
PHYSICAL REVIEW B 92, 245132 (2015)

Finite-size effects in Luther-Emery phases of Holstein and Hubbard models

J. Greitemann,1,2 S. Hesselmann,2 S. Wessel,2 F. F. Assaad,3 and M. Hohenadler3

1Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, 80333 Munich, Germany

2Institute for Theoretical Solid State Physics, JARA-FIT, and JARA-HPC, RWTH Aachen University, 52056 Aachen, Germany
3Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

(Received 26 October 2015; published 28 December 2015)

The one-dimensional Holstein model and its generalizations have been studied extensively to understand the
effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from
a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave
order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge
correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely
fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent
previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise
in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet
bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase,
but also implies that gapless Luttinger liquid theory is not applicable.
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I. INTRODUCTION

The interaction of charge carriers with the crystal lattice
is a fundamental ingredient for the description of materials.
In addition to its role for superconductivity, electron-phonon
coupling manifests itself in phenomena such as the Peierls
transition [1] and polaron formation [2]. Electron-phonon
coupling appears to play an important role in a number
of strongly correlated materials such as the manganites [3].
From a theoretical point of view, even a single electron
coupled to quantum phonons represents a complex many-body
problem [4], and systems with a finite band filling are even
more demanding.

Much of our knowledge about the effects of electron-
phonon coupling in low-dimensional systems comes from
investigations of simplified microscopic models. Among these
models, the Holstein model [5] and its generalizations play
a central role. The focus on Holstein-type models is a
consequence of its relative simplicity, namely, a density-
displacement coupling and Einstein phonons, which makes the
models amenable to exact numerical methods such as quantum
Monte Carlo (QMC) or the density-matrix renormalization
group (DMRG); for a review of existing work, see Ref. [6]. In
the one-dimensional (1D) case considered here, Holstein-type
models have also been studied with the bosonization method
in combination with the renormalization group (RG) [7,8].

A critical look at the available literature reveals that, despite
the substantial body of results, the understanding of the half-
filled Holstein and Holstein-Hubbard models is incomplete.
Apart from discrepancies in the critical values obtained
with different numerical methods, there is a long-standing
argument regarding the existence of a metallic phase. Whereas
more recent large-scale numerical studies [9–12] support an
extended metallic region as a result of quantum lattice fluctu-
ations, similar to the spinless Holstein model [13–15], earlier
numerical and analytical results imply an insulating ground
state for any nonzero electron-phonon coupling [7,8,16]. A
recent functional RG study confirmed the existence of an

extended metallic region [17]. Complications also arise when
trying to understand numerical results in terms of Luttinger
liquid theory. Most notably, the numerically determined values
of the Luttinger parameter Kρ [9–11] conflict with the
observed behavior of the correlation functions [6,18–21].
The situation is further complicated by the fact that the
electron-phonon interaction gives rise to a spin gap [6], so that
the low-energy physics is described by the Luther-Emery fixed
point [22].

Here, we reveal the key role of the spin degrees of freedom
for the observed inconsistencies. In addition to surveying
previous results, we present results for Holstein and purely
fermionic models. A comparison between spinful and spinless
Holstein models allows us to separate the effects of backscat-
tering from retardation effects related to the lattice dynamics.
On the other hand, transitions from a Luttinger or Luther-
Emery liquid to a charge-density-wave (CDW) phase can
also be investigated in numerically more accessible fermionic
models, for which a quantitative comparison between theory
and simulation is possible. The central findings of this work
are as follows. (i) Previous claims for the absence of a metallic
phase [16] are shown to be unfounded. Instead, the spinful
Holstein model seems to support a Peierls transition at a
nonzero critical electron-phonon coupling. (ii) The metallic
phase of the spinful Holstein model is characterized by power-
law (dominant) charge and (subdominant) pairing correlations,
and exponentially suppressed spin correlations. (iii) The spin
gap caused by backscattering lies at the heart of the conflicts
between numerics and theory. In particular, the expected
Luther-Emery behavior is only observed on length scales larger
than the inverse spin gap. (iv) The pairing of electrons into spin
singlets (bipolarons) provides a connection to the physics of
the better understood spinless Holstein model, and suggests
that the correct low-energy picture of the Holstein model
is that of hard-core bosons with repulsive interactions. The
latter problem can be solved exactly, and provides a natural
explanation for the existence of an extended metallic region in
the Holstein model.
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The paper is organized as follows. In Sec. II, we introduce
the relevant models. The QMC methods are briefly explained in
Sec. III. In Sec. IV, we discuss the spinful and spinless Holstein
models, including correlation functions, Luttinger parameters,
and the charge susceptibility. In Sec. V, we reveal important
similarities with suitable fermionic models that capture the
metal-insulator transition. Section VI gives a discussion of our
and previous results and the correct low-energy theory of the
Holstein model. Finally, Sec. VII contains our conclusions,
and the Appendix gives the derivation of the scaling behavior
of the charge susceptibility.

II. MODELS

The 1D Holstein model is defined as [5]

Ĥ = −t
∑
iσ

(c†iσ ci+1σ + H.c.)

+
∑

i

(
1

2M
P̂ 2

i + K

2
Q̂2

i

)
− g

∑
i

Q̂i(n̂i − 1). (1)

The first term describes the hopping of electrons between
neighboring lattice sites with amplitude t . The second term
describes the lattice degrees of freedom in the harmonic
approximation; the phonon frequency is given by ω0 =√

K/M , Q̂i (P̂i) is the lattice displacement (momentum) at
site i. The electron-phonon interaction described by the third
term couples the electron density at site i with the lattice
distortion at the same site. The electron density operator
is defined as n̂iσ = c

†
iσ ciσ , and we have n̂i = ∑

σ n̂iσ . The
dimensionless parameter λ = g2/(4Kt) is a useful measure for
the electron-phonon coupling strength. A common alternative
notation for the interaction term is −g

∑
i(b

†
i + bi)(n̂i − 1)

where g = g
√

2Mω0 and λ = g2/(2ω0). Equation (1) has
been generalized to the Holstein-Hubbard model [23] with
an additional repulsive interaction U

∑
i n̂i↑n̂i↓ (see Ref. [6]

for a review).
The spinless Holstein model [16]

Ĥ = −t
∑

i

(c†i ci+1 + H.c.)

+
∑

i

(
1

2M
P̂ 2

i + K

2
Q̂2

i

)
− g

∑
i

Q̂i(n̂i − 0.5), (2)

with n̂i = c
†
i ci , captures much of the physics of Eq. (1), and

will provide important insights.
We further consider the U -V extended Hubbard model

Ĥ = −t
∑
iσ

(c†iσ ci+1σ + H.c.) + U
∑

i

n̂i↑n̂i↓ + V
∑

i

n̂i n̂i+1

(3)

with onsite interaction U and nearest-neighbor interaction
V . In the nonadiabatic limit ω0 → ∞, the spinful Holstein
model can be mapped to Eq. (3) with U = −4λt < 0 [16]
and V = 0. More generally, Eq. (3) with U < 0 describes a
transition from a spin-gapped metallic phase at V = 0 to a
CDW insulator at V > 0.

Finally, we investigated the spinless t-V model

Ĥ = −t
∑

i

(c†i ci+1 + H.c.) + V
∑

i

n̂i n̂i+1 (4)

which for half-filling is known to have a metal-insulator
transition at V = 2t .

We studied the above models at half-filling, corresponding
to 〈n〉 = 1 for Eqs. (1) and (3), and to 〈n〉 = 0.5 for Eqs. (2)
and (4). We use t as the unit of energy, and set the lattice
constant and � to one.

III. METHODS

We simulated the models defined in Sec. II with two
different QMC methods. First, we made use of the continuous-
time interaction expansion (CT-INT) method [24] which has
been successfully applied to electron-phonon lattice models
[25–28]. The phonons are integrated out analytically, and
the resulting fermionic model with nonlocal (i.e., retarded)
interactions is simulated [29]. We refer to previous publica-
tions [25–29] and reviews [30,31] for technical details.

