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Dynamical structure factors and excitation modes of the bilayer Heisenberg model
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Using quantum Monte Carlo simulations along with higher-order spin-wave theory, bond-operator and strong-
coupling expansions, we analyze the dynamical spin structure factor of the spin-half Heisenberg model on the
square-lattice bilayer. We identify distinct contributions from the low-energy Goldstone modes in the magnetically
ordered phase and the gapped triplon modes in the quantum disordered phase. In the antisymmetric (with respect to
layer inversion) channel, the dynamical spin structure factor exhibits a continuous evolution of spectral features
across the quantum phase transition, connecting the two types of modes. Instead, in the symmetric channel,
we find a depletion of the spectral weight when moving from the ordered to the disordered phase. While the
dynamical spin structure factor does not exhibit a well-defined distinct contribution from the amplitude (or Higgs)
mode in the ordered phase, we identify an only marginally damped amplitude mode in the dynamical singlet
structure factor, obtained from interlayer bond correlations, in the vicinity of the quantum critical point. These
findings provide quantitative information in direct relation to possible neutron or light scattering experiments in
a fundamental two-dimensional quantum-critical spin system.
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I. INTRODUCTION

Advances in both energy and angular resolution of scat-
tering experiments enable refined experimental studies of
collective excitations in strongly correlated quantum many-
body systems. A prominent example is the three-dimensional
quantum spin-dimer system TlCuCl3 where spin excitations
have been mapped out in great detail using inelastic neutron
scattering [1,2]. This compound exhibits a pressure-tuned
zero-temperature transition from a gapped quantum disordered
phase to an antiferromagnetically ordered phase. In addition
to identifying the low-energy (transverse) Goldstone modes
that accompany the spontaneous breaking of spin-rotation
symmetry in the ordered phase, neutron scattering also
detected the gapped (longitudinal) amplitude mode of the
order-parameter field, frequently referred to as Higgs mode. In
the three-dimensional compound TlCuCl3, a rather successful
quantitative theoretical account of these various spin excitation
modes and the experimentally determined spectral weight can
be obtained within a bond-operator mean-field description. In
fact, the critical theory describing the underlying quantum crit-
ical point is the classical O(3) field theory in four dimensions,
which exhibits only logarithmic corrections to a Gaussian
fixed point. This fact also implies that for nearly critical three-
dimensional collinear antiferromagnets, the amplitude mode
becomes increasingly sharp upon approaching the quantum
critical point [3].

Upon lowering the dimensionality of the quantum magnet,
however, the effects of both thermal and quantum fluctuations
get significantly enhanced. In particular, for two-dimensional
Heisenberg systems, true long-range order is restricted to zero
temperature, and the quantum phase transition of spin-dimer
models is controlled by the classical Wilson-Fisher fixed point
in three dimensions where interactions are relevant [4]. These
interactions influence the visibility of the amplitude mode, as it
can efficiently decay into pairs of Goldstone bosons. This has

been examined intensively in recent years, with a focus towards
U(1)-symmetric systems such as superconductors or ultracold
atom gases in optical lattices [5–11]. It has been concluded
from analyzing both microscopic models and order-parameter
field theories that the amplitude mode will be strongly masked,
due to damping, in the order-parameter correlation function.
However, a distinct signal of the amplitude mode can be
isolated from accessing the so-called scalar susceptibility, in
terms of correlations of the squared order-parameter field. For
magnetic systems, such as the one under consideration here,
this implies that the amplitude mode, while not directly visible
in the dynamical spin structure factor, should be accessible via
appropriate scalar correlation functions, e.g., of bond-based
spin-singlet operators [5,13]. The feasibility of using probes
coupling to singlet observables in order to detect the amplitude
mode in (three-dimensional) magnets, e.g. via light scattering,
has recently been considered also within bond-operator mean-
field theory [14,15]. From field-theoretical arguments it is
expected that a marginally damped amplitude mode may be
detected in close vicinity of the quantum critical point, while
deep in the ordered regime it merges with the continuum of
multimagnon excitations, which exhibits a diverging spectrum
(e.g., scaling as ∼1/ω with the frequency ω at the ordering
wave vector [16]), masking the amplitude mode. While such
general conclusions may be drawn based on field-theory
considerations, it is of genuine interest—also for future ex-
perimental probes—to provide more quantitative microscopic
details on the excitation spectra of two-dimensional quantum
magnets across quantum critical points.

In this paper, we use quantum Monte Carlo simulations
combined with a stochastic analytic continuation approach
to access the dynamical spin structure factor and adequate
scalar response functions for the spin-half quantum Heisenberg
model on the two-dimensional square-lattice bilayer. This
model has been established [17–23] as a basic spin model
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exhibiting a quantum critical point: as a function of the ratio
g = J ′/J between the interlayer (J ′) to the intralayer (J )
exchange coupling, it exhibits a quantum phase transition at
a critical ratio [23] gc = 2.5220(1) that separates the small-g
collinear antiferromagnet from the large-g quantum disordered
dimer paramagnet. This model has been analysed rather
intensively in the past, and in particular, large-scale quantum
Monte Carlo simulations have identified both the above quoted
location of the quantum critical point and verified the three-
dimensional O(3) universality class of the quantum phase
transition. In fact, due to the absence of geometric frustration,
this system can be studied using quantum Monte Carlo without
any sign problem, even in close vicinity of the quantum critical
point, by using by-now standard cluster update algorithms.
More recently, using an extended ensemble approach, also the
quantum entanglement properties across the quantum phase
transition have been analysed and possible universal contribu-
tions in the bipartite entanglement have been identified [24].

However, no detailed account on dynamical properties
based on quantum Monte Carlo simulations has been provided
thus far. Clearly, detecting the characteristic excitation modes
of both phases in realistic spectral probes is of most interest
here. To access such dynamical properties based on quantum
Monte Carlo simulations, one requires high-quality statistical
data in order to perform the analytic continuation from the
imaginary-time quantum Monte Carlo data to real frequencies.
We note that dispersion relations of the excitation modes
have been studied previously, based on various analytical
approaches such as bond-operator mean-field theory or se-
ries expansions [22,25]. However, a more direct relation to
experimental probes requires also a quantitative evaluation
of the spectral-weight distribution. In that respect, one of
the fundamental questions is how one crosses over from
two gapless spin-wave excitations in the limit of weakly
coupled planes to gapped triplon [26] excitations at strong
interplane coupling. This issue is of experimental relevance
as well. For instance, the material BaCuSi2O6 is believed to
realize [27–29] the spin-half bilayer Heisenberg model on the
square lattice (interactions between the bilayers are weak and
frustrated). These results are also expected to be of interest in
the discussion of the bilayer iridate Sr3Ir2O7 [30,31].

In the following, we provide a detailed account on the
spectral-weight distribution in the dynamical spin structure
factor and also address the detection of the amplitude mode by
appropriate scalar response functions. The paper is organised
as follows. In Sec. II, we introduce the model Hamiltonian and
the used computational and analytical methods. The dynamical
spin structure factor of the bilayer model is then analysed in
Sec. III, while Sec. IV concentrates on the detection of the
amplitude mode. The results of our analysis are summarised
in the concluding Sec. V. Several computational details are
provided in the Appendices.

II. MODEL AND METHODS

The spin-half bilayer Heisenberg model on the square lattice
is described by the Hamiltonian

H = J ′ ∑
i

Si1 · Si2 + J
∑
〈i,j〉

(Si1 · Sj1 + Si2 · Sj2), (1)

where spins Siμ reside on the lower (μ = 1) and upper (μ = 2)
layer within the ith unit cell of a square lattice, where the lattice
constant is set to a = 1 in the following, as is the interlayer
distance d = 1. It should, however, be noted that our results
do not depend on the value of a and d, as different choices
of these lattice parameters affect only the absolute scale of
the momentum space vectors. Note also that each unit cell
contains an interlayer (rung) bond of the bilayer lattice. Here,
J (J ′) denote the intralayer (interlayer) exchange coupling.
The model exhibits, in addition to the internal SU(2) spin
symmetry and the square-lattice space-group symmetry, also
a layer inversion symmetry in the layer indices (1 and
2). We account for this additional quantum number when
assigning a third component to an originally two-dimensional
momentum space vector, such that k = (kx,ky,kz)ᵀ, with kz =
0 or π , denoting the symmetric and antisymmetric channel
with respect to layer inversion, respectively. Correspondingly,
in position space, each spin is also assigned a transverse
position, with respect to its layer index, such that riμ is a
three-component position vector, with the third component
equal to 0 (1), for μ = 1 (μ = 2), respectively.

Of particular interest for our analysis is the dynamical
spin structure factor, which is defined with respect to the
Heisenberg-picture time evolution of the spin operators as
(with Ns denoting the number of spins)

SS(ω,k) = 1

Ns

∫
dt

∑
i,j,μ,ν

ei(ωt−k·(riμ−rjν ))〈Siμ(t) · Sjν(0)〉.

(2)

We will also refer to the kz = 0 (kz = π ) cases as the
symmetric or even (antisymmetric or odd) sector. In the
presence of long-range antiferromagnetic order, one may
furthermore distinguish the components of SS(ω,k) parallel
and transverse with respect to the order parameter direction,
in which case SS(ω,k) represents a rotational average probed
by the quantum Monte Carlo simulations.

For completeness, we finally note how the symmetric
and antisymmetric structure factors, introduced above for an
isolated bilayer, relate to the neutron scattering intensity for
a three-dimensional system composed out of parallel stacked
bilayers. For a lattice constant a within each of the square
lattice layers and an interlayer distance d, the scattering
intensity for a scattering wave vector q = (qx,qy,qz)ᵀ is then
proportional to the structure factor

Sstack
S (ω,q) = cos2(d qz/2) SS(ω,a qx,a qy,0)

+ sin2(d qz/2) SS(ω,a qx,a qy,π ), (3)

see, e.g., the discussions in Refs. [30,31].
In addition to the spin-spin correlations, we also consider in

the following interlayer singlet bond (or spin-exchange) terms:

Bi = Si1 · Si2, (4)

which define a corresponding scalar response function in terms
of the dynamical structure factor (with N denoting the number
of interlayer bonds, and Ns = 2N )

SB(ω,k) = 1

N

∫
dt

∑
i,j

ei(ωt−k·(ri−rj ))〈Bi(t)Bj (0)〉, (5)
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where here k and the ri denote two-dimensional square lattice
k space and lattice position vectors (i.e., with a vanishing third
component), since the singlet operators Bi reside at positions
ri on the square lattice spanned by the interplanar (J ′) rung
bonds. Given its scalar nature, we refer to SB(ω,k) also as the
dynamical singlet structure factor.

