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We theoretically investigate the transport and magnetotransport properties of three-dimensional Weyl
semimetals. Using the random phase approximation–Boltzmann transport scattering theory for electrons
scattering off randomly distributed charged impurities, together with an effective medium theory to average
over the resulting spatially inhomogeneous carrier density, we smoothly connect our results for the minimum
conductivity near the Weyl point with known results for the conductivity at high carrier density. In the presence
of a nonquantizing magnetic field, we predict that for both high and low carrier densities, Weyl semimetals show
a transition from quadratic magnetoresistance (MR) at low magnetic fields to linear MR at high magnetic fields,
and that the magnitude of the MR � 10 for realistic parameters. Our results are in quantitative agreement with
recent unexpected experimental observations on the mixed-chalcogenide compound TlBiSSe.
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I. INTRODUCTION

Electronic band structures that have protected gapless
points—where the conductance and valence bands are guar-
anteed to meet—have been of significant theoretical and
experimental interest in recent years. The two-dimensional
manifestation of such band structures has been extensively
studied in graphene [1], where the gapless nature is protected
by sublattice symmetry [2], and in 3D topological insulators
[3], where the crossing point is protected by topology
[4,5]. More recently, attention has been focused on the
three-dimensional analogs of these compounds, called Weyl
semimetals [6–8]. Compounds such as Cd3As2 [9–11], TaAs
[12], and TlBiSSe [13,14] have been shown to have Weyl
points in their band structure (see Ref. [15] for a recent review
on the various candidate materials for semimetals with 3D
relativistic electronic dispersions).

Theoretical efforts toward characterizing the electronic
properties of Weyl semimetals are in the nascent stage and in-
clude the scattering properties of different impurity potentials
[16], localization and delocalization [17,18], thermoelectric
properties [19], screening [20,21] and temperature dependence
[22], the influence of the chiral anomaly [23], diffusive
transport [24], and the effects of electron-electron interactions
[25]. Inspired by unexpected observations in recent transport
[11,26] and scanning probe [27] experiments, we study
theoretically the transport and magnetotransport properties of
3D Weyl semimetals in the presence of randomly distributed
Coulomb impurities. The effect of the charged impurities is
twofold: they provide a momentum relaxation mechanism
and they act as dopants for the local carrier density. At low
carrier density, the former mechanism introduces macroscopic
inhomogeneities in the carrier density profile, giving rise to
positively or negatively charged puddles.

In this work we use a random phase approximation (RPA)
method to evaluate the effective screened potential of the
Coulomb impurity that enters various disorder-averaged quan-
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tities. We show that the RPA is a much better approximation of
the commonly used Thomas-Fermi approximation due to the
nature of the vacuum screening structure of Dirac materials.
In the homogeneous regime (far from the Weyl point in
momentum space), weak impurity scattering is considered
at the Born level to obtain the Drude conductivity. In the
inhomogeneous regime (close to the Weyl point in momentum
space), we find that it is important to consider structure in the
disorder distribution when performing the disorder average.
We then use an effective medium theory (EMT) to average
over the inhomogeneous carrier density distribution. This
formalism has been remarkably successful in providing a
quantitative understanding of the transport properties close
to the Dirac point in graphene [1], the 2D cousin of these Weyl
semimetals. Our results allow us to make both quantitative
and qualitative comparisons with experiment and yield many
qualitative insights into the behavior of Weyl semimetals under
various experimental conditions.

This paper is organized as follows: In Sec. II, we discuss
the Drude conductivity using both the Thomas-Fermi and RPA
screening approximations, far away from the Weyl point, and
also discuss why the RPA is required (unlike in the case of
graphene). In Sec. III, we discuss the effects of impurity
correlations and induced charge carriers, which play a role
near the Weyl point. Finally, we look at experimental results
from Ref. [26] and compare them with our theoretical models
in Sec. IV. The experimental transport data are found to
be consistent with two possible theoretical regimes and we
note in Sec. V that magnetotransport provides a simple and
experimentally accessible mechanism to distinguish between
the two possibilities.

II. TRANSPORT AT HIGH CARRIER DENSITY

The Hamiltonian for a Weyl semimetal is given by

H = ± � ı vF σ · ∂r − ξ + V (r),
(1)

V (r) =
Nimp∑
j=1

U (r − Rj),
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where σ is a vector of Pauli matrices, ξ is the chemical
potential, vF is the Fermi velocity, and ± accounts for the
two chiralities. The density of states is ν(E) = g|E|2/2π2v3

F,
where g is the the degeneracy (here g = 4 due to spin and
the presence of two cones). In Eq. (1), U (r − Rj) is the total
screened potential seen by an electron at position r due to
charged impurities at positions Rj . In this work, we consider
Coulomb impurities with momentum space screened potential

U (q) = 4πe2

ε(q)q2
, (2)

where e is the electronic charge and ε(q) is the dielectric
function. Here k and k′ are the incoming and outgoing
momenta of the scattered electron and q = k − k′ is the
transferred momentum. Note that the Coulomb potential
suppresses large momentum scattering connecting the two
Weyl cones. For this reason, in the following we will work with
one cone and consider the contribution of the second one in
the degeneracy factor. For a given concentration of impurities,
nimp, the ensemble-averaged transport scattering time within
the Born approximation is given by

�

τtr

= 2π nimp

∫
d3k′

(2π )3
U (|k − k′|)2 1 − cos2 θ

2
δ(Ek − Ek′ ).