Second, we used the stochastic series expansion (SSE)
representation [32], which in principle provides a more
favorable linear (as compared to cubic for the CT-INT method)
scaling of computer time with system size L and inverse
temperature β = 1/kBT . It was previously applied to the
Holstein-Hubbard model [9,10]. For the Holstein model, the
phonons have been treated explicitly in the occupation number
basis. In order to avoid negative vertex weights, a cutoff
on the maximum phonon occupation needs to be imposed.
However, unlike exact diagonalization or DMRG methods, the
computational effort scales only linearly in the phonon cutoff,
allowing us to choose it sufficiently large to make the resulting
systematic errors completely negligible. While the employed
update scheme is inherently grand canonical, measurements
were restricted to half-filled configurations.1

In the SSE representation, the directed loops algorithm [32]
allows us to update the purely fermionic models very effi-
ciently and to reach significantly larger system sizes compared
to the CT-INT method. In contrast, the phononic operators of
the Holstein model are updated by exchanging pairs of phonon
creation and annihilation operators on the same site with
diagonal electronic operators and, vice versa, with Metropolis
probabilities [10,33]. The number of diagonal phonon op-
erators between the pair enters the acceptance probabilities
as an exponent. Thus, in the nonadiabatic regime ω0 	 t ,
the acceptance rates for phononic updates are exponentially
suppressed, leading to prolonged autocorrelation times. This
can be remedied to some extent by the use of quantum parallel
tempering [34]. Still, for ω0/t = 5 we found that the CT-INT
method is in fact competitive.

We measured the real-space correlation functions in the
charge, pairing, and spin channels

Sρ(r) = 〈(n̂r − n)(n̂0 − n)〉,
Sπ (r) = 〈π̂ †

r π̂0 〉, (5)

Sα
σ (r) = 〈

Ŝα
r Ŝα

0

〉
.

1To avoid a sign problem in the SSE representation, instead of
the particle-hole symmetric form of the interaction in Eq. (1) for
which μ = 0 corresponds to half-filling, we used −g

∑
i Q̂i n̂i and a

chemical potential μ = 4λt .
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Here, α = x,z, and the pairing operator is given by π̂
†
r =

c
†
r↑c

†
r↓ in the spinful case, and by π

†
r = c

†
r c

†
r+1 in the spinless

case. We also consider the corresponding structure factors
obtained via Fourier transformation

S(α)
ν (q) =

∑
r

eiqrS(α)
ν (r). (6)

IV. HOLSTEIN MODELS

A. Overview of existing work

We begin with an overview of important previous results
for the half-filled Holstein model. The reason for focusing
on the pure Holstein model is that it features only one phase
transition, whereas the Holstein-Hubbard model exhibits Mott
and Peierls transitions [6,10,11].

1. Numerical results

A variety of numerical methods have been applied to the
half-filled Holstein model, most notably exact diagonaliza-
tion [35–37] and QMC methods [6,9,10,16,19], as well as the
DMRG [11,12,21,38]. The first study was carried out using
a QMC algorithm [16]. Based on results for the real-space
charge correlation function, and reassured by approximate
analytical arguments, it was claimed that the spinful Holstein
model at half-filling is a Peierls insulator for any finite phonon
frequency ω0 < ∞ [16]. We will show in Sec. IV B that this
conclusion was incorrect. Accordingly, all ensuing numerical
works suggest that the model instead has an extended metallic
phase where quantum lattice fluctuations destroy the dimerized
Peierls state below a critical value of the electron-phonon
coupling [10,11]. The numerical phase diagrams [10,11] agree
with respect to the overall features but, as discussed in the
following, there are non-negligible differences regarding the
phase boundaries. Despite these quantitative uncertainties,
the DMRG and QMC results rather firmly establish the
existence of a phase transition from a spin-gapped metallic
phase to a charge-ordered insulating phase with increasing
electron-phonon coupling.

Interest in the Holstein(-Hubbard) model revived when
QMC simulations [10] suggested the existence of a metallic
phase with dominant pairing correlations, as indicated by a
Luttinger parameter Kρ > 1. However, it was soon shown
that for λ > 0, charge correlations always decay slower than
pairing correlations [18]. This conflict between the numerical
values of Kρ and the behavior of the correlation functions has
not been resolved. An important property of the metallic phase
is the existence of a spin gap, first pointed out in Ref. [10],
which arises from the pairing of electrons into spin singlets.
In the language of bosonization, the spin gap is caused by
attractive backscattering of electrons, similar to the attractive
Hubbard model. A detailed discussion of the spin gap can be
found in Ref. [6]. The most compelling evidence for a spin gap
is the dominance of charge correlations over spin correlations,
which is not possible in a gapless Luttinger liquid [39] but
observed in the Holstein model in the entire metallic phase [6],
as well as the numerical finding of a Luttinger parameter
Kσ < 1 incompatible with the SU(2) spin symmetry of the
Holstein model [6] (see Sec. IV C). An important corollary
of the existence of a spin gap in the metallic phase is that

the relevant fixed point in the thermodynamic limit is not the
Luttinger liquid but the Luther-Emery liquid, which is much
more difficult to analyze.

2. Analytical results

In the static (classical phonon or adiabatic) limit ω0 → 0 a
mean-field ansatz Qi = (−1)i
 reveals the Peierls instability
inherent to 1D systems without quantum fluctuations. Because
the energy gain outweighs the cost for dimerization, any
nonzero electron-phonon coupling leads to an insulating
Peierls state. This conclusion holds for both the spinful and
the spinless Holstein model. In the opposite, antiadiabatic
limit ω0 → ∞, the Holstein model can be mapped to the
attractive Hubbard model with an instantaneous interaction
U = −4λt [16]. The half-filled attractive Hubbard model
is metallic for any U , and has a spin gap 
σ ∼ e−vF/U

where U is the effective backscattering matrix element [40].
While representing valuable limiting cases, neither the static
(ω0 → 0) nor the instantaneous (ω0 → ∞) limit captures the
theoretical problem of electrons coupled to quantum phonons.

The strong-coupling approximation presented by Hirsch
and Fradkin [16] starts from electrons paired into spin singlets
and considers the effect of second-order hopping processes to
derive an effective hard-core boson model with pair hopping
t̃ and nearest-neighbor repulsion Ṽ , both functions of λ

and ω0. The strong-coupling results give Ṽ /2̃t > 1 for any
ω0 < ∞ which, according to the bosonization results for
hard-core bosons, implies that the system is in an insulating,
charge-ordered phase for any λ > 0. In contrast, a similar
approximation for the spinless Holstein model gives λc > 0.
[Interestingly, the same difference between the spinful and
spinless cases is also predicted for the Su-Schrieffer-Heeger
model. In contrast to the Holstein model, these analytical
predictions (λc > 0 for the spinless model, λc = 0 for the
spinful model) have been confirmed by numerical simulations
(see Ref. [41] and references therein).] The strong-coupling
approximation highlights the relation of the spinful Holstein
model to hard-core bosons (corresponding to electron pairs),
but is considered to be unreliable in the weak-coupling regime.
In particular, for sufficiently small λ, the approximation of
electron pairs as hard-core, onsite objects breaks down. In-
stead, the system may be regarded as consisting of interacting
singlet bipolarons whose size depends on λ and ω0.