After having introduced the model and the relevant observ-
ables for our study, we next give here an overview of the various
methods that we used. Details on the calculations with these
methods can be found in the various appendices, as indicated
below.

A. Quantum Monte Carlo approach

For the quantum Monte Carlo calculations, we used
the stochastic series expansion method with directed loop
updates [32–34]. In the simulations, we considered finite
systems with Ns = 2L2 lattice sites and periodic boundary
conditions in both square lattice directions x = (1,0)ᵀ, and
y = (0,1)ᵀ. In order to access ground-state properties, the
inverse temperature β must be chosen sufficiently large. This
typically requires βJ � 2L. In our simulations, we considered
mainly finite systems with L = 20 with Ns = 800 sites at
βJ = 50, unless specified otherwise.

To access the dynamical spin structure factor using the
quantum Monte Carlo simulations, we efficiently [35] measure
the imaginary-time displaced spin-spin correlation functions
directly in Matsubara frequency representation, which is
related to SS(ω,k) via

SS(iωn,k) =
∫ ∞

0
dω

ω

π

(1 − e−βω)

ω2 + ω2
n

SS(ω,k). (6)

Here, ωn = 2πn/β for n = 0,1,2, . . . are bosonic Matsubara
frequencies. One typically needs values of n up to 160 to
access the leading 1/ω2

n asymptotic behavior of SS(iωn,k).
The numerical inversion of Eq. (6) to obtain SS(ω,k) from the
Matsubara frequency quantum Monte Carlo data SS(iωn,k)
was performed using the stochastic analytic continuation
method in the formulation of Ref. [36]. While such numerical
analytic continuation methods tend to broaden inherent spec-
tral features, they can still resolve a low number of excitation
poles also from a separate continuum spectral contribution,
depending on the quality of the imaginary-time data.

In order to efficiently access the dynamical singlet structure
factor SB(ω,k) of the bond-bond correlations from the quan-
tum Monte Carlo simulations, we measured the corresponding
bond-bond correlation functions in imaginary time, binned
over finite-width imaginary-time windows [35]. Using an
appropriate kernel for the analytic continuation, we then
relate SB(ω,k) directly to this imaginary-time binned quantum
Monte Carlo data, without the need for an intermediate
unfolding of the bin-resolution correlation function. Further
details of this measurement setup are provided in Appendix A.

B. Spin-wave theory

Upon expressing the spin fluctuations about the classi-
cal magnetically ordered state using the standard Holstein-
Primakoff representation [37], one arrives in the harmonic
approximation at the linear spin-wave description of the

magnetic excitations in the ordered phase. As discussed in
Sec. III, the comparison between the spin-wave results and
the dynamical structure factor as obtained from the quantum
Monte Carlo simulation improves upon taking into account
corrections beyond the harmonic approximation in the spin-
wave expansion. This has been done here by considering the
next-to-leading order in the 1/S expansion of the Hamiltonian,
and by performing a mean-field decoupling of the bosonic
interaction terms to renormalize the coupling constants.
Details on both the linear and higher-order spin-wave theory
calculations are presented in Appendix B.

C. Perturbation theory in 1/g

In the quantum-paramagnetic phase, an efficient description
of the spin dynamics can be obtained from perturbation theory
in the intralayer coupling J , i.e., starting from the limit of
decoupled dimers which form a product state of singlets in
the limit J = 0. Exciting a single rung gives rise to a triplet
excitation, which can delocalize for finite J , giving rise to a
gapped excitation mode. We perform a systematic expansion
for the dynamical spin structure factor in 1/g up to second
order for the triplet dispersion and to linear order in the spectral
weight. While for the antisymmetric channel closed explicit
expressions are obtained, we need to perform a numerical
diagonalization of the effective interaction Hamiltonian in
the two-triplon sector to access the symmetric channel of the
dynamical spin structure factor. Details on these calculations
are provided in Appendix C.

D. Bond-operator-based 1/d expansion

Bond operators [38] were initially introduced to efficiently
describe the paramagnetic phase of spin-half coupled-dimer
magnets, the square lattice bilayer considered here being a
prominent example. In this approach, one introduces bosonic
operators corresponding to spin-1 excitations (often called
triplons [26]) atop a singlet background [39,40]. Generaliza-
tions of the bond-operator approach to magnetically ordered
states [22] and to arbitrary spin [41] have been investigated
in the past. Moreover, it was recently shown [42,43] that
bond operators enable a controlled description of coupled-
dimer systems across the entire phase diagram using 1/d

as a small parameter, where d is the spatial dimension:
relevant observables can be obtained in a systematic 1/d

expansion once the dimer lattice has been generalized to d

space dimensions (for details we refer to Refs. [42,43]). In
particular, the dispersion relation of triplon excitations in
the disordered phase as well as that of gapless transverse
modes and the gapped longitudinal mode in the ordered phase
were reported along with their corresponding spectral weights
in the dynamic spin susceptibility. As will be discussed in
Sec. III, a comparison with the dispersions obtained from
quantum Monte Carlo shows very good agreement after a
proper mapping of the model parameters (the coupling ratio g),
as explained in Sec. III. In order to study the amplitude (Higgs)
mode, we also calculated the bond-bond correlation to leading
order in 1/d. A comparison with quantum Monte Carlo results
will be discussed in Sec. IV. We find that to leading order in
1/d, the longitudinal mode gives rise to a single mode spectral
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FIG. 1. (Color online) Dynamical spin structure factor SS(ω,k) in the symmetric (top) and antisymmetric (bottom) channel for the spin-half
Heisenberg model on the square lattice bilayer at different ratios g = J ′/J of the interlayer (J ′) to intralayer (J ) coupling strength along the
indicated path in the two-dimensional Brillouin zone.

contribution to the inter-layer singlet dynamical structure
factor. Further details on the bond-operator calculations can
be found in Appendix D.

III. DYNAMICAL SPIN STRUCTURE FACTOR

The dynamical spin structure factor SS(ω,k) is directly
related to the scattering intensity as probed by inelastic
neutron scattering experiments. Here, we monitor the evolution
of SS(ω,k) upon varying the interaction ratio g across the
quantum critical point.

A. Quantum Monte Carlo results

We first present the results from the quantum Monte
Carlo simulations for the dynamical spin structure factor.
In Fig. 1, the dynamical spin structure factor SS(ω,k) is
shown for different values of g, each along a standard-path
in the two-dimensional Brillouin zone, for the symmetric
(kz = 0) and the antisymmetric (kz = π ) channel, separately.
The structure factor in the antisymmetric channel is dominated
by a sharp single-mode-like contribution that softens in the
antiferromagnetic regime at k = Q, the magnetic Bragg peak
position Q = (π,π,π )ᵀ, while it exhibits a fully gapped branch
in the quantum disordered regime, with a minimum gap �T (g)
in the dispersion, located at k = Q. In the antiferromagnetic re-
gion, the dispersive feature traces the dispersion relation of the
antiferromagnetic magnon (Goldstone) excitation mode, while
in the quantum disordered region, it follows the gapped triplon
dispersion. Both these relations will be substantiated by a
direct comparison to spin-wave theory and perturbation theory
calculations in 1/g for the antiferromagnetically ordered and
quantum disordered regime respectively, as discussed below
in Sec. III B.

Approaching the quantum critical point, we observe en-
hanced finite-size effects due to the algebraic growth of
the correlation length within the quantum critical region.
We anticipate the most pronounced finite-size corrections
to appear right at the quantum critical point: based on the
relativistic invariance with a dynamical critical exponent
z = 1, at low energies, finite-size corrections of the peak
position proportional to 1/L dominate at criticality. Indeed,
enhanced finite-size corrections at the quantum critical point
were reported recently for the low-energy dispersion of the
Goldstone mode [44], and are visible in Fig. 1 for g = 2.522,
where a small finite-size gap at k = Q can be clearly resolved.
A finite-size study of the dynamical spin structure factor,
shown in Fig. 2, indeed reveals a linearly vanishing finite-size
excitation gap as a function of 1/L, as shown in the inset of
that figure.
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FIG. 2. (Color online) Dynamical spin structure factors
SS(ω,k = Q) for the spin-half Heisenberg model on the square
lattice bilayer at the quantum critical point, g = gc. The finite-size
scaling of the excitation gap is shown vs 1/L in the inset.
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The symmetric channel exhibits in the antiferromagneti-
cally ordered phase a similarly sharply resolved distribution
of the spectral weight, which however softens near the � =
(0,0,0)ᵀ point. Its dispersion follows to a very good accuracy
that of the antisymmetric mode with a shift of the in-plane
momentum by (π,π ). At the � point, the spectral weight is
completely suppressed for all values of g: this relates to the
fact that spin fluctuations at the � point, i.e., in the uniform
magnetization, vanish, due to the SU(2) symmetry of H . The
gap at k = (π,π,0)ᵀ decreases upon approaching the limit
of decoupled layers (g → 0), and in the limit of decoupled
layers, the structure factor in the symmetric channel softens at
k = (π,π,0)ᵀ, which is the single-layer Bragg peak position
(note that at exactly g = 0 the signal vanishes completely in the
antisymmetric channels, since for J ′ = 0 the spins decouple
between the layers, while any weak, finite g > 0 leads to a
locking of the antiferromagnetic order between the layers).
By contrast to the antisymmetric channel, the overall spectral
weight in the symmetric channel is strongly suppressed for
large values of g: well in the quantum disordered regime, only
a faint spectral weight distribution is present in the symmetric
channel, while the antisymmetric channel provides a direct
trace of the dispersion relation of the gapped triplon excitation
mode.

In addition to the sharp, single-mode features that we
mainly discussed thus far, the structure factor in the ordered
phase also exhibits a broader distribution of spectral weight
for energies above the single-mode threshold due to the
multimagnon continuum. This is seen more explicitly from
the data for (kx,ky) = (π,0) and (π/2,π/2) in both the
symmetric and the antisymmetric channel in Fig. 3, shown
with a logarithmic scale on the vertical axis. On general
grounds, it proves difficult to extract an accurate shape of the
continuum contribution to the structure factor from an analytic
continuation, in particular given the additional presence of a
sharp magnon peak. For this reason we first concentrate here
in Fig. 3 on momenta away from the magnetic ordering wave
vector Q; the continuum contribution at k = Q will then be
discussed in more detail in Sec. IV, since it is of particular
interest with regards to the possibility of observing a Higgs
peak in the spin structure factor.