(3)
To make connection with existing results in the literature
[22,28] we first consider the simpler case of evaluating Eq. (3)
in the Thomas-Fermi (TF) approximation, where the scattering
potential can be taken as U (q) = 4πe2/[κ(q2 + q2

s )] with a
transferred momentum, q = |k − k′|. Here κ is the dielectric
constant of the material and qs =

√
4πe2ν(EF)/κ is the

inverse of the Thomas-Fermi screening length. Introducing the
effective fine structure constant α = e2/�vFκ (where α = 0.07
for Cd3As2 and α = 0.68 for TlBiSSe), we have [22,29]

σTF = e2v2
Fτ

3
ν(EF) = e2

h

g

12π2

k4
F

nimp α2

1

H
(√

gα

2π

) , (4)

where H (z) = (z2 + 1/2) ln(1 + z−2) − 1. In both nonchiral
two-dimensional electron gases and graphene, the accidental
coincidence at zero temperature of the polarization function
for q � 2kF and the density of states implies that the Thomas-
Fermi approximation gives identical results to the RPA. How-
ever, we should emphasize that this is no longer true at finite
temperature or in other materials such as bilayer graphene [1].
As we discuss below, for Weyl semimetals the Thomas-Fermi
and RPA give qualitatively different results, and in what
follows, we use the more correct RPA approximation with
qs(q) = [ e2

κ
D(E) �̃(q/2kF)]1/2. Here, �̃(x) is the ratio of the

RPA polarization function and the density of states, and is
given by the sum of two components: a vacuum part �̃V (x)
and a finite density part �̃M (x) [20]:

�̃M = 2

3

[
1 + 1

4x
(1 − 3x2) ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ − x2

2
ln

∣∣∣∣1 − x2

x2

∣∣∣∣
]
,

�̃V = 2x2

3
ln

∣∣∣∣ δx
∣∣∣∣. (5)

We remark that the Thomas-Fermi calculation is merely the
linearized result of the RPA which is valid for q � kF [30].

FIG. 1. (Color online) Conductivity as a function of carrier
density. RPA-Drude theory (Ref. [22], blue curve), self-consistent
Thomas-Fermi (Ref. [28], green curve), and the EMT approach
(assuming uncorrelated impurities in both regimes) discussed in the
main text (red curve). The EMT predicts a minimum conductivity
close to the Weyl point and reproduces the Drude one σ ∼ n4/3/nimp

far away from the Weyl point. In order to compare with the results of
Ref. [22], we follow their parameters for this figure and use α = 1.2,
g = 2, nimp = 1024 m−3, and �̃V = 0. Inset: Close-up of the Weyl
point.

Since we consider transport both near and away from the Weyl
point, the TF approximation is insufficient. Moreover, the TF
approximation neglects the vacuum term of the polarization
function, which in our case is the dominant term for q � kF .
As seen in Fig. 1, the large quantitative difference between
the two approximations implies that one must perform the
full numerical RPA calculation for accurate comparison with
experiments. Finally, we would like to remark that unlike
the case of one and two dimensions, for Weyl fermions
in d = 3 the vacuum polarization function is divergent and
needs an ultraviolet momentum cutoff , where in Eq. (5),
δ = /2kF. In principle, the transport coefficients calculated
within the RPA approximation could depend on the choice of
the cutoff [31], although in practice we have verified that such
dependence is weak for a realistic parameter range. Our results
for the high-density transport in the absence of a magnetic field
are shown in Fig. 1. We find that far away from the Weyl point,
σ ∼ n4/3/nimp, where n is the carrier density. In Fig. 1, we
show that this result is in agreement with calculations recently
reported in Ref. [22] for the homogeneous regime.

III. TRANSPORT AT LOW CARRIER DENSITY

A. Correlations in impurity positions

In the regime near the Weyl point, we consider two different
effects. First, the conductivity may be modified from the
homogeneous case due to the presence of correlations in the
impurity positions. In order to understand the origin of these
correlations, one notes that the effective “size” of the impurity
potential is approximately r0 � λ � n−1/3, where λ is the
screening length. This should be compared with the average
distance between the impurities, given by L � n

−1/3
imp . At high

carrier density, screening is more effective and the screening
length is smaller, corresponding to r0 � L (or n � nimp).
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In this regime, impurities are well separated and can be
essentially considered as pointlike, meaning that disorder is
completely random. In the inhomogeneous regime however,
we find that the electron density is comparable to the impurity
density and therefore r0 ∼ L. In this case, disorder cannot
be considered as completely structureless and correlations
between impurity positions need to be included [32,33].
Since the pair correlation function g(Ri ,Rj ) �= g(Ri)g(Rj ),
the self-energy term proportional to n2

imp cannot simply be
renormalized away. Finally, assuming that the impurities
are homogeneously and isotropically distributed, the pair
correlation function reduces to the radial correlation function
g(R). The effect of correlations can be taken into account by
the modified correlator of the Gaussian random fields (see
Appendix A)