Because we are considering a 1D system, important insights
can be gained from the bosonization method together with the
RG. For electron-phonon models, such an approach involves
an additional approximation. The RG flow is carried out in
two steps: From high energies down to the energy for phonon
excitations, then (assuming an instantaneous interaction) from
the phonon energy down to zero [7,8]. Additionally, the mo-
mentum dependence of the phonon-mediated electron-electron
interaction is usually neglected. For the spinful Holstein
model, the RG suggests λc = 0 for ω0 < ∞, whereas λc > 0
is found for the spinless Holstein model [7,8]. The results for
the spinful Holstein model are often quoted as evidence for the
absence of a metallic phase, despite the above-mentioned lim-
itations. An extended metallic phase was recently confirmed
using the functional RG method [17], which takes into account
the frequency dependence of the interaction.
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B. Existence of a metallic phase

To settle the argument, we revisit the QMC results of
Hirsch and Fradkin (HF) [16], the only numerical results that
suggest the absence of a metallic phase. Their conclusions
rely on data for the real-space charge and lattice correlation
functions [Figs. 7(b) and 8(b) in Ref. [16]]. For the parameters
considered, the data suggest long-range order (up to the
system size considered) for charge and lattice correlations
in the spinful Holstein model both at low- and high-phonon
frequencies, from which the authors conclude the absence of
a metallic phase. In contrast, a crossover from long-range to
short-range order was observed in the spinless model upon
increasing the phonon frequency, which is compatible with a
Peierls transition as a function of ω0 or, equivalently, λ.

The coupling constant used in Ref. [16], denoted here as
λHF, is related to λ via λ = λ2

HF/(4Kt). HF set t = 1 and K =
0.25, so that λ = λ2

HF. They considered λHF = 0.9 (λ = 0.81)
for the spinless model, and λHF = 0.9/

√
2 (λ = 0.405) for the

spinful model, as well as phonon frequencies ω0/t = 0.4 and
1.2. The inverse temperature was βt = 10 for ω0/t = 0.4 and
βt = 5 for ω0/t = 1.2. The system size was L = 40 sites. In
contrast to the continuous-time methods used here, the results
of Ref. [16] also have a systematic Trotter error.

Using the CT-INT method, we calculated the charge
correlation function considered by HF [16]

De(r) = 1

L

∑
iσσ ′

(−1)r [〈n̂iσ n̂i+r,σ ′ 〉 − n2], (7)

which is equivalent to (−1)rSρ(r) [cf. Eq. (5)].
Results for De(r) of the spinless model are shown in Fig. 1

for L = 42. For the lowest temperature used by HF, βt = 10,
Fig. 1(a) reveals the absence of long-range charge correlations
for all values of ω0 considered (in conflict with Ref. [16]).
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FIG. 1. (Color online) Charge correlations [Eq. (7)] for the spin-
less Holstein model at (a) βt = 10, (b) βt = 20. Here, λ = 0.81 and
L = 42. The results can be compared to Fig. 7(b) in Ref. [16]. Results
obtained with the CT-INT method. Here and in subsequent figures,
the error bars are typically smaller than the symbols.
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FIG. 2. (Color online) Charge correlations [Eq. (7)] for the spin-
ful Holstein model at (a) βt = 10, (b) βt = 20. Here, λ = 0.405 and
L = 42. The results can be compared to Fig. 8(b) in Ref. [16]. Results
obtained with the CT-INT method.

At a lower temperature, βt = 20, we find results similar to
those of HF, namely long-range order for ω0/t = 0.4 but not
for ω0/t = 1.2. We attribute the discrepancies for βt = 10 to
autocorrelations, which can be significant for the parameters
considered [42], thereby giving rise to spuriously enhanced
charge correlations. Autocorrelations are significantly smaller
and properly accounted for in the present results. The results in
Fig. 1(b) are consistent with a Peierls transition as a function of
phonon frequency in the spinless Holstein model, as claimed
in Ref. [16].

Results for the spinful Holstein model are shown in Fig. 2.
For parameters comparable to those used by HF [Fig. 2(a)],
we find long-range correlations up to the maximal distance
for ω0/t = 0.4, but not for ω0/t = 1.2. However, both cases
show significantly weaker charge correlations than those in
Ref. [16], a fact that we again attribute to autocorrelations. At
a lower temperature, shown in Fig. 2(b), similar to the spinless
case, we find results which look similar to those of HF, namely,
long-range charge order for both ω0/t = 0.4 and 1.2. However,
if we increase ω0 further, we again find a transition to a state
without long-range order, consistent with a metallic state at
λ > 0.

To estimate λc, we carried out a finite-size extrapolation of
the charge correlations at the largest distance. The results in
Fig. 3 are consistent with extended metallic regions in both the
spinless and the spinful models. We have verified that our low-
temperature results are representative of the ground state. The
onset of long-range order in Fig. 3 is consistent with the best
available estimates for the critical values of the spinless (λc ≈
0.39 [14]) and the spinful Holstein models (λc ≈ 0.23 [9–12]).

C. Real-space correlation functions

In 1D metals, the decay of correlation functions is expected
to be parametrized by the charge and spin Luttinger parameters
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(a) spinless Holstein model
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FIG. 3. (Color online) Finite-size scaling of the charge correla-
tions at the largest distance r = L/2. Lines are fits to second-order
polynomials. Here, βt = L, (a) ω0/t = 0.1, (b) ω0/t = 0.5. Results
obtained with the CT-INT method.

Kρ and Kσ , respectively. However, previous numerical and
analytical work revealed a number of difficulties in applying
Luttinger liquid theory to the spinful Holstein model, whereas
good agreement was observed for the spinless Holstein
model [15]. Most importantly, the values of Kρ obtained
with exact numerical methods are incompatible with the
numerically determined correlation functions.

1. Spinless Holstein model

To set the stage for the discussion of the spinful case, it
is useful to first consider the spinless Holstein model (2). The
bosonization method applied to 1D spinless fermions gives the
following results for the real-space correlation functions (we
use x to denote distances in the continuum limit, and r for
distances on a lattice) [43]:

Sρ(x) = − Kρ

2π2x2
+ Aρ

x2Kρ
cos(2kFx) ,

Sπ (x) = Aπ

x2K−1
ρ

. (8)

Here, ρ (π ) denotes the charge (pairing) sector.
According to these results, the exponents determining

the power-law decay of correlations depend only on Kρ .
Equation (8) further implies that q = 0 pairing correlations
dominate (i.e., decay slowest) in the case of attractive
interactions (Kρ > 1), whereas q = 2kF charge correlations
dominate in the case of repulsive interactions (Kρ < 1).
For noninteracting electrons (Kρ = 1), charge and pairing
correlations both decay as 1/x2.

We calculated the correlation functions (5) with the CT-
INT method, and plot the results in terms of the conformal
distance [44] ξ = L sin(πr/L) to remove effects of the
periodic boundary conditions. The results are shown in Fig. 4.
For λ < λc = 0.39(2), the numerical data are consistent with
a power-law decay, as suggested by Eq. (8). Because charge

10−4

10−3

10−2

10−1

5 10 20 40

ξ

(a) Sρ(ξ)

10−4

10−3

10−2

10−1

5 10 20 40

ξ

(b)Sπ(ξ)

λ = 0.10
λ = 0.20
λ = 0.30
λ = 0.40
λ = 0.50

FIG. 4. (Color online) Charge and pairing correlation functions
of the spinless Holstein model. Solid (dashed) lines illustrate c/x2

(c/x). Here, ω0/t = 0.1, L = βt = 50. Results obtained with the
CT-INT method.

correlations dominate over pairing correlations, we conclude
that Kρ < 1. Moreover, Fig. 4 suggests that Kρ decreases
from the noninteracting value Kρ = 1 with increasing λ, in
accordance with DMRG results [15]. The critical point is
expected at Kρ = 1

2 (see discussion in Sec. VI), suggesting
a 1/x decay of charge correlations at λc that is in satisfactory
agreement with the data.

Figure 5 provides a more stringent test of the relationship
between our numerical data and the bosonization results
in Eq. (8). It shows results for the correlation functions
for different system sizes L at a given value of λ. If the
correlations decay with a power-law determined by Kρ , we
expect data for different L to fall onto the same straight line
in a log-log plot (i.e., to have the same exponent). According
to Fig. 5, this is indeed the case for λ = 0.2. In contrast,
for λ = 0.4 and 0.5, corresponding to the Peierls phase, we
find a violation of this “scaling.” Instead of a power-law
decay, the charge correlations exhibit long-range order, and the
corresponding pairing correlations [Fig. 5(b3)] are consistent
with an exponential decay at large distances.