We can draw several general observations and perform a
comparison to previous work based on the data shown in
Fig. 3: for low, finite values of g (cf. the case of g = 0.1 in the
left-most panel of Fig. 3), the data for the symmetric and the
antisymmetric channel are very similar, and for both momenta

essentially relate to the response of a single square lattice layer.
The single-layer case was previously carefully analyzed by
quantum Monte Carlo methods in Ref. [46], using, however,
a different analytic continuation approach that relied on an
explicit ansatz for the spectral function in terms of a sharp
magnon peak plus a parametrized form of the mutimagnon
continuum. In addition, the authors of Ref. [46] performed
a separate calculation of the structure factor contributions
from the transverse and the longitudinal sector by applying
a weak, fine-tuned staggered magnetic field to the finite-size
systems, in order to induce in an explicit form the SU(2)
symmetry breaking on finite systems which emerges in the
original model only in the thermodynamic limit. Even given
these different approaches, our data for low g are in qualitative
agreement with several main conclusions of Ref. [46]; in
particular, the continuum contribution to the overall spectral
weight is more extended at (π,0), and the magnon peak
resides at slightly larger energies at (π/2,π/2) as compared
to the other momentum. In Ref. [46], these observations are
discussed in connection to limitations of spin-wave theory
to accurately describe the magnetic excitations of the square
lattice Heisenberg model as well as related experimental
findings. We comment further on the comparison of our results
to spin-wave theory in Sec. III B.

From Fig. 3, we furthermore observe that at larger values
of g, differences between the symmetric and the antisymmetic
channel become pronounced for both momenta considered
here. In particular, the peak-heights in the symmetric channel
are reduced, reflecting the loss of spectral weight of the
structure factor in the symmetric channel inside the quantum
disordered regime that we already mentioned above, while for
the antiferromagnetic channel, we observe a sharpening of the
magnon peaks upon increasing g.

We also note that the structure factor for the quantum
critical system at g = gc still exhibits a rather sharp overall
shape, as can be seen in Figs. 2 and 3. Beyond the general
difficulty in quantifying the width of spectral data obtained
via an analytic continuation, we relate this observation also to
the fact that the anomalous critical exponent η is very small for
the quantum critical point under consideration here. Indeed,
this quantum critical point belongs to the three-dimensional
O(3) universality class, with η ≈ 0.03 [45]. This confers to
the critical continuum the appearance of a relatively sharp
peak.

The bilayer Heisenberg model is obtained as the effec-
tive low-energy theory for the spin dynamics within the
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FIG. 3. (Color online) Dynamical spin structure factor SS(ω,k) for the spin-half Heisenberg model on the square lattice bilayer for different
values of g at momenta (π,0) and (π/2,π/2) in both the symmetric (full lines) and the antisymmetric channel (dashed lines). A logarithmic
scale is used on the vertical axes.
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Mott insulator, in the strong-coupling limit of the half-filled
Hubbard model on the square lattice bilayer. At strong local
Hubbard repulsion U 	 t , we thus expect that the evolution
of the spectral weight in the dynamical spin structure factor, as
described above, can be observed also in the Hubbard model,
upon tuning the ratio t ′/t of the interlayer tunneling (t ′) to
the intralayer tunneling (t). It is less clear, however, that
this also holds in the intermediate coupling regime, where
U is of order the bandwidth, and where residual charge
fluctuations allow for higher-order spin exchange processes.
To address this question, we performed also determinantal
quantum Monte Carlo simulations for the Hubbard model on
the square lattice bilayer. From our simulations, we find that
also in the intermediate coupling region the dynamical spin
structure factor exhibits the characteristic behavior that we
observed in the Heisenberg limit. We provide details on these
results for the Hubbard model in Appendix E. Returning here to
the Heisenberg model, we next perform a detailed comparison
of the quantum Monte Carlo results to the various theoretical
approaches that we listed in Sec. II.

B. Comparison to analytic results

In the following, we compare our quantum Monte Carlo
data to the results obtained within (i) linear and higher order
spin-wave theory, (ii) the 1/g perturbation theory as well as
(iii) the 1/d expansion within the bond-operator approach.
While the spin-wave and the large-g approach are restricted
to the ordered and quantum disordered regimes, respectively,
the 1/d expansion allows us to calculate appropriate structure
factors throughout the whole phase diagram. The upper two
rows of Fig. 4 and the upper row of Fig. 5 show the dispersion
relations for the region below and above the quantum critical
point, respectively. In these panels, the mode dispersions from
the quantum Monte Carlo data have been obtained by the
peak positions in the spectral weight distribution, with the
symbol size indicating the estimated uncertainty. In addition
to comparing the dispersions, we also compare, in the lower
rows of Figs. 4 and 5, the integrated spectral weight

SS(k) =
∫

dω SS(ω,k), (7)

which in the quantum Monte Carlo simulations is conveniently
obtained from the equal-time spin-spin correlations, to the
results from spin-wave theory and the 1/g perturbation theory
as well as the bond-operator theory. For the ordered phase,
we performed the bond-operator theory calculations for the
integrated spectral weight only in the harmonic approximation,
while for the disordered phase, we also considered the leading
1/d corrections. We also note that, in contrast to the mode
dispersion, the integrated spectral weight can be obtained
directly from the quantum Monte Carlo simulations without
the need of performing the analytic continuation.

We first compare our numerical results to the dispersions
obtained from spin-wave theory. From the upper two panels
of Fig. 4, we find that (i) linear spin-wave theory, while
providing a good overall account of the spin-wave dispersion,
systematically underestimates the spin-wave energies, and
(ii) the higher order spin-wave theory approximation provides
a significant improvement to the overall dispersions. As
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FIG. 4. (Color online) Comparison of the dynamical spin struc-
ture factor at different ratios g = J ′/J inside the antiferromagneti-
cally ordered region for the spin-half Heisenberg model on the square
lattice bilayer between the quantum Monte Carlo (QMC) results
and linear and second-order spin-wave theory (SWT) as well as
bond-operator theory (BOT), both in harmonic approximation and
including leading 1/d corrections. The upper panel compares the
dispersion of the single-mode contribution, and the lower panel the
integrated spectral weight SS(k). Here, the results for the symmetric
(antisymmetric) channel have been normalised by the value of
SS((π,π,0)) (SS(0)), corresponding to the maximum (minimum)
value in that channel.

detailed in Appendix B, the net effect of the second order
corrections to linear spin-wave theory can be expressed in
terms of a g-dependent renormalization of the coupling ratio
g, which for g > 1 leads to an enhanced effective coupling
ratio geff > g, which results in the hardening of the spin-wave
dispersion, as observed in Fig. 4. As discussed in Appendix B,
we find that an even further, heuristic renormalization of
geff allows us to obtain even better matches of the effective
spin-wave theory dispersion to the numerical results.

With respect to the integrated spectral weight SS(k), which
is shown in the lower two panels of Fig. 4, we find that up to
intermediate coupling ratios (cf. the case g = 1 in the left
panels of Fig. 4), both linear and second order spin-wave
theory provide a good overall account of the spectral weight
distribution in the symmetric channel. Upon closer inspection,
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FIG. 5. (Color online) Comparison of the dynamical spin struc-
ture factor in the antisymmetric channel at different ratios g =
J ′/J well inside the quantum disordered region for the spin-half
Heisenberg model on the square lattice bilayer between the quantum
Monte Carlo (QMC) results and 1/g perturbation theory (PT) as well
as bond-operator theory (BOT) in both harmonic approximation and
with leading 1/d corrections included. The upper panel compares the
dispersion of the single triplon contribution, and the lower panel the
integrated spectral weight SS(k).

however, one notices that the spin-wave theory results for g =
1 fall slightly below the quantum Monte Carlo data for SS(k)
for k near (π,0,0)ᵀ. This difference gets more pronounced
upon increasing g towards the quantum critical point, cf. the
data for g = 2 in the right panels of Fig. 4. The failure of
low-order spin-wave theory to fully account for the spectral
properties for wave vectors near k = (π,0)ᵀ has been noticed
previously for the case of a single-layer Heisenberg model
(i.e., g = 0; cf., e.g., Ref. [46] for an extended discussion)
and was recently linked to strong attractive magnon-magnon
interactions that induce a Higgs resonance from two-magnon
states [47]. One would then expect that the increase in the
deviation to low-order spin-wave theory that we observe in the
integrated spectral weight for g = 2 relates to an enhancement
in the Higgs resonance formation. If fact, as discussed in
Sec. III, we can identify a well defined low-energy Higgs
peak in the singlet structure factor for g near gc, which adds
further support to this scenario.

For the antisymmetric mode, we find that both linear and
higher-order spin-wave theory accounts well for the integrated
spectral weight distribution for g = 1, while they overestimate
the integrated spectral weight near the ordering wave vector,
k = Q, closer to gc, cf. the data for g = 2 in Fig. 4, reflecting
the fact that quantum fluctuations of the order parameter, are
underestimated within these approximations.

Next, we focus on the quantum disordered region, and
discuss the comparison to the 1/g perturbation theory. Well
inside the quantum disordered region, we find that the 1/g

perturbation theory, presented in Appendix C, provides a
rather good account of the quantum Monte Carlo data. A
corresponding comparison of the triplon dispersion and the
corresponding spectral weight (i.e., in the antisymmetric
channel) for g = 6 and 10 is shown in Fig. 5. While the

0,0,0 Π,0,0 Π,Π,0 0,0,0

2J′ J 2

2J′ J 2

2J′ 2J

2J′ 2J

2J′ 4J

2J′ 4J

kx,ky,kz

Ω

FIG. 6. (Color online) Distribution of the amplitude in the dy-
namical spin structure factor SS(ω,k) for the symmetric sector
(kz = 0) as obtained within the 1/g perturbation theory for the
numerical diagonalisation of the effective Hamiltonian within the
two-triplon sector on a L = 10 system. The sizes of circles are
proportional to the amplitude at the center positions. Dashed lines
indicate the upper and lower bounds of the continuum.

triplon dispersion is obtained very accurately within our
1/g perturbation calculations for both values of g, the
integrated spectral weight at g = 6 already exhibits somewhat
larger quantitative differences than at g = 10. As detailed
in Appendix C, we performed the perturbative calculations
for the triplon dispersion up to quadratic order in 1/g,
while the spectral weight was obtained up to linear order,
and thus is expected to be less accurate at larger values of
1/g. Nevertheless, the overall shape of the spectral weight
distribution is well represented at this leading order already.

