional and bidirectional
CDW/PDW states show different behavior already in the
experiments like x-ray, which at present probe only CDW
order.

The issue which we did not address in this work is
the relation to quantum oscillation experiments. These ex-
periments were interpreted as evidence for CDW-induced
electron pockets, and this interpretation implies that CDW
order is bidirectional [24,49], even in the doping range where
x-ray measurements report unidirectional order. The apparent
contradiction can be resolved if it turns out that a magnetic
field, in which quantum oscillation measurements have been
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performed, pushes the system towards bidirectional order.
This, however, needs to be verified in explicit calculations.

Finally, we note that the transformation from bidirectional
to unidirectional order (i.e., from checkerboard to stripe
order) inside the ordered phase is not specific to the cuprates
and has recently been observed and analyzed in iron-based
superconducting materials [50]. This is yet another evidence
that the two families of materials have much in common.
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