2. Spinful Holstein model

For spinful fermions, the bosonization gives [43,45]

Sρ(x) = − Kρ

π2x2
+ Bρ

xKρ+Kσ
cos(2kFx),

Sπ (x) = Bπ

xK−1
ρ +Kσ

, (9)

Sσ (x) = − Kσ

4π2x2
+ Bσ

xKρ+Kσ
cos(2kFx)
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FIG. 5. (Color online) Charge and pairing correlations of the
spinless Holstein model. Solid lines illustrate c/x2. Here, ω0/t = 0.1,
βt = L. Results obtained with the CT-INT method.

for a Luttinger liquid without a spin gap, and [43]

Sρ(x) = Cρ

x2
+ C ′

ρ

xKρ
cos(2kFx),

Sπ (x) = Cπ

xK−1
ρ

(10)

for a Luther-Emery liquid with a gap for spin excitations.
Given SU(2) spin symmetry, the value of Kσ in Eq. (9)
is fixed to 1, while the Luther-Emery correlation functions
[Eq. (10)] are obtained by setting Kσ = 0. The Peierls
phase with a spin gap and long-range charge correlations
formally corresponds to Kρ = Kσ = 0. In Eqs. (9) and (10),
we included only the dominant q = 0 part for the pairing
correlators. Moreover, in Eq. (9), we neglected the q = 4kF

charge term because it is always subdominant for the cases
considered here. Equations (9) and (10) ignore possible loga-
rithmic corrections, which can arise from marginally irrelevant
operators [45,46].

In both Luttinger liquids and Luther-Emery liquids, charge
correlations dominate over pairing correlations for Kρ < 1.
However, for Luttinger liquids 2kF charge and spin correlations
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ξ

(a) 0.5Sρ(ξ)
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ξ

(b)Sπ(ξ)
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(c) 0.5Sx
σ(ξ)

λ = 0.10
λ = 0.15
λ = 0.20
λ = 0.25
λ = 0.30

FIG. 6. (Color online) Charge, pairing, and spin correlation func-
tions of the spinful Holstein model. The solid line illustrates c/x2.
Here, ω0/t = 0.5, βt = L = 50. Results obtained with the CT-INT
method.

have exactly the same exponent [Eq. (9)]. This degeneracy
can be lifted in favor of dominant charge correlations (and
exponential spin correlations) by a spin gap [39]. As argued
before [6,18,19], numerical results for the correlation functions
of the spinful Holstein model are consistent with a spin gap.
Figure 6 shows results for different values of λ. Starting
with a 1/x2 decay for λ = 0, we observe an enhancement
of charge correlations with increasing λ, and a suppression of
both pairing and spin correlations. This behavior is captured
by the Luther-Emery correlation functions in Eq. (10) with
Kρ < 1, but not by the Luttinger liquid expressions of Eq. (9).
The dominance of charge over pairing correlations [6,18–21]
contradicts earlier claims of a metallic phase with dominant
superconducting correlations (i.e., Kρ > 1) [9], and the claim
of Kρ = 1 in the metallic phase [10].

Figure 7 shows charge, pairing, and spin correlation func-
tions for different system sizes, with λ fixed for each column.
As for the spinless model, we can test if the data exhibit the
scaling expected for power-law correlations. For λ = 0.1, deep
in the metallic phase, the results in Figs. 7(a1), 7(b1), and 7(c1)
are consistent with a power-law decay. The absence of a clear
exponential decay in Fig. 7(c1) suggests that the system sizes
are not sufficient to reach the Luther-Emery fixed point where
Eq. (10) holds. A clear exponential decay of spin correlations
in the metallic phase has been observed in DMRG studies
carried out at higher phonon frequencies where the metallic
phase extends to larger values of λ [20,21]. The crossover
from Luttinger liquid to Luther-Emery liquid behavior as a
function of distance will be illustrated for the numerically
more accessible attractive Hubbard model in Sec. V B.

For a stronger coupling λ = 0.2 [Figs. 7(a2), 7(b2), 7(c2)],
close to the critical point, we observe signatures of long-range
charge order, and of a breakdown of power-law scaling.
Finally, for λ = 0.25 [Figs. 7(a3), 7(b3), 7(c3)], corresponding
to the Peierls phase, deviations from scaling are visible in
all three channels. Charge correlations clearly reflect the

245132-6



FINITE-SIZE EFFECTS IN LUTHER-EMERY PHASES OF . . . PHYSICAL REVIEW B 92, 245132 (2015)

10−4

10−3

10−2

10−1

10 20 30 40 50

λ = 0.10

(a1) Sρ(ξ)

10 20 30 40 50

λ = 0.20

(a2) Sρ(ξ)

10 20 30 40 50

λ = 0.25

(a3) Sρ(ξ)

10−4

10−3

10−2

10 20 30 40 50

(b1) Sπ(ξ)

10 20 30 40 50

(b2) Sπ(ξ)

10 20 30 40 50

(b3) Sπ(ξ)

10−4

10−3

10−2

10 20 30 40 50

ξ

(c1) Sx
σ(ξ)

10 20 30 40 50

ξ

(c2) Sx
σ(ξ)

10 20 30 40 50

ξ

(c3) Sx
σ(ξ)

L = 30
L = 50

FIG. 7. (Color online) Charge, pairing, and spin correlation func-
tions of the spinful Holstein model. Solid (dashed) lines illustrate c/x2

(c/x). Here, ω0/t = 0.5, βt = L. Results obtained with the CT-INT
method.

long-range order, while pairing and spin correlations are
consistent with an exponential decay.

3. Luttinger liquid parameter Kρ

Our numerical results for the correlation functions may
be explained using the bosonization expressions with suitable
exponents. It is therefore of particular interest to calculate Kρ

as a function of ω0 and λ.

Kρ is routinely extracted from numerical results for the
charge structure factor

Kρ = sπ lim
q→0

Sρ(q)/q, (11)

where s = 1 (s = 2) for spinful (spinless) models. The relation
of Kρ to the q = 0 charge fluctuations follows from Sρ(x) in
Eqs. (8) and (9), the first term of which is directly proportional
to Kρ . Although Kρ is defined in the thermodynamic limit, a
finite-size estimate can be obtained from

Kρ(L) = sπSρ(q1)/q1, (12)

where q1 = 2π/L is the smallest nonzero wave vector; finite-
size scaling then gives, in principle, the physical value of Kρ ,
although the scaling function is in general not known. The
use of Eq. (12) is usually motivated by simplicity and the
absence of (multiplicative) logarithmic corrections to the q =
0 term in the correlation functions. Logarithmic corrections to
the power-law decay of correlation functions may arise from
marginally irrelevant operators [45–47], although we are not
aware of explicit results for corrections to the q = 0 term.
Moreover, for the Luther-Emery fixed point, the identification
of the constant Cρ with Kρ is expected to hold only for small
spin gaps. We will demonstrate in the following that the spinful
Holstein model, and also the attractive Hubbard model, are
examples for which the determination of Kρ from Eq. (12) is
problematic.

Using Eq. (12), Kρ for the spinful Holstein and the
Holstein-Hubbard model has previously been extracted from
QMC [9,10] and DMRG [12] results. The large system sizes
used (up to several hundred lattice sites) suggest the possibility
of a reliable extrapolation to the infinite system. These works
reported Kρ > 1 in the metallic phase [9,12], thereby implying
dominant pairing correlations. Later, it was argued that Kρ > 1
due to logarithmic corrections and that the true value is Kρ = 1
in the metallic phase [10], as in the attractive Hubbard model.
However, the observation of dominant charge correlations
(see above and Refs. [6,18–21]) in the metallic phase seems
compatible only with Kρ < 1.