Thus far, in discussing the quantum disordered region,
we considered only the antisymmetric channel, which is
dominated by the gapped triplon mode with a pronounced
spectral weight. However, within 1/g perturbation theory, we
can also obtain a quantitative description of the faint spectral
weight distribution for the symmetric channel in the quantum
disordered regime. Figure 6 shows the result for the dynamical
spin structure factor in the symmetric channel as obtained from
the 1/g perturbation expansion by a numerical diagonalization
of the effective Hamiltonian within the two-triplon sector for
a L = 10 system. The structure factor is seen to display a
concentration of the spectral weight at k = (π,π,0)ᵀ, which
corresponds to an eigenstate of the effective Hamiltonian in
that sector. This is in good agreement with the quantum Monte
Carlo data that also exhibit a concentration of the spectral
weight for the symmetric channel near k = (π,π,0)ᵀ, cf., e.g.,
the data for g = 3 in Fig. 1. One furthermore finds from the
perturbative calculations, that the amplitude of the symmetric
channel is of order (1/g)2, and thus vanishes in the limit
J/J ′ → 0 (cf. Appendix C for details of the calculation),
which is reflected also by the quantum Monte Carlo data.

The comparison of the quantum Monte Carlo data to the
bond operator-based 1/d expansion requires an appropriate
mapping from the coupling ratio g to the parameter q (defined
as q = Jd/J ′ = d/g, with d the dimension of the system,
here, d = 2) that enters the 1/d expansion. Indeed, within the
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1/d expansion, the quantum critical point is obtained as qc =
1/2 + 3/(16d) + O(1/d2), so that at the harmonic level (i.e.,
without 1/d corrections) qc = 1/2, while including first-order
corrections in 1/d leads to qc = 0.59375, to be compared to
the value of (qQMC)c = d/gc = 0.7930(2) that results from the
(accurate) quantum Monte Carlo estimate of gc. We need to
account for this difference when performing the comparison, in
particular in the vicinity of gc. For a given value of g � gc, we
fix the value of q such that (q − qc) equals the corresponding
absolute distance in qQMC = d/g to (qQMC)c, i.e., such that

q − qc = qQMC − (qQMC)c. (8)

In the quantum disordered phase, g > gc, it is more appropriate
to relate the parameters by considering a fixed relative distance
to the quantum critical point, i.e., a value of q is obtained, such
that

q − qc

qc

= qQMC − (qQMC)c
(qQMC)c

. (9)

The corresponding mode dispersions are shown in the upper
panels of Fig. 4 for g < gc and Fig. 5 for g > gc, respectively,
while the lower panels of these figures show the comparison
in the integrated spectral weight SS(k). We find that with the
above parameter mappings, the bond-operator theory provides
a good qualitative account of both the spin-wave dispersion
and the triplon dispersion within this unified approach, at least
when the leading 1/d corrections beyond the harmonic approx-
imation are taken into account. Nevertheless, the harmonic
approximation already keeps track of the leading dispersive
features and provides a good account of the integrated spectral
weight in both phases. For the following discussion of the
amplitude mode, we thus limited the bond-operator theory
calculations to the harmonic level.

IV. AMPLITUDE (HIGGS) MODE

The longitudinal, amplitude fluctuations of the order pa-
rameter field need to be properly taken into consideration in a
quantitative description of the quantum critical bilayer Heisen-
berg antiferromagnet and its low energy properties [21,22].
For example, within bond-operator theory calculations, the
amplitude mode is found to soften upon approaching the
quantum critical point, thus restoring the SU(2) symmetry,

while it hardens towards an elevated energy scale of order
4J in the limit of decoupled layers (J ′ = 0), rendering it
insignificant with respect to the order-parameter fluctuations
well inside the ordered phase [21,22]. While the relevance
of the amplitude mode on, e.g., the order parameter strength
and the critical value of g has been well studied in the past,
only recently have possible direct signatures of the amplitude
mode and appropriate experimental probes been addressed.
In particular, it has been argued that response functions which
couple to the square of the order parameter will show a distinct
peak from the amplitude mode (Higgs peak), well separated
from the multimagnon contribution to the overall spectral
weight in the ordered phase, close to the quantum critical
point [5,13].

A. Quantum Monte Carlo results

To quantify these considerations for the bilayer Heisen-
berg model, we examine in this section the interlayer-bond
spin-exchange correlations, in terms of the corresponding
dynamical singlet structure factor SB(ω,k) introduced in
Sec. II. Based on its scalar nature, we expect the correlations of
this observable to exhibit in addition to possible multimagnon
contributions also a distinct signal from the amplitude mode,
most pronounced in the low-energy regime, and within the
vicinity of the quantum critical point. In Fig. 7, we show our
numerical data for different values of g, taken on a L = 20
system at βJ = 50, representative of ground-state expectation
values. We obtain for all values of g a spectral contribution to
SB(ω,k) at elevated energies ω ≈ 4J , which does not exhibit
a strong dependence on the coupling ratio g. In addition,
however, we observe in the vicinity of the quantum critical
point a distinct feature in the low-energy region, i.e., separated
from the higher-energy signal. This additional spectral branch
is most pronounced in the vicinity of the � point, where also
its spectral weight is most clearly visible.

To better exhibit the emergence of the low-energy Higgs
peak from the multimagnon contribution, we show in Fig. 8 the
dynamical singlet structure factor SB(ω,k = 0) at the � point
for different values of the coupling ratio gc. Within the range
2 � g � gc, we detect a separate, low-energy peak split-off
from the broad second peak in the spectral weight at elevated
energies. The position of the low-energy peak tends towards
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FIG. 7. (Color online) Dynamical singlet structure factor SB (ω,k) for the spin-half Heisenberg model on the square lattice bilayer at
different ratios g = J ′/J of the interlayer (J ′) to intralayer (J ) coupling strength along the indicated path in the two-dimensional Brillouin
zone. Also indicated by lines are the amplitude-mode dispersions obtain within the bond-operator theory.
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FIG. 8. (Color online) Dynamical singlet structure factor SB (ω,k = 0) at the � point for the spin-half Heisenberg model on the square
lattice bilayer at different ratios g = J ′/J of the interlayer (J ′) to intralayer (J ) coupling strength.

lower energies upon tuning g towards its critical value gc. How-
ever, approaching the quantum critical point, we again observe
enhanced finite-size effects, most pronounced at the quantum
critical point itself. This behavior is illustrated for g = gc in
Fig. 9. We find that for g below about g ≈ 2, the Higgs peak
merges with the second peak, so that a Higgs peak cannot be
discerned anymore as a separate spectral feature, restricting its
observation to the close vicinity of the quantum critical point.

B. Comparison to bond-operator theory

Within the parameter regime for which we can identify a
Higgs-mode peak at the � point, we also observe traces of the
corresponding mode dispersion near �. It is thus interesting
to compare our quantum Monte Carlo data to the amplitude-
mode dispersion obtained from the bond-operator-based 1/d

expansion [43]. Referring for details on the 1/d-expansion
calculations of SB to Appendix D, we compare in Fig. 7 the
resulting dispersion relation for the amplitude mode with the
quantum Monte Carlo data, using the parameter mapping from
Eq. (9).
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FIG. 9. (Color online) Dynamical singlet structure factor
SB (ω,k = Q) for the spin-half Heisenberg model on the square
lattice bilayer at the quantum critical point, g = gc. The finite-size
scaling of the excitation gap is shown vs 1/L in the inset.

Using bond-operator theory we also calculated the spectral
weight of the amplitude mode within the harmonic approxi-
mation. As discussed in more detail in Appendix D, one finds
an enhanced spectral weight in SB(ω,k) near the � point, in
particular, in the vicinity of the quantum critical point, a result
which appears to agree with the quantum Monte Carlo data,
which also exhibit more pronounced spectral weight for the
amplitude mode branch near the � point and near the quantum
critical point. A more quantitative comparison is limited by the
fact that there are contributions (of multimode character) to the
spectral weight observed in SB beyond the pure Higgs-mode
contribution considered in Appendix D.

C. Scaling form and comparison to SS(ω,k)

To analyze further the shape of the Higgs peak, we compare
our numerical results to the universal low-energy scaling
form of the scalar response function [6] obtained from a
1/N-expansion of the O(N ) model in the quantum critical
region,

S(ω) ∝ �3−2/ν	(ω/�), (10)

in terms of the characteristic energy scale in the quantum
critical region, � ∝ (1 − g/gc)ν , with the correlation length
exponent ν of the three-dimensional O(3) universality class, to
which the quantum critical point gc in the bilayer Heisenberg
model belongs. The value of the critical exponent ν has
been determined by previous large scale Monte Carlo simula-
tions [48] as ν = 0.710(2). Finally, 	 denotes a corresponding
scaling function. We estimate the g-dependent excitation gap
of the amplitude mode mH (g) (Higgs mass) from the position
of the low-energy peak in SB(ω,k = 0), and the energy scale
�(g) for g < gc in terms of the triplet excitation gap �T (g′) in
the quantum disordered phase, where g′ > gc is the mirrored
(with respect to the quantum critical point) coupling ratio
defined by g′ − gc = gc − g. In other words, �(g) = �T (gc +
(gc − g)). For 2 < g < gc, i.e., in the region where we can
identify a Higgs peak, we find that mH (g)/�(g) = 2.6(4), in
agreement with a previous estimate for this ratio from the
effective O(3) field theory [9,12].
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FIG. 10. (Color online) Scaling plot of the dynamical singlet
structure factor SB (ω,k = 0) at the � point for the spin-half
Heisenberg model on the square lattice bilayer at different ratios
g = J ′/J of the interlayer (J ′) to intralayer (J ) coupling strength
near the quantum critical pint gc.

Based on this relation, we show in Fig. 10 the appropriately
rescaled data for SB(ω,k = 0) from different values of g

according to the scaling law in Eq. (10). From this analysis
we find that the low-energy part of SB(ω,k = 0) relates well
to this scaling form, adding further support to the interpretation
of the low-energy peak in terms of the amplitude mode. By
contrast, the second peak at energies ω ≈ 4J does not follow
this scaling form, hence is not part of the universal signal in
the response function. In fact, as already mentioned above,
we see from Fig. 8 that the position of the second peak
does not change much upon varying g, in contrast to the
Higgs peak. The observation, that the amplitude mode follows
the scalar response function scaling form also implies that
in this two-dimensional system, the amplitude mode is only
marginally damped in the vicinity of the quantum critical point,
i.e., with a width that scales like the Higgs mass mH near the
quantum critical point, thus making the observation of this
excitation mode possible.

We find that the quantum Monte Carlo data are consistent
also with the low-energy scaling prediction [6] S(ω) ∝ ω3 in
as much as the imaginary-time (τ ) data for the bond-bond
correlations at k = 0 (which are actually calculated in the
simulation) agrees with the corresponding decay SB(τ,k =
0) ∝ 1/τ 4 at large imaginary times (cf. Appendix A for
details). However, we cannot independently estimate the
large-τ scaling behavior since we are limited by enhanced
statistical noise on the imaginary-time data in the relevant τ

regime (cf. Appendix A).

In order to contrast further the appearance of the amplitude
mode in the dynamical singlet structure factor as compared
to the dynamical spin structure factor, we show for different
values of g in Fig. 11 both (i) the dynamical singlet structure
factor SB(ω,k = 0) at the wave vector where SB softens at gc,
and (ii) the dynamical spin structure factor SS(ω,k = Q) at the
Bragg peak position where a possible Higgs mode-contribution
would soften at the quantum critical point [43].

As mentioned already in Sec. III A, in the ordered phase,
SS(ω,k) exhibits in addition to the magnetic Bragg peak an
extended tail of spectral weight. This is shown for k = Q for
several values of g in Fig. 11 (in order to actually exhibit the
tail relative to the dominant magnetic Bragg peak signal, we
have adopted a logarithmic scale on the vertical axis of this
figure). Atop a background signal that falls off with increasing
ω, and which is expected from general considerations in the
symmetry-broken phase [16], we observe two broad additional
features in SS(ω,Q) at ω ≈ J and ω ≈ 4J , respectively.
Compared to the magnetic Bragg peak, both these features
are significantly broader and of suppressed spectral weight.
These features do not exhibit systematic trends upon varying
g, apart from weak shape variations for different values of
g. By contrast, the data for SB(ω,k = 0) exhibit a clear
Higgs peak split-off at g ≈ 2, that we already analyzed above,
with a g-dependent peak position and a shape that agrees
with the scalar response function scaling form. Figure 11
illustrates how the presence of the extended residual spectral
weight tail beyond the magnetic Bragg peak masks a possible
observation of the low-energy Higgs peak in the dynamical
spin structure factor even near criticality, in contrast to the
scalar response function, which is strongly suppressed at low
energies. Furthermore, we find that both structure factors show
an enhanced spectral weight in the form of a broad peak
at similarly elevated energies ω ≈ 4J , suggesting that the
spectral weight observed in SB(ω,k) in this energy range is
dominated by multimagnon contributions.

We finally note that we also examined using the quantum
Monte Carlo simulations the intraplanar bond-bond correla-
tions, and find in the symmetric sector (with respect to layer
inversion) a similar (but weaker) amplitude-mode contribution
emerging in the low-energy region, while no such feature
is observed for the antisymmetric channel. As noted in
Appendix D, this observation also agrees with the bond-
operator-based 1/d expansion calculations of the intraplanar
bond-bond correlations.
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FIG. 11. (Color online) Comparison between the dynamical spin structure factor SS(ω,k = Q) and the dynamical singlet structure factor
SB (ω,k = 0) for the spin-half Heisenberg model on the square lattice bilayer at different ratios g = J ′/J of the interlayer (J ′) to intralayer (J )
coupling strength. In contrast to SS , we find SB to exhibit an emerging Higgs peak, following the scalar response function scaling form, near
the quantum critical point. A logarithmic scale is used on the vertical axes.
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V. CONCLUSIONS

Using quantum Monte Carlo simulations and a variety
of analytical approaches, we have obtained precise informa-
tion on the dynamical response functions of the spin-1/2
Heisenberg model on a bilayer system of square lattices. We
have shown that the transition from two gapless spin-wave
excitations in the limit of weakly coupled planes to a single
gapped triplon excitation in the strong coupling limit occurs
via a rapid suppression of the spectral weight of the symmetric
spin-wave mode upon increasing the interlayer coupling. The
intensity of that mode in the dynamical spin structure factor
probed in neutron scattering is already extremely weak at the
quantum critical point where the system becomes gapped,
and it is the antisymmetric mode that smoothly connects to
the triplon mode of the strong coupling limit. We have also
looked for traces of the amplitude (Higgs) modes in various
dynamical correlation functions. This mode is clearly visible
as a distinct spectral feature in the interlayer-bond dynamical
singlet structure factor, which opens to the way to its detection
with light scattering. However, this mode is not visible in
the dynamical spin structure factor, most likely because it is
masked by an almost dispersionless continuum of incoherent
excitations. While we considered in our numerical study the
rotationally averaged dynamical spin structure factor, one
may also employ a polarization analysis in actual neutron
scattering experiments to separate the longitudinal from the
transverse contribution to the total scattering cross section,
with a dominant continuum contribution in the longitudinal
component. Both these contributions add up to the rotationally
averaged signal with a relative weight ratio of 1 : 2, so
that from our analysis, we expect that a possible Higgs
mode contribution to the longitudinal component will still
be difficult to detect even by a polarization analysis. It is
our hope that these conclusions will further motivate the ex-
perimental investigation of the dynamical response of bilayer
systems.
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APPENDIX A: BOND OPERATOR MEASUREMENTS
IN QUANTUM MONTE CARLO

To efficiently calculate the dynamical singlet structure
factor SB(ω,k) within the stochastic series expansion (SSE)
formulation of quantum Monte Carlo simulations, we extend

an approach put forward in Ref. [35]. It is based on the
well-known mapping of the discrete SSE configuration space
onto a continuous-time world-line formulation [49]. For
hermitian conjugate operators A and B that are constructed
from Hamiltonian terms, such as the Fourier modes

Bk = 1√
N

∑
i

e−ik·ri Bi (A1)

of the spin-exchange terms of the bond-operators Bi intro-
duced in Sec. II, instead of the imaginary-time (τ ) correlation
function 〈A(τ )B〉, we measure an auxiliary correlation func-
tion that is defined in terms of a discrete time grid laid over
the τ interval [0,β], with width δτ . Namely, we consider the
Monte Carlo estimator

CAB(l δτ ) =
〈

1

δτ 2
NA∈[(l+1)δτ,lδτ ] NB∈[δτ,0]

〉
MC

, (A2)

where 〈·〉MC denotes the Monte Carlo expectation value, and
NA∈I counts the number of operators A in the SSE operator
sequence which lie within the time imaginary-time interval
I , while l = 1, . . . ,Lτ − 1, with Lτ given by the number
of time-slices, β = Lτ δτ . Using the periodicity of the SSE
configuration, one can further improve the above estimator to

CAB(l δτ ) = 1

βδτ
〈N(A,B),l〉MC, (A3)

where N(A,B),l counts the number of pairs (A,B) in the
operator string where A acts l time intervals later than B.
This auxiliary correlation function is related to the correlation
function 〈A(τ )B〉 through a convolution,

CAB(l δτ ) =
∫ δτ

−δτ

dτ
δτ − |τ |

δτ 2
〈A(l δτ + τ )B〉. (A4)

Instead of performing an approximate de-convolution of this
relation [35], here we make use of the convoluted kernel

Kδτ (ω,τ ) =
∫ δτ

−δτ

dτ ′ δτ − |τ ′|
δτ 2

[e−(τ+τ ′)ω + e−(β−τ−τ ′)ω],

(A5)

which yields

Kδτ (ω,τ ) = (eδτ ω − 1)2(1 + e(2τ−β)ω)

e(δτ+τ )ω δτ 2 ω2
, (A6)

in order to directly relate the quantum Monte Carlo estimator
CAB(l δτ ) to SAB(ω) = ∫

dt eiωt 〈A(t)B〉 corresponding to the
real-time correlation function 〈A(t)B〉,

CAB(l δτ ) =
∫ ∞

0

dω

2π
Kδτ (ω,l δτ )SAB(ω). (A7)

This relation holds true without any approximation, irrespec-
tively of the discretisation used in setting up the Monte Carlo
estimator. The final inversion problem is then solved using
e.g., the stochastic analytic continuation approach, with the
kernel Kδτ (ω,τ ) for the present case. As an example, we
show in Fig. 12 the quantum Monte Carlo data for SB(τ,k) =
〈Bk(τ )B−k〉 at the � point, k = 0, and a coupling ratio of
g = 2.1, along with the indicated asymptotic 1/τ 4 decay.
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FIG. 12. (Color online) Imaginary-time (τ ) dependence of
SB (τ,k) = 〈Bk(τ )B−k〉 at the � point, k = 0, for a coupling ratio
of g = 2.1, along with an asymptotic 1/τ 4 decay, indicated by the
line.

APPENDIX B: SPIN-WAVE THEORY

In this Appendix, we provide details on both the linear
spin-wave theory calculations that we performed on the square-
lattice bilayer as well as on the higher-order spin-wave theory
approach that we used. In the classical limit of large spin S, the
ground state of the Heisenberg model on the bipartite square
lattice bilayer consists of an antiferromagnetic arrangement
of the spins within and between the layers, irrespectively
of the coupling ratio g. The classical spin structure can be
parametrized by means of a single helix with pitch vector
Q = (π,π,π )ᵀ, such that for a spin on site l,

Sl = S(0,0,eiQ·rl ) . (B1)

In this Appendix, the index l runs over all sites of the lattice,
where l = (i,μ) is given by a rung index i plus a layer index
μ, as in the main text. The quantum spin Hamiltonian is now
rewritten expressing the spin operators in the local basis of the
classical spin orientations, (x ′,y ′,z′),

Sx
l = eiQ·rl Sx ′

l ,

S
y

l = S
y ′
l ,

Sz
l = eiQ·rl Sz′

l .

(B2)

In this rotated frame, the classical ground state is thus
ferromagnetic by construction.