We used the CT-INT method to calculate Kρ (L) via Eq. (12)
for the spinful Holstein model. The results for ω0/t = 0.5 as
a function of λ are shown Fig. 8. In agreement with previous
work, we find Kρ(L) > 1 for λ > 0 in the metallic phase for
the spinful Holstein model [see Fig. 8(a)]. Starting from λ = 0,
Kρ(L) initially increases with increasing λ, before it starts to
decrease in the vicinity of the critical value λc = 0.23(1). A
very similar behavior was observed before [10]. Crucially,
Kρ(L) takes on even larger values if we increase the phonon
frequency from ω0/t = 0.5 to 5; for the latter, the metallic
phase extends up to λc ≈ 0.5 [10,11]. This observation seems
to rule out retardation effects as the reason for the slow
convergence of Kρ [18].

Further insight can be gained from the spinless Holstein
model. In Fig. 8(b), we see that Kρ(L) � 1 even for the rather
small lattice sizes accessible with the CT-INT method. In
contrast to the spinful model, the finite-size extrapolated values
of Kρ are always smaller than 1 for nonzero λ [15], consistent
with the dominant charge correlations in Fig. 4. Moreover,
the DMRG was able to show that Kρ = 1

2 coincides within
the numerical accuracy with the critical point of the Peierls
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FIG. 8. (Color online) Kρ(L) [Eq. (12)] for (a) the spinful and
(b) the spinless Holstein model. Here, βt = L. Results obtained with
the CT-INT method.

transition, as expected from bosonization results for the related
t-V model of spinless fermions [15].

By combining the above results, we arrive at the following
conclusions. For the spinful Holstein model, the use of Eq. (12)
gives results for Kρ that are inconsistent with the correlation
functions, which show a generic dominance of charge over
pairing correlations. Even in the absence of accurate estimates
of Kρ , the behavior of the correlation functions hence
establishes the repulsive nature of the Luther-Emery phase.
In contrast, for the spinless Holstein model, the values of
Kρ determined by large-scale DMRG calculations [15] are
compatible2 with the behavior of correlation functions. Since
the retardation of the phonon-mediated interaction is identical
for the spinful and the spinless models for the same ω0/t

[ω0/t is actually smaller in Fig. 8(b) than in Fig. 8(a)], it
cannot explain Kρ > 1 in the spinful case. On the other hand,
the key difference is the additional energy scale of the spin gap

2In contrast to the spinless t-V model discussed in Sec. V A, the
values of Kρ reported in Ref. [15] do not exactly match the power-law
exponents of the correlation functions. This suggests that the finite-
size extrapolation of Kρ(L) is less reliable for the spinless Holstein
model.

arising from attractive backscattering in the spinful case. We
will return to this point in Sec. V.

D. Charge susceptibility

While the onset of long-range order can be tracked using a
finite-size scaling of charge correlations, as shown in Fig. 3,
previous QMC studies of the phase diagram mainly relied on
the charge susceptibility

χρ(Q) =
L∑

r=1

eiQr

∫ β

0
dτ 〈n̂r (τ )n̂0(0)〉 (13)

at the ordering wave vector Q = 2kF = π . In principle, the
susceptibility has a more favorable scaling (a faster divergence
in the ordered phase) with system size [48,49]. However,
because χρ involves the charge correlation function, it is also
affected by the spin gap. We therefore discuss the expected and
the observed behavior of the charge susceptibility for Holstein
models. To compare to existing work, we consider a phonon
frequency ω0/t = 0.1 in the spinless case and ω0/t = 0.5 in
the spinful case. Results for the t-V and the U -V extended
Hubbard model will be shown in Sec. V.

As shown in the Appendix A, assuming a power-law
decay of 2kF charge correlations of the form (−1)r r−α , the
susceptibility scales as

χρ(π )/L ∼ CL1−α. (14)

Let us analyze the behavior of χρ(π )/L for Luttinger and
Luther-Emery liquids, focusing on Kρ � 1.

For a spinless Luttinger liquid, such as the spinless
Holstein model for λ < λc, we have α = 2Kρ [see Eq. (8)].
At half-filling, umklapp scattering is irrelevant for Kρ �
1
2 , and relevant for Kρ < 1

2 . Equation (14) suggests the
following behavior: for Kρ = 1, χρ(π )/L ∼ ln L/L and hence
χρ(π )/L → 0 for L → ∞. Similarly, χρ(π )/L → 0 for 1

2 <

Kρ < 1. At the critical value Kρ = 1
2 , we have χρ(π )/L → C.

For Kρ < 1
2 , χρ(π )/L diverges as a function of L. In particular,

χρ(π )/L ∼ L for Kρ = 0 (corresponding to long-range charge
order). Hence, we should see a crossover in the behavior of
χρ(π )/L as a function of Kρ (or, equivalently, the interaction
strength), and can identify the critical point from the onset of
diverging behavior. The above considerations are borne out by
the numerical results for the spinless Holstein model (2) shown
in Fig. 9. Despite the limited system sizes, the critical value
λc ≈ 0.40 agrees well with large-scale DMRG results [14,15].

For a spinful Luttinger liquid α = Kρ + Kσ [Eq. (9)].
If Kσ = 1 by symmetry, then χρ(π )/L ∼ L−Kρ . Therefore,
we expect χρ(π )/L → 0 for 0 < Kρ < 1 (the range where
correlations decay with a power law), and a divergence of
χρ(π )/L in the ordered state where the correlations approach
a finite value at large distances.

Finally, for a Luther-Emery liquid, as realized in the metallic
phase of the spinful Holstein model, 2kF charge correlations
decay with α = Kρ [Eq. (10]. Consequently, Eq. (14) gives
χρ(π )/L → C for Kρ = 1, but χρ(π )/L ∼ Lε with ε = 1 −
α > 0 and hence χρ(π )/L → ∞ for any Kρ < 1. Therefore,
a metallic phase with Kρ < 1 (dominant charge correlations,
as observed for the Holstein model) cannot be distinguished
from a long-range-ordered Peierls phase from the qualitative
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FIG. 9. (Color online) Finite-size scaling of the charge suscep-
tibility χρ(π ) [Eq. (13)] for the spinless Holstein model. Here,
ω0/t = 0.1, βt = L. Results obtained with the CT-INT method.

behavior of χρ(π )/L alone. This complication appears to
have been overlooked in Refs. [9,10,27] where χρ(π ) was
used to track the Peierls transition in spinful models. The
scaling χρ(π ) ∼ L2−Kρ for a Luther-Emery liquid was given
in Ref. [50]. In principle, the Luther-Emery and CDW phases
may be distinguished by the different divergences of χρ(π )/L.
Given reliable estimates of Kρ , the Luther-Emery phase can
be identified by plotting χρ(π )L1−Kρ , which approaches a
constant at large L [50].

Let us compare these predictions to numerical data for the
spinful Holstein model. The crossover from Luttinger liquid
to Luther-Emery liquid behavior in finite systems corresponds
to a change of the exponent α from Kρ + Kσ to Kρ . In the
case of the Holstein model, the charge correlation functions in
Fig. 7(a) reveal an exponent 1 < α < 2 (the solid line indicates
α = 2, the dashed line α = 1) even though the dominance
of charge over pairing correlations implies Kρ < 1. This
suggests that on the length scales accessible in our results,
Kσ has not scaled to zero, putting us between the two fixed
points.

The problems in resolving the spin gap and the correct long-
distance behavior of the correlation functions also affect the
charge susceptibility. In contrast to the analytical predictions of
a divergent χρ(π )/L for any Kρ < 1 in a Luther-Emery liquid,
the data for χρ(π ) in Fig. 10(a) strongly resemble the spinless
case shown in Fig. 9. For small values of λ, χρ(π )/L → 0,
whereas for sufficiently large λ it diverges. This behavior
is consistent with previous work [9,10,27] [cf. Fig. 3(a) in
Ref. [10]].