1. Linear spin-wave theory

In the quantum model, the deviations from the classical
order are expressed via the Holstein-Primakoff representation
of spin operators [37]. To first order in 1/S, the expressions
take the form

Sx ′
l =

√
2S

2
(al + a

†
l ) ,

S
y ′
l =

√
2S

2i
(al − a

†
l ) , (B3)

Sz′
l = S − nl ,

with al (a†
l ) local bosonic annihilation (creation) operators,

and nl = a
†
l al . In this bosonic representation the expression

of the quantum Hamiltonian, truncated at the harmonic order,

takes the following compact form in Fourier space:

H = −S(S + 1)

(
2J + J ′

2

)
NS

+ S
∑

k

(a†
k,a−k)

(
Ak Bk
Bk Ak

)(
ak

a
†
−k

)
, (B4)

where NS is the total number of lattice sites, and the coefficients
Ak and Bk are given by

Ak = 2J + J ′

2
,

(B5)

Bk = −J (cos kx + cos ky) − J ′

2
cos kz,

with kz = 0 (kz = π ) for the symmetric (antisymmetric)
sector. Terms of order S2 in Eq. (B4) correspond to the
classical energy and terms of order S to the 1/S correction.
The quadratic Hamiltonian (B4) is diagonalized by introducing
new bosonic quasiparticle operators via

ak = ukαk + vkα
†
−k,

(B6)
a
†
k = ukα

†
k + vkα−k,

with uk and vk given by

uk = −Sgn(Bk)

⎡
⎣1

2

⎛
⎝ Ak√

A2
k − B2

k

+ 1

⎞
⎠

⎤
⎦

1
2

,

(B7)

vk =
⎡
⎣1

2

⎛
⎝ Ak√

A2
k − B2

k

− 1

⎞
⎠

⎤
⎦

1
2

.

The diagonal representation of H reads

H = −S(S + 1)

(
2J‖ + J⊥

2

)
NS +

∑
k

ωk

(
α
†
kαk + 1

2

)
,

(B8)

with the free magnon dispersion given by

ωk = 2S

√
A2

k − B2
k. (B9)

The ground state of (B8) corresponds to the vacuum |0〉 of the
Bogolyubov quasiparticles α and, for S = 1/2, we obtain a
symmetric and an antisymmetric mode with dispersions

ω(kx ,ky ,0) = 2J
√

[1 − γ (kx,ky)][1 + γ (kx,ky) + g/2],

ω(kx ,ky ,π) = 2J
√

[1 + γ (kx,ky)][1 − γ (kx,ky) + g/2],

where

γ (kx,ky) = 1
2 (cos kx + cos ky), (B10)

and g = J ′/J . They satisfy the relation ωk = ωk+Q, which
implies that the dispersion of the symmetric and antisymmetric
modes are identical up to a shift of the in-plane momentum
by (π,π ). The symmetric and antisymmetric modes soften
respectively at k = 0 and k = Q.

We next calculate the single-mode contribution to the
dynamical spin structure factor in terms of the Bogolyubov
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quasiparticles. To this end, we consider the operator

S+
k = 1√

NS

∑
l

eik·rl S+
l

= 1√
NS

∑
l

eik·rl
(
eiQ·rl Sx ′

l + iS
y ′
l

)

=
√

S

2
(ak + ak+Q + a

†
−k−Q − a

†
−k). (B11)

In terms of the Bogolyubov quasiparticles, the effect of S+
k

onto the vacuum |0〉 is given by

S+
k |0〉 =

√
S

2
[(vk − uk)α†

−k + (vk+Q + uk+Q)α†
−k−Q]|0〉,

(B12)

where we have used the property uk = u−k and vk = v−k.
Inserting Eq. (B12) into the Lehmann representation of the
dynamical spin structure factor, and summing over the single-
particle eigenstates of Eq. (B8) gives

SS(ω,k) = ZS(k)δ(ω − ωk), (B13)

with the single-mode amplitude

ZS(k) = S

2
(|vk − uk|2 + |vk+Q + uk+Q|2), (B14)

where we have used the identity ωk = ωk+Q. Integrating
SS(ω,k) over ω yields the integrated spectral weight, SS(k),
which within linear spin-wave theory in the single-particle
sector is thus given by the single-mode amplitude ZS(k). The
integrated spectral weights for the symmetric and antisymmet-
ric channels are thus given by

ZS(kx,ky,0) = 4S2J (1 − γ (kx,ky))

ω(kx ,ky ,0)
, (B15)

ZS(kx,ky,π ) = 4S2J (1 − γ (kx,ky) + g/2)

ω(kx ,ky ,π)
. (B16)

Thus we recover the limiting behavior obtained numerically:
the amplitude of the symmetric mode at k = 0 vanishes
linearly, while the amplitude of the antisymmetric mode at the
antiferromagnetic Bragg peak position k = Q diverges like
∼1/|k − Q|, namely,

ZS(k,k,0) ≈ JSk√
J (4J + J ′)

, k → 0 , (B17)

ZS(k,k,π ) ≈ S
√

J (4J + J ′)
J (k − π )

, k → π , (B18)

respectively.

2. Higher-order spin-wave theory

As discussed in the main text, the agreement with the
quantum Monte Carlo data is improved if the spin-wave
expansion is extended beyond the harmonic order. The first
step is to truncate the Holstein-Primakoff expansion to next-
to-leading order. This amounts to keeping, in the expression
of the spin operators in the rotated frame (x ′,y ′,z′), terms of

order S−1/2, such that

Sx ′
l =

√
2S

2
(al + a

†
l ) − 1

4
√

2S
(nl al + a

†
l nl ) ,

S
y ′
l =

√
2S

2i
(al − a

†
l ) − 1

4i
√

2S
(nl al − a

†
l nl ) , (B19)

Sz′
l = S − nl .

Given the collinear nature of the classical state about
which we perform the expansion, the terms beyond the usual
harmonic contribution will be of quartic order in bosonic
operators. To this level of approximation, we are left with
a Hamiltonian

H = H (0) + H (2) + H (4) + O(1/S) , (B20)

where H (0), H (2), and H (4) are, respectively, the classical
energy contribution ∼S2, the harmonic fluctuation Hamilto-
nian ∼S, and the collection of all quartic interaction terms
∼1. Lastly, O(1/S) denotes all the remaining terms in the
expansion, which are of order 1/Sα with α � 1 and which we
neglect. The expression for the sum H (0) + H (2) is given in
Eq. (B4), while H (4) is obtained as

H (4) = J

2

∑
l,d∈{±x,±y}

1

4
[(nl + nl+d)al al+d + H.c.] − nl nl+d

+ J ′

4

∑
l,d∈{±z}

1

4
[(nl + nl+d)al al+d + H.c.] − nl nl+d .

To deal with this Hamiltonian, the simplest approximation
consists in performing a mean-field decoupling of the quartic
boson terms, and to evaluate the expectation values in the
harmonic ground state. This yields an effective harmonic
contribution H

(4)
eff ∼ 1, which adds up to the quadratic terms

H (2) ∼ S. Given the main objective of this calculation, which
is just to demonstrate that the qualitative tendency is correct,
we have not attempted to go beyond this simple treatment
and to make the calculation of the expectation values self-
consistent. This more sophisticated and significantly heavier
approach, known as self-consistent spin-wave theory, includes
higher-order corrections in an approximate way and would
probably further improve the agreement, but it would anyway
not allow to describe the quantum phase transition.

In Fourier space the sum Heff = H (0) + H (2) + H
(4)
eff has the

same structure as Eq. (B4), with

Heff = −S(S + 1)

(
2J + J ′

2

)
NS

+ S
∑

k

(a†
k,a−k)

(
Aeff

k Beff
k

Beff
k Aeff

k

)(
ak

a
†
−k

)
+ C ,

where C is an additional constant of order O(1) and Aeff
k ,Beff

k
are the coefficients of Eq. (B5), evaluated at the effective
couplings Jeff and J ′

eff (i.e., Aeff
k = Ak(Jeff,J

′
eff) and Beff

k =
Bk(Jeff,J

′
eff)), which are given by

Jeff = J

(
1 + � − n

S

)
, J ′

eff = J ′
(

1 + �′ − n

S

)
, (B21)
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FIG. 13. (Color online) Effective coupling ratio geff as a function
of g for S = 1/2.

where n, �, and �′ are the following two-body averages
computed in the harmonic approximation:

n = 〈a†
l al 〉,

� = 〈al al+d〉 ford ∈ {±x,±y}, (B22)

�′ = 〈al al+d〉 ford ∈ {±z}.
Note that all other two-body averages vanish, 〈a†

l al+d〉 = 0,

and 〈al al 〉 = 0. The next-to-leading-order term of the spin-
wave expansion thus has the effect of renormalizing the
coupling ratio g = J ′/J via

g �−→ geff = g
S + �′ − n

S + � − n
. (B23)

Depending on the values of the bare couplings J and J ′,
the multiplicative coefficient ranges from values smaller than

Ω
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0
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0

2

4
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FIG. 14. (Color online) Plots of the dynamical spin structure
factor at different ratios g = J ′/J inside the antiferromagnetically
ordered region for the spin-half Heisenberg model on the square
lattice bilayer. The panels compare the quantum Monte Carlo (QMC)
results to both the linear and second-order spin-wave theory results as
well as to further rescaled effective coupling ratios, which for g = 2
and 2.522 are obtained as geff = 1.8244g and 1.95g, respectively.

one to values bigger than one, as shown in Fig. 13. This figure
suggests that for ratios g � 1, spin-wave interactions yield
an effective ratio geff which is larger than the bare value.
We conjecture that this renormalization will be even bigger
if higher-order spin-wave interactions are taken into account.
For example, we find that the quantum Monte Carlo results at
g = 2 are rather well fitted by the spin-wave dispersion if the
effective ratio, geff , used is even larger than the one obtained
from this improved spin-wave theory, as shown in Fig. 14. This
figure also shows that for g = 2.522, an almost similarly good
fit can be obtained.

APPENDIX C: PERTURBATION THEORY IN 1/g

For vanishing intralayer coupling J = 0, i.e., in the limit
1/g = 0, the ground state of the bilayer spin system is given by
the direct product of singlets on the interlayer bonds (rungs).
We denote this state by |S〉 = ⊗

i |s〉i , where |s〉i is the singlet
on rung i,

|s〉i = 1√
2

(|↑〉i,1|↓〉i,2 − |↓〉i,1|↑〉i,2) . (C1)

To treat the intralayer coupling J as a weak perturbation in the
small 1/g regime, we separate the total Hamiltonian H of the
bilayer model in the interlayer and intralayer parts H⊥ and H‖,
which scale respectively with J ′ and J . |S〉 is thus the ground
state of H⊥. Treating H‖ as a weak perturbation to H⊥, the
ground state to first order in 1/g is found to be

|GS〉 = |S〉 − 1

4g

∑
i,d∈{x,y}

[|t0〉i |t0〉i+d

− |t1〉i |t−1〉i+d − |t−1〉i |t1〉i+d] , (C2)

where the state |tn〉i |tm〉i+d is the direct product of the triplets
|tn〉 and |tm〉 on rungs i and i + d times the direct product
of singlets on all other rungs (which are thus implicit in this
notation). To study the dynamical spin structure factor, we
consider the following local interlayer bond operators, which
relate to the antisymmetric (kz = π ) and the symmetric (kz =
0) modes:

SAS
i = 1√

2
(S+

i,1 − S+
i,2), (C3)

SS
i = 1√

2
(S+

i,1 + S+
i,2). (C4)

These operators act on the eigenstates of a rung as follows:

SAS
i |s〉i = −|t1〉i ,

SAS
i |t1〉i = 0,

SAS
i |t0〉i = 0,

SAS
i |t−1〉i = |s〉i ,

SS
i |s〉i = 0,

SS
i |t1〉i = 0,

SS
i |t0〉i = |t1〉i ,

SS
i |t−1〉i = |t0〉i .

(C5)

We first consider the antisymmetric sector. We start by
computing the effect of

SAS
k = 1√

N

∑
i

SAS
i eik·ri (C6)

on the approximate ground state Eq. (C2) (where k is a two-
dimensional vector and N is the number of interlayer bonds).
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According to (C5) this operator promotes a singlet to a triplet,
and thus the antisymmetric mode captures the dynamics of
triplet excitations. Restricting ourselves to the single triplon
sector, we obtain

SAS
k |GS〉 =

(
−1 + 1

g
γ (kx,ky)

)
|t1〉k , (C7)

with

|t1〉k = 1√
N

∑
i

eik·ri |t1〉i , (C8)

and γ (kx,ky) defined in Eq. (B10). To compute the matrix
elements entering the expression of the dynamical spin
structure factor in the Lehmann representation, the knowledge
of the full spectrum is required. Here, we will consider the
perturbative eigenstates. Since we consider only the single
triplet component of SAS

k |GS〉 (see Eq. (C7)), we can restrict
ourselves to the eigenstates of the effective Hamiltonian

H eff = H⊥ + P1H‖P1 + P1H‖SH‖P1, (C9)

where P1 is the projector onto the single triplet degenerate
manifold, and S = (1 − P1)/(E1t − H⊥), E1t denoting the
energy of the single triplet degenerate manifold. The states
|t1〉k are found to be eigenstates of H eff with eigenvalues

H eff|t1〉k =
[(

−3

4
J ′N + J ′

)
+ 2Jγ (kx,ky)

− J 2

J ′

(
3

4
(N − 2) + 1

2
(4γ (kx,ky)2 − 1)

)]
|t1〉k .

(C10)

A similar calculation allows us to compute the ground-state
energy to the same order in J/J ′,

E0 = −3

4
J ′N − 3

4

J 2

J ′ N . (C11)

Thus, overall we obtain for k = (kx,ky,π )ᵀ, i.e., in the
antisymmetric channel, the single-triplon contribution to the
dynamical spin structure factor as

SS(ω,k) = ZS(k)δ(ω − ωk) , (C12)

with the spectral weight amplitude to first order in 1/g given
by

ZS(k) = 1 − 2

g
γ (kx,ky) . (C13)

The single triplon dispersion, correct up to quadratic order, is
given by

ωk = J ′ + 2Jγ (kx,ky) − 2
J 2

J ′ [γ (kx,ky)2 − 1] . (C14)

Equation (C13) shows that the amplitude of the dynamical
spin structure factor for the antisymmetric mode is of order 1.
The momentum modulations of the amplitude are an effect of
order 1/g, with the largest amplitude for k = (π,π,π )ᵀ and
the lowest at k = (0,0,π )ᵀ. These results compare well with
the quantum Monte Carlo structure factor, as discussed in the
main text (see Fig. 5).

Next, we turn to the calculation of the symmetric channel.
We start by computing, for k = (kx,ky)ᵀ, the effect of

SS
k = 1√

N

∑
i

SS
i eik·ri (C15)

on the approximate ground state in Eq. (C2). According to
Eq. (C5), this operator cancels the singlet component of the
wave function. The finite contributions come from the triplet
component, and are of order 1/g,

SS
k |GS〉 = − 1

4g

∑
d∈{x,y}

(|t1t0〉k,d − |t0t1〉k,d)(1 − eik·d), (C16)

where we have introduced

|t1t0〉k,d = 1√
N

∑
i

eik·ri |t1〉i |t0〉i+d , (C17)

|t0t1〉k,d = 1√
N

∑
i

eik·ri |t0〉i |t1〉i+d , (C18)

the Fourier transforms of neighboring pairs of triplets with
zero relative momenta. Similarly as before, to compute the
matrix elements required for the dynamical spin structure
factor, we will consider the perturbative eigenstates. Since,
to order 1/g, the states SS

q |GS〉 contain two triplets, |t0〉 and
|t1〉, we can restrict the calculation to the eigenbasis of the
effective Hamiltonian

H eff
2 = H⊥ + P2H‖P2, (C19)

where P2 is the projector onto the two triplet degenerate
subspace. The effective Hamiltonian describes the two-body
dynamics of two triplets (|t0〉 and |t1〉) in a sea of singlets.
The full diagonalization of H‖ inside the two-triplet sector is
nontrivial, and we performed it numerically. We considered
a L = 10 lattice, yielding a two-triplet Hilbert space of di-
mension 9900. We performed a full diagonalization, resolving
the energies in momentum space. The spectrum of H eff

2 forms
a continuum in the thermodynamic limit; for our lattice size
we have access to 100 values of the momentum in the whole
Brillouin zone, and for each momentum, we get 99 eigenstates
with different energies. The spectrum, with energies relative
to the energy of the ground state, disperses around 2J ′, the
energy cost of promoting two singlets into triplets. It is shown
in Fig. 15. We do not obtain an explicit expression for the
dynamical spin structure factor in the symmetric channel since

FIG. 15. (Color online) Spectrum of H eff
2 within the two-triplet

sector for a system size L = 10. Energies are measured with respect
to the ground-state energy.
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the eigenbasis and eigenenergies of H eff
2 are obtained only

numerically. Instead, for each value of the momentum, we
computed the overlap between SS

k |GS〉 and the eigenbasis
of H eff

2 . Thus, for each momentum, there is a distribution
of amplitudes at different energies. This distribution of
amplitudes is shown in Fig. 6 of the main text. Based on our
analysis, a few remarks can be made about the dynamical spin
structure factor associated to the symmetric mode: (i) it can
be seen analytically that at zero momentum the amplitude of
the dynamical spin structure factor in the symmetric channel
vanishes (this may also be seen in Fig. 6). In fact, from
Eq. (C16) one obtains SS

k=0|GS〉 = 0. (ii) At momentum
k = (π,π )ᵀ, one can verify that SS

k=(π,π)ᵀ |GS〉 is an eigenstate
of H eff

2 with energy equal to 2J ′ − J/2 when counted from the
energy of the groundstate. This explains why at k = (π,π )ᵀ all
the amplitude is concentrated at ω = 2J ′ − J/2 in Fig. 6. (iii)
The amplitude of the symmetric mode is of order (1/g)2, while
that of the antisymmetric mode is of order 1. Thus the signal of
the symmetric mode vanishes in the limit 1/g → 0 (see Fig. 1).

APPENDIX D: BOND-BOND CORRELATIONS
FROM THE 1/d EXPANSION

In this Appendix, we provide details of the calculation of
the dispersion and the single-particle weight in the bond-bond
correlations, which are related to the Higgs-peak contribution
of the dynamical singlet structure factor SB(ω,k), using the
bond-operator-based 1/d expansion [42,43].

The starting point is a model of coupled dimers described by
Eq. (1), but now on a hypercubic lattice in d spatial dimensions,
such that the square-lattice bilayer corresponds to d = 2. To
obtain a nontrivial large-d limit, it is crucial to properly scale
the ratio between the interdimer coupling J ′ and the intradimer
coupling J . To this end, we introduce the ratio

q = Jd/J ′ (D1)

as our tuning parameter, with the notion that q is kept
fixed upon taking the d → ∞ limit. We refer the reader to
Ref. [42] for an extended discussion of the 1/d expansion
approach and the general formalism. In the following, we will
restrict ourselves to T = 0 calculations. Further, most explicit
expressions will be restricted to the leading order in 1/d. Note
that to this order (i.e., at the harmonic level) of approximation,
the quantum critical point is located at q = qc = 1/2.

As shown in detail in Refs. [42,43], the bond-operator
approach yields a triply degenerate triplon (spin-1 excitation)
mode in the quantum disordered phase (i.e., for q < qc) while
in the antiferromagnetically ordered phase (i.e., for q > qc)
one obtains two degenerate transverse modes (the Goldstone
modes) and a longitudinal amplitude mode. In view of its
further usage, we quote here the leading-order result [43] for
the dispersion of the longitudinal mode (valid for q � 1/2):

ωk,z = 2J ′q
√

1 + γk

4q2
, (D2)

where k = (k1,k2, . . . ,kd )ᵀ and

γk = 1

d

d∑
i=1

cos ki . (D3)

For the interlayer bond-bond correlations, we consider the
susceptibility

χB(ω,k) = −i

∫ ∞

−∞
dteiωt 〈TtBk(t)B−k(0)〉 , (D4)

where Tt is the time-ordering operator, and

Bi = Si1 · Si2 , (D5)

Bk = 1√
N

∑
i

Bie
−ik·ri . (D6)

By the fluctuation-dissipation theorem, the imaginary part of
the susceptibility χB is proportional to the structure factor SB

as considered in the main text. Expressed in terms of bond
operators (we follow the notation of Ref. [42]), we obtain

Bi =
∑

α=x,y,z

t
†
iαtiα − 3

4
. (D7)

In the disordered phase, the tiα (t†iα) are annihilation (creation)
operators for local spin-1 excitations, introduced within the
bond-operator formulation. In the following, we work in
the single-mode approximation (see Ref. [43] for details),
i.e., we will ignore multimode contributions to the bond-
bond correlation function which would cause continua in the
spectrum. As a result, we neglect terms containing more than
two triplon operators in the operator product BkB−k. We are
then lead to the following expression for the interlayer bond
susceptibility in the disordered phase:

χdis
B (ω,k) = N

[
9

16 − 9
2R2 + O(1/d2)

]
δk,0δ(ω) , (D8)

where R2 = 〈t†iαtiα〉 up to O(1/d). We thus do not obtain any
spectral weight in this sector apart from a Bragg-like peak at
ω = 0. (We note that a two-triplon continuum appears at order
1/d.)