Based on the incorrect assumption of χρ(π )/L → 0 in the
metallic phase, the phase boundary for the Peierls transition
was determined in Ref. [10]. Similarly, from Fig. 10(a),
we may (incorrectly) estimate λc ≈ 0.23, in accordance
with Ref. [10]. The DMRG estimate (from the opening
of the two-particle gap) is λc ≈ 0.25 [11]. For ω0/t = 1,
the transition was reported to occur at λc ≈ 0.25 based on
χρ(π )/L [10], whereas a rough DMRG estimate (from the
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FIG. 10. (Color online) Finite-size scaling of the charge suscepti-
bility χρ(π ) for the spinful Holstein model for (a) ω0/t = 0.5, and (b)
ω0/t = 5. Here, βt = L. Results obtained in the SSE representation.

order parameter) is λc ≈ 0.3 [38]. The spurious crossover
in the behavior of χρ(π )/L is also apparent in Fig. 10(b)
for ω0/t = 5. Similar data were used before to estimate
λ ≈ 0.5 [10]. A comparison of QMC and DMRG results
can be made for the Holstein-Hubbard model with ω0/t = 5
and U/t = 1. The QMC critical value is λc ≈ 0.65 [10],
whereas DMRG estimates are λc ≈ 0.8–1.0 [11] and λc ≈
0.75 [12].

Our discussion reveals that the Peierls critical point for
the spinful Holstein model (or other models exhibiting a
transition from a Luther-Emery to a CDW phase) cannot
be determined from a qualitative analysis (divergent or not)
of χρ(π )/L because the latter diverges in both phases on
sufficiently large systems. Even a quantitative analysis of the
divergent behavior will be affected by the spin gap. Since
the latter partially suppresses the divergence of χρ(π )/L
for small L, critical values obtained from the susceptibility
are expected to be larger than the true values. Given the
importance of the Holstein-Hubbard model for our under-
standing of electron-phonon physics, it is highly desirable to
use alternative methods to improve the accuracy of the phase
diagram.
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V. FERMIONIC MODELS

In this section, we consider purely electronic models of
spinful and spinless fermions that exhibit a transition from a
metallic phase to a CDW insulator. This allows us to separate
retardation effects from those of backscattering (leading to
a spin gap) and umklapp scattering (leading to a charge
gap). The availability of exact analytical results provides a
stringent test for the numerical methods also used to study
electron-phonon models. After demonstrating that the spinless
fermion problem is well accessible numerically, leading to a
very good agreement with analytical results, we will show
that the extended Hubbard model exhibits many of the issues
encountered in numerical simulations of the spinful Holstein
model. Because of the better scaling with system size, all
results of this section were obtained in the SSE representation.

A. Spinless t-V model

The model of spinless fermions defined by Eq. (4) captures
the Luttinger liquid to CDW insulator transition also observed
for the spinless Holstein model. Importantly, it does not involve
any retardation effects, and can be solved exactly by the
Bethe ansatz [51], thereby providing full knowledge of the
correlation functions and the phase diagram (see Ref. [52] and
references therein).

Figure 11 shows Kρ(L) as a function of inverse system size.
In the metallic phase, which exists for V/t < 2, the numerical
values extrapolate to the exact values [53]

Kρ = π

2

1

arccos
( − V

2t

) . (15)

Close to the transition, the extrapolation becomes more
difficult. In particular, Kρ should take on the value 0.5 exactly
at the critical point V/t = 2, and zero for V/t > 2. Similar
results were obtained in a previous DMRG study [54], as well
as for the spinless Holstein model [15].

The charge correlation function Sρ(ξ ) is shown for different
values of V/t in Fig. 12. In the metallic phase (V/t < 2), we
see a power-law decay for all system sizes considered. Apart
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FIG. 11. (Color online) (a) Kρ(L) [Eq. (12)] for the spinless t-V
model. Here, βt = 2L. The values for L = ∞ were obtained from
Eq. (15). Results obtained in the SSE representation.
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FIG. 12. (Color online) Charge correlation functions for the spin-
less t-V model. Solid lines correspond to fits to a/x2Kρ using results
for r > 10 and L = 250, with Kρ from Eq. (15). Here, βt = 2L.
Results obtained in the SSE representation.

from the expected deviations at very small distances, the data
match the form x−2Kρ [Eq. (8)] with Kρ taken from Eq. (15).
Even exactly at the critical point V/t = 2, the numerical
results do not indicate logarithmic corrections on the length
scales considered. For V/t = 2.5, we see long-range order.
Similar to the Holstein models, we have a collapse of results
for different L in the metallic phase [Figs. 12(a)–12(c)], but
not in the insulating phase [Fig. 12(d)].

The charge susceptibility χρ(π ) is shown in Fig. 13(a).
Since Sρ(ξ ) behaves as expected from the bosonization,
the numerical results for χρ(π )/L are consistent with the
discussion in Sec. IV D. For V/t < 2, χρ(π )/L goes to
zero with increasing system size, whereas it diverges for
V/t > 2. The susceptibility can therefore be used to determine
the critical value of the transition even on moderately large
systems. The same conclusion holds for the spinless Holstein
model.

Finally, we turn to the charge order parameter as an
alternative way to track the phase transition. To this end,
we consider the charge correlations at the largest distance
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FIG. 13. (Color online) Finite-size scaling of (a) the charge sus-
ceptibility and (b) the order parameter for the spinless t-V model.
Here, βt = 2L. Results obtained in the SSE representation.

L/2 for different system sizes L, shown in Fig. 13(b). In
the metallic phase, this quantity is expected to be zero in
the thermodynamic limit, and nonzero in the charge-ordered
insulating phase. The data in Fig. 13(b) show that the scaling
of the charge correlations allows to quite accurately determine
the critical value of the phase transition. The same is true for
the extended Hubbard model (not shown), and we therefore
expect this order parameter to be a reliable tool to determine
the transition for electron-phonon models.

B. Attractive Hubbard model

In Sec. IV we identified the existence of a (small) spin gap
in the spinful Holstein model as a significant complication in
finite-size studies. Because the retarded interaction and the
nonintegrability of the Holstein model make further progress
difficult, we turn to the exactly solvable attractive Hubbard
model [Eq. (3) with V = 0].

At half-filling, the attractive Hubbard model is related by
a canonical transformation to the repulsive Hubbard model.
From bosonization/RG studies [55], it is known that its ground
state is metallic for any U < 0 and has a gap for spin excita-
tions. It therefore provides a numerically accessible realization
of the Luther-Emery fixed point. The absence of phonons
permits significantly larger system sizes to be simulated,
and eliminates any uncertainties from the bosonization/RG
treatment related to a phonon energy scale.

The exact relation to the repulsive Hubbard model has
important consequences. The value of Kρ is fixed to 1 for any
U < 0 because Kρ in the attractive model corresponds to Kσ

in the repulsive model [where Kσ = 1 because of SU(2) spin
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FIG. 14. (Color online) (a) Kρ(L) and (b) Kσ (L) = 2πSσ (q1)/q1

for the attractive Hubbard model. Here, βt = 2L. Results obtained in
the SSE representation.

symmetry]. Additionally, Kσ = 0 as a result of the spin gap.
A value Kρ = 1 implies that charge and pairing correlation
functions remain degenerate for any U [cf. Eq. (10)], and their
2kF components are expected to decay as x−1√ln(x) [56,57].

Figure 14(a) shows Kρ(L) from simulations in the SSE
representation on up to L = 370 sites. In agreement with
previous findings [10], Kρ(L) is significantly larger than 1,
and for a given L increases with increasing U , reminiscent
of the increase of Kρ(L) with increasing λ in Fig. 8(a).
The convergence with system size is very slow, making it
challenging to obtain Kρ = 1 from an unbiased extrapolation.
The relation between Kρ of the attractive and Kσ of the
repulsive Hubbard model is reflected in the observation that
Kσ (L) > 1, with a very slow convergence to the value Kσ = 1
implied by symmetry (data not shown). A similarly slow
convergence has also been observed for the repulsive Hubbard
model with open boundaries, where Kσ (L) was determined
from fits to the local density of states [58]. In the attractive case
considered here, Fig. 14(b) shows that Kσ (L) < 1, and that
the numerical data are consistent with Kσ = 0. Similar results
have been obtained before for the Holstein model [6]. Values
Kσ (L) < 1 in numerical simulations are a reliable indicator
for the existence of a spin gap [59].

Given the slow convergence of Kρ(L) for the attractive
Hubbard model, the reliability of estimates of Kρ for the
spinful Holstein model has to be questioned. As mentioned
above, the slow convergence may be attributed to unknown
logarithmic corrections [45–47]. While such corrections arise
in the repulsive Hubbard model from the marginally irrelevant
backscattering term, the umklapp term is marginally relevant
(since Kρ = 1 by symmetry) in the attractive model. Loga-
rithmic corrections are typically absent in spinless models, in
accordance with our findings. The deviations of Kρ(L) from
the expected value Kρ = 1 for a given L are more pronounced
for stronger interactions (larger spin gaps), similar to Ref. [58].
Finally, in a Luther-Emery phase, the factor Cρ in the first term
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FIG. 15. (Color online) Charge and spin correlation functions
for the attractive Hubbard model. In (a)–(d), solid (dashed) lines
illustrate c/x2 (c/x). Here, βt = 2L. Results obtained in the SSE
representation.

in Sρ in Eq. (10) may not be identical to Kρ , and logarithmic
corrections may arise.

Given a certain spin gap as a result of attractive backscat-
tering, we expect to see physics reminiscent of the Tomonaga-
Luttinger fixed point for distances small compared to the
inverse of the spin gap, and Luther-Emery behavior at large
distances. The significantly larger system sizes accessible
for the attractive Hubbard model permit us to illustrate this
fixed-point crossover by comparing the numerical correlation
functions to the Luttinger liquid and Luther-Emery results
given in Eqs. (9) and (10), respectively.

For U/t = −1, the charge correlations shown in Fig. 15(a)
decay with an exponent close to 2 at small distances, as
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FIG. 16. (Color online) Finite-size scaling of the charge suscep-
tibility for the attractive Hubbard model. Here, βt = 2L. Results
obtained in the SSE representation.

expected from Eq. (9) for Kσ = 1, Kρ = 1. With increasing
distance ξ , we observe a crossover of the exponent caused by
Kσ → 0. For U/t = −2, the spin gap is significantly larger,
and the crossover from x−2 to approximately x−1 is visible in
Fig. 15(b). Regardless of the crossover, we observe a collapse
of data for different system sizes over the whole range of
ξ . The spin correlations for U/t = −1, shown in Fig. 15(c),
decay almost as in a gapless system (i.e., as x−2), whereas
for U/t = −2 the results are compatible with an exponential
decay [Fig. 15(d)]. Hence, on length scales smaller than the
inverse spin gap, charge correlations decay faster than in the
thermodynamic limit, whereas spin correlations decay slower.
While such a crossover is also expected for the Holstein model,
the range of numerically accessible system sizes is insufficient
to observe it numerically.

Figure 15(e) shows the charge correlations for U/t = −4,
where the spin gap is large enough to be resolved even on
intermediate system sizes. Also shown is a fit to the prediction
c
√

ln xx−α from the bosonization (solid line) using data for
L = 186 and r � 20. The fit is in satisfactory agreement with
the data; we find an exponent α ≈ 1.03 compatible with Fig. 14
and indicative of possible logarithmic corrections [45–47,58]
in addition to the crossover due to the spin gap.

The crossover in the correlation functions also affects the
scaling of the charge susceptibility. If Sρ(x) decays faster than
x−1, χρ(π )/L → 0 for L → ∞. This is well visible in Fig. 16
for small U/t . For example, for U/t = −1, χρ(π )/L decreases
with increasing L up to L = 1024, well beyond the system
sizes accessible for electron-phonon models. If the decay is
exactly x−1, χρ(π )/L should approach a constant at large L.
However, the logarithmic correction

√
ln x for the attractive

Hubbard model gives rise to a slow divergence of χρ(π )/L
with system size, as visible in Fig. 16 at large L. The different
behavior of χρ(π )/L → 0 for different U/t in Fig. 16 may be
mistaken as evidence for a transition to a CDW-ordered phase,
even though the model remains metallic. Similar deviations
from the expected behavior of χρ(π )/L on finite systems can
be observed for the spinful Holstein model (see Fig. 10).

245132-12



FINITE-SIZE EFFECTS IN LUTHER-EMERY PHASES OF . . . PHYSICAL REVIEW B 92, 245132 (2015)

0.4

0.6

0.8

1.0

1.2

0.00 0.01 0.02 0.03 0.04 0.05 0.06

K
ρ
(L

)

1/L

V/t = 0.0

V/t = 0.1

FIG. 17. (Color online) Kρ(L) for the U -V model. Here, βt =
2L, U/t = −4. Results obtained in the SSE representation.

C. Extended Hubbard model

Whereas the attractive Hubbard model is always a Luther-
Emery metal, we can study the transition to a charge-ordered
insulating phase by adding a repulsive nearest-neighbor
interaction V

∑
i n̂i n̂i+1 [see Eq. (3)]. This extended Hubbard

model captures the existence of a spin gap in the metallic
phase and 2kF CDW order in the insulating phase, similar to
the Holstein model, while excluding retardation effects. The
aforementioned strong-coupling approximation of Ref. [16]
(cf. Sec. IV A) suggests that the low-energy physics of the
Holstein model is described by a model of bosonic pairs that
hop and interact repulsively. Whereas the critical value for the
metal-insulator transition is V = 0 in the electronic model, the
Holstein model supports an extended metallic region.

Figure 17 shows Kρ(L) as a function of 1/L. The results
for V = 0 are identical to those in Fig. 14(a), and extrapolate
to Kρ = 1. In contrast, for V/t = 0.1, corresponding to the
insulating phase with long-range charge order, the results for
Kρ(L) are compatible with Kρ = 0.

In Fig. 18, we show results for χρ(π )/L in the insulating
CDW phase (V/t = 0.1). For U/t = −1, the spin gap is not
resolved in the Luther-Emery phase for V = 0 (see Fig. 16),
which leads to a nonmonotonic finite-size scaling in the
CDW phase at V/t = 0.1. For small L, χρ(π )/L decreases,
whereas for large L the expected divergence becomes visible.

10−3

10−2

10−1

100

101

102

18 30 66 94 186 370

χ
ρ
(π

)/
L

L

U/t = −1.0

U/t = −1.1

U/t = −1.2

U/t = −1.3

U/t = −1.4

U/t = −1.5

U/t = −2.0

U/t = −4.0

FIG. 18. (Color online) Finite-size scaling of the charge suscep-
tibility for the U -V model. Here, βt = 2L, V/t = 0.1. Results
obtained in the SSE representation.

Such nonmonotonic behavior can also be observed for the
Holstein model [see Fig. 10(b) and Ref. [10]]. The minimum
at intermediate L persists for slightly larger |U/t | (but is
shifted to smaller L because the spin gap increases with
increasing |U/t |), whereas for large |U/t | the gap is large
enough to be resolved even for small L. For these parameters
(e.g., U/t = −4), χρ(π )/L is monotonic and exhibits a clear
divergence. Because χρ(π )/L even diverges (logarithmically)
in the metallic phase for V/t = 0 (see Fig. 16), its qualitative
behavior at large L does not permit to distinguish the metallic
from the insulating phase.

VI. DISCUSSION

A. Metallic phase

Numerical results for the correlation functions reveal that in
the spinful Holstein model at half-filling, charge correlations
dominate over pairing correlations down to very small values
of the electron-phonon coupling [6,18]. At the same time, spin
correlations are suppressed relative to charge correlations [6].
For a 1D metallic system, this necessarily implies a gap for spin
excitations [6,39], consistent with the observation of Kσ <

1 [6]. The gap arises from the pairing of electrons into spin
singlets (bipolarons) or, in the language of bosonization, from
attractive backscattering which is a relevant perturbation of the
Tomonaga-Luttinger fixed point.