In the ordered phase, we performed the calculations to
leading order in 1/d, i.e., at the harmonic level. Here, we use
generalized triplon operators t̃ and t̃†, obtained from the t and
t† operators after a suitable rotation in Hilbert space [43]. Note
that the t̃x and t̃y operators refer to the two degenerate trans-
verse modes, while the t̃z operator corresponds to the longitu-
dinal mode. Furthermore, we define the condensate parameter

λ =
√

2q − 1

2q + 1
, (D9)

corresponding to the condensation of one of the triplon modes
in the ordered phase. We then obtain

Bi = S1i · S2i

= −3

4
+ t̃

†
ix t̃ix + t̃

†
iy t̃iy

+ 1

1 + λ2
[t̃†izt̃iz + λ2Pi + λeiQ·ri (t̃†iz + t̃iz)]

= −3

4
+ λ2

1 + λ2
+ λ

1 + λ2
eiQ·ri (t̃†iz + t̃iz) + t̃

†
izt̃iz

+ t̃
†
ix t̃ix + t̃

†
iy t̃iy

1 + λ2
, (D10)
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FIG. 16. (Color online) Spectral weight distribution in the dynamic singlet structure factor for different values of g, as obtained from the
bond-operator theory using the mapping in Eq. (9).

where Q = (π,π, . . . )ᵀ, and in the last equation, we have used
the singlet projector Pi = 1 − ∑

α t̃
†
iα t̃iα (with α = x,y,z).

This gives

Bk =
√

N

(
−3

4
+ λ2

1 + λ2

)
δk,0 + λ

1 + λ2
(t̃†k−Q,z + t̃−k+Q,z)

+ 1√
N

∑
q

(
t̃†q,zt̃q−k,z + t̃

†
q,x t̃q−k,x + t̃

†
q,y t̃q−k,y

1 + λ2

)
.

(D11)

As noted above, we now ignore the last term in the above
equation since it will either contribute to the continuum or
give a 1/d correction to the single-particle peak. Hence we
do not obtain a single-mode contribution from the transverse
modes. We are thus left with

χord
B (ω,k + Q)

= N

(
−3

4
+ λ2

1 + λ2

)2

δk,0δ(ω) (D12)

+ λ2

1 + λ2
[GN,z(ω,k) + GN,z(−ω,k)

+GA,z(ω,k) + GA,z(−ω,k)]

= N

(
−3

4
+ λ2

1 + λ2

)2

δk,0δ(ω)

+ λ2

1 + λ2
(uk,z + vk,z)

2

(
1

ω − ωk,z

− 1

ω + ωk,z

)
, (D13)

where we have used the fact that k resides within the first
Brillouin zone, and the fact that k ± 2Q is equivalent to k. In
the above expression, GN and GA denote the zero-temperature
normal and anomalous Green’s function, respectively. Also,
uk,z and vk,z are Bogoliubov coefficients, used in diagonalising
the Hamiltonian to leading order in 1/d, and at this point
we refer to Ref. [43] for their explicit expressions. We can
now read-off the mode weight corresponding to ωk,z from the
above expression,

ZB(k + Q) = λ2

1 + λ2
(uk,z + vk,z)

2 = 2q − 1

2
√

4q2 + γk

. (D14)

As discussed in Sec. III, we need to account for the shift in the
location of the quantum critical point within the bond-operator
approach from the actual value, when comparing the above re-
sults to the quantum Monte Carlo data. In Fig. 16, we show the
single-mode contribution to the spectral weight atop the corre-
sponding dispersion relation for different values of g, using the
mapping in Eq. (9) to the corresponding values of q used in the

above formula. We recall that, in addition to this single-mode
contribution, a two-magnon continuum appears at leading
order in 1/d, which we have not determined here. Finally,
we note that within the current approach, one can similarly
calculate the quasi-particle contribution to the bond-bond cor-
relations among the intralayer bonds. Similar to the case of the
spin-spin correlations, one can in this case distinguish between
a symmetric and antisymmetric channel with respect to layer
inversion symmetry. For the symmetric channel, we obtain
again a single-mode contribution like in the interlayer case con-
sidered explicitly above, however, of reduced spectral weight.
In the antisymmetric channel, no single-particle contribution
is obtained so that only a continuum contribution results.

APPENDIX E: SPIN DYNAMICS IN THE
HUBBARD MODEL

The bilayer Heisenberg model is an effective low energy
model describing the spin dynamics of Mott insulators. In
this appendix, we show that the spin dynamics obtained
from simulations of the Heisenberg model can be obtained
by starting from the Hubbard model on the bilayer square
lattice. At intermediate couplings, this is by no means trivial
since charge fluctuations allow for higher-order spin exchange
processes. Our starting point is the Hamiltonian of the Hubbard
model on the square lattice bilayer:

H = −
∑
i,j,σ

c
†
i,σ Ti,j cj,σ + U

2

∑
i

(ni − 1)2. (E1)
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FIG. 17. (Color online) Finite size scaling of the staggered mag-
netization assuming 3D O(3) critical exponents [45], ν = 0.7048(30)
and β = 0.3616(31).
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FIG. 18. (Color online) Critical value of t ′ as a function of the
Hubbard interaction. The data point at U/t → ∞ corresponds to the
Heisenberg result.

Here, c†i,σ creates an electron in Wannier state centered around
lattice site i and with z-component of spin σ , Ti,j accounts for
in-plane hopping of magnitude t between nearest neighbors as
well as an interlayer hoping set by t ′. Finally, double occupancy
of Wannier states is prohibited by the Hubbad term, with ni =∑

σ c
†
i,σ ci,σ

At the particle-hole symmetric point, one can carry out sign-
free quantum Monte Carlo simulations of the model. Here, we
have used the projective zero-temperature approach based on
the equation

〈�0|O|�0〉
〈�0|�0〉 = lim

�→∞
〈�T |e−�H Oe−�H |�T 〉

〈�T |e−2�H |�T 〉 , (E2)

in which the ground state is filtered out of a single Slater
determinant by propagating along the imaginary time axis.
It is beyond the scope of this appendix to go into the
details of the implementation and the reader is referred to
Ref. [50] for an overview of the algorithm. Let us, however,
comment on some aspects of our implementation. We have
used an SU(2)-spin symmetric discrete Hubbard-Stratonovitch

transformation, coupling to the charge:

e−�τU (ni−1)2/2 = 1

2

∑
s=±1

eiαs(ni−1), (E3)

with cos(α) = e−�τU/2. We have furthermore used a symmet-
ric Trotter decomposition with �τU = 0.8 and the trial wave
function corresponds to the ground state of the noninteracting
Hamiltonian. Here, parameters were chosen so as to avoid
a degenerate ground state for the noninteracting system.
Thereby, the trial wave function is a spin-singlet, and due
to Liebs theorem [51] in the correct symmetry sector of the
ground state of the bilayer Hubbard model. For this spin singlet
trial wave function projection parameters �t = 40 suffice to
guarantee convergence to the ground state within the quoted
accuracy.

In the strong-coupling limit, second-order perturbation in
t/U yields J = 4t2/U and J ′ = 4t ′2/U such that the Heisen-
berg result gc ≡ (J ′/J )c = 2.5220(1) translates to (t ′/t)c =
1.59 as U/t → ∞. To determine the critical value of of t ′
for finite values of U , we have used the finite-size scaling
ansatz:

m = L−β/νF (|t ′c − t ′|L1/ν) (E4)

with the staggered magnetization

m = √〈SSSQQQSSS−QQQ〉. (E5)

Here, SSSkkk =
√

1
Ns

∑
i e

−ikkk·rrriSSSi , with SSSi = 1
2

∑
s,s ′ c

†
i,sσσσ s,s ′ci,s ′

the spin-1/2 operators, and QQQ = (π,π,π ) the antiferromag-
netic wave vector. Figure 17 shows the finite-size scaling of
the staggered magnetization using the three-dimensional O(3)
critical exponents [45]. As apparent, (t ′/t)c = 1.9 ± 0.1 at
U/t = 12. Similar results allow us to pin down the value of
(t ′/t)c as a function of U/t . The data, shown in Fig. 18, are
consistent, as expected, with t ′c extrapolating to the Heisenberg
value as U/t → ∞. A similar analysis was recently carried
out in Ref. [52].

To compare with the Heisenberg results, we have computed
the dynamical spin structure factor, which in the Lehmann
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FIG. 19. (Color online) Dynamical spin structure factor at U/t = 12 across the quantum phase transition. For this value of the Hubbard
interaction (t ′/t)c = 1.9 ± 0.1. The numerical simulations were carried out with a spin singlet trial wave function.
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representation reads

SS(ω,kkk) = 2π
∑

n

|〈n|SSSkkk|0〉|2δ(ω − En − E0). (E6)

The sum rule

∫
dωSS(ω,kkk) = 2π〈SSSkkk · SSS−k−k−k〉 (E7)

relates the static and dynamical spin structure factors. In
analogy to the results produced for the Heisenberg model,

we have used the stochastic analytical continuation described
in Ref. [36] to carry out the Wick rotation.

Figure 19 shows the dynamical spin structure factor across
the quantum phase transition at U/t = 12 on an L = 16
lattice. For this value of the U/t , the single-particle gap is
of the order of �s � 4t such that the particle-hole continuum
should become apparent as of 2�s � 8t . From the sum rule, it
becomes apparent that the great majority of the spectral weight
lies in magnon excitations. Comparison with Sec. III A shows
that the overall evolution of dynamical spin structure factor
is very similar, if not identical, to the QMC results for the
Heisenberg bilayer.
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