The spin gap makes the Luther-Emery liquid the relevant
fixed point for a low-energy description of the metallic phase,
and significantly complicates the analysis of numerical data
because a crossover from the Luttinger to the Luther-Emery
fixed point takes place as a function of distance. For distances
smaller than the inverse spin gap, correlation functions
resemble those of a gapless Luttinger liquid, whereas for
large distances the corresponding Luther-Emery results are
approached. Because the spin gap is small in the metallic phase
for typical phonon frequencies, it appears highly nontrivial
to reach the correct low-energy fixed point numerically.
Importantly, the exponents for charge and pairing correlations
are expected to change in the same way when the spin gap
is resolved, leaving the conclusion that the metallic phase is
a repulsive Luther-Emery liquid unchanged. The fixed-point
crossover and the complications in determining the Luttinger
parameters and the phase boundary are absent in the spinless
Holstein and t-V models.

Assuming that the spin gap in the Holstein model is roughly
determined by the corresponding attractive Hubbard interac-
tion U = −4λt , the critical values λc ≈ 0.25 (for ω0/t = 0.5)
and λc ≈ 0.5 (for ω0/t = 5) translate into U/t = −1 and −2,
respectively. Hence, the results for the attractive Hubbard
model in Fig. 15 should be representative of the largest
spin gaps in the metallic phase of the Holstein model for
typical phonon frequencies, and suggest that the Luther-Emery
regime will be hard to reach numerically (e.g., for U/t = −1,
L = 370 sites are not sufficient). If system sizes are too small,
correlation functions will not display the expected behavior.

The numerical finding of Kρ > 1 in the metallic phase has
motivated much of the recent work on the Holstein model.
Initial claims of dominant pairing correlations turned out to
be incorrect, and the system instead exhibits dominant charge
correlations suggestive of Kρ < 1. We have shown that the
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inconsistent values of Kρ cannot be explained by retardation
effects (Kρ deviates even more from 1 for higher phonon
frequencies). Instead, because very similar problems arise in
simulations of the attractive Hubbard model, we attribute the
complications to backscattering and the spin gap.

B. Low-energy theory

While theories of metal-insulator transitions in Luther-
Emery liquids are less controlled than for Luttinger liq-
uids [57], a consistent picture of the spinful Holstein model
is in terms of interacting bipolarons that order into a CDW
state at λc. Such a description was previously suggested for
the extended Hubbard model [55], and also emerges from a
strong-coupling approximation of the Holstein model [16].
For simplicity, we focus the discussion on hard-core bosons,
although bipolarons in the Holstein model can also be
extended.

Adopting the bosonic picture, the bosonization and RG
methods predict metallic behavior (reflected in a vanishing
two-particle electronic charge gap) for K > 1

2 (we drop the
index ρ when referring to the bosonic picture). Similar to
spinless fermions, a metallic phase with dominant charge
correlations and subdominant pairing correlations exists for
1
2 < K < 1. At K = 1

2 , a Mott transition to an insulating CDW
state takes place. Clearly, the bosonic picture provides a strong
connection to the spinless Holstein model, where the Luttinger
liquid to Peierls insulator transition may be understood in terms
of a Mott transition of spinless fermions.

The value of Kρ at the Peierls transition in the spinful
Holstein model is not known from theory (the assumption
of Kρ = 1 in Ref. [12] seems unjustified because there is
no cancellation of interactions at λc). The transition from a
Luther-Emery to a CDW phase was studied for the U -V ex-
tended Hubbard model, where the symmetries for V = 0 imply
that the critical value is Kρ = 1. However, the bosonic low-
energy theory of the Holstein model contains an interaction
between pairs of electrons, and we therefore expect a different
scaling dimension and critical K . Additionally, the role of
quantum lattice fluctuations needs to be addressed. Indeed,
recent functional RG results for the Holstein model [17]
confirm the existence of a finite metallic region.

For numerical investigations of the Holstein model, it
is important to recognize that the system size has to be
sufficiently large to resolve the spin gap in order to allow
for a meaningful comparison with the bosonic picture. The
electronic Luttinger parameter Kρ may in general not have a
simple relation to the K of the bosonic picture. Of particular
interest is a numerical calculation of bosonic pairing and
density correlation functions. The latter would permit to test
the bosonic picture and the corresponding bosonization results
(including the transition at K = 1

2 ) quantitatively.

VII. CONCLUSIONS

We carried out extensive quantum Monte Carlo simulations
to resolve conflicts regarding the existence of a metallic
phase and the value to the Luttinger parameter Kρ in the
one-dimensional spinful Holstein model at half-filling. In
addition, we considered the spinless Holstein model and

minimal fermionic models that capture the charge-density-
wave transition.

First, we showed that the results of Ref. [16] are partly
incorrect (likely due to autocorrelations), and should hence
not be regarded as evidence for the absence of a metallic phase
in the Holstein model, in accordance with recent functional
renormalization group results that predict a nonzero critical
electron-phonon coupling [17].

Our results for the real-space correlation functions in the
metallic phase are consistent with Luttinger liquid physics for
the spinless Holstein model, and Luther-Emery physics for the
spinful Holstein model. In the latter case, spin correlations
are suppressed with respect to charge correlations due to
the existence of a spin gap, although the gap is typically
not fully resolved in numerical simulations. In both models,
charge correlations dominate over pairing correlations, which
suggests predominantly repulsive interactions.

Given a metallic phase at weak coupling, we investigated
in detail how the spin gap manifests itself in finite-size
simulations. By comparing results for the spinful and the
spinless Holstein models, as well as for fermionic models,
we revealed that complications in accurately determining Kρ

appear to be generic for spin-gapped phases, but independent
of retardation effects. As a function of distance, correlation
functions reveal a crossover from Luttinger liquid behavior at
short distances to Luther-Emery behavior at long distances.
A nonzero spin gap also affects the possibility of using the
charge susceptibility to track the Peierls transition, which
may explain existing deviations between phase boundaries
in the literature. Our results and analysis of previous work
suggest that even with state-of-the-art numerical methods, the
paradigmatic spinful Holstein and Holstein-Hubbard models
remain challenging.

Finally, our work motivates further numerical and analytical
investigations. On the numerical side, it would be useful to find
alternative ways to determine the critical value of the Peierls
transition, and to measure bosonic correlation functions to
verify the low-energy description in terms of bipolarons. On
the theoretical side, an improved understanding of the origin
of logarithmic corrections to Kρ and of the Mott transition in
a generic Luther-Emery liquid would be desirable.
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APPENDIX: SCALING OF THE CHARGE
SUSCEPTIBILITY

For Kρ < 1, the dominant contribution to the equal-time
charge correlations in a Luttinger or Luther-Emery liquid has
Q = 2kF, with Q = π for half-filling. Writing the equal-time
2kF charge correlations in the form (−1)r/rα , and exploiting
conformal invariance, we have

〈n̂r (τ )n̂0(0)〉 ∼ (−1)r

(r2 + τ 2)α/2
(A1)
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for the charge correlation function in Eq. (13). The rescaled
charge susceptibility becomes

χρ(π )

L
∼ 1

L

∑
r

∫ β

0

dτ

(r2 + τ 2)α/2
. (A2)

Taking the continuum limit, and regularizing with a short-
distance cutoff a, we obtain

χρ(π )

L
∼ 1

L

∫ L

a

dx

∫ β

a

dτ (x2 + τ 2)−α/2. (A3)

Transforming to polar coordinates (ρ,φ), setting β = L, and
assuming α < 2, we find

χρ(π )

L
∼ 2π

L

∫ L

a

dρ ρ1−α ∼ L1−α

[
1 −

( a

L

)2−α
]
. (A4)

Finally, taking the limit a → 0, we obtain

χρ(π )

L
∼ L1−α. (A5)
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