〈V (r)V (r′)〉d = nimp

∫
d3q eıq(r−r′) U 2(q) S(q),

S(q) = 1 + nimp

∫
d3R {g(R) − 1} e−ı R·q, (6)

where 〈· · · 〉d stands for disorder average and we have
introduced the structure factor S(q). Following Ref. [33], we
take the radial distribution function as

g(R) =
{

0 R < r0,

1 R > r0.
(7)

When computing transport properties, the effect of Eq. (6) is
to replace U 2(q) → U 2(q) S(q) in Eq. (3).

B. Effective medium theory

The second effect that one must take into account in
the inhomogeneous regime is that nonuniformly distributed
impurities result in a spatially varying local chemical po-
tential, which induces a position-dependent carrier density.
The induced carriers in turn screen the local potential and
one eventually obtains a self-consistent relationship between
the local induced carrier density and the disorder-averaged
impurity potential, V (r,n(r)) = �vF [6π2n(r)/g]1/3. Note that
if we are far away from the Weyl point, the fluctuations in
carrier density are negligible compared to the total number of
carriers but close to the Weyl point this is not the case. The
average induced carrier density corresponds to the average
value of the random Gaussian field, V0 = 〈V (r)〉d . The net
effect of charge doping is the appearance of macroscopic
regions of charge puddles, each having an excess or a deficit
of charge with respect to the average value. Therefore, one
performs an averaging over these spatial fluctuations in carrier
density using an effective medium theory (EMT). The EMT
is a well established technique developed by Bruggerman [34]
and later by Landauer [35] in order to characterize the effects of
macroscopic fluctuations on the global conductivity. In order to
perform the average, one considers each macroscopic region of
definite local conductivity to be embedded in a homogeneous
effective medium, whose conductivity is determined in a
self-consistent way over all the regions. Early EMT models
assumed two types of regions with conductivities σA and
σB occupying area fractions p and 1 − p. This model was
later generalized in the case of 2D materials to continuous
distributions of local, tensor conductivities [36,37]. Here we

FIG. 2. (Color online) Comparison of n∗/nimp obtained using
RPA and Thomas-Fermi approximations. The error introduced by
using the Thomas-Fermi screening to calculate the effective minimum
carrier density, n∗, increases with an increase in the effective fine
structure constant α. We note that for materials such as Cd3As2, this
is a relatively small error but this is not the case for TlBiSSe. Here
we use cutoff δ = 10.

generalize the results of Ref. [37] to the continuous three-
dimensional case and obtain

∫
DV P [V,V0,Vrms]

σ̂ (V ) − σ̂ E

Î3 + Î3
3σ̂ E

xx
[σ̂ (V ) − σ̂ E]

= 0, (8)

σ̂ =
(

σxx σxy

−σxy σxx

)
, σ̂ E =

(
σE

xx σE
xy

−σE
xy σE

xx,

)
, (9)

where DV is a functional measure, σ̂ is the local conductivity,
and σ̂ E is the effective medium conductivity to be found self-
consistently. In obtaining Eq. (8) we have assumed an isotropic
material, i.e., σE

xx = σE
yy = σE

zz , and that the local conductivity
regions are spherical in shape [37]. This assumption is valid in
the case of puddles that are small compared to the sample size.
The probability distribution in Eq. (8), P [V,V0,Vrms], is the
same one that has been used to evaluate the Drude transport
time. Therefore, it is characterized by the average and the
variance of the disorder distribution (see Appendix B). Finally,
we define the carrier density associated with the variance Vrms

to be n∗ which is the effective minimum carrier density in
a Weyl semimetal. In Fig. 2, we show that only for α � 1
does the n∗ calculated within the RPA reduce to that of the
Thomas-Fermi. In general, as in the case of transport, the full
RPA polarizability function must be used.

C. Crossover between homogeneous and
inhomogeneous regimes

In Fig. 1, we show the conductivity at zero magnetic field
as a function of carrier density. We find that for large carrier
density, our results reproduce those of Ref. [22] but at zero
carrier density, and in the inhomogeneous regime, our results
differ from both the conductivity calculated in Refs. [22,28].
This is a consequence of using the EMT which provides a
smooth crossover between the two regimes instead of a hard
floor as done in Ref. [28]. Note that Ref. [22] ignores the
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effect of inhomogeneity altogether. The transport theory for
Weyl fermions shown in Fig. 1 represents the full crossover
from the inhomogeneous regime (close to the Weyl) point to
the homogeneous regime (far away from the Weyl point).

IV. COMPARISON WITH EXPERIMENTS

Next, we apply our theory to address recent experimen-
tal findings on TlBiSSe (g = 4,α = 0.68). Reference [26]
describe their results of a large increase in mobility with
decreasing carrier density as surprising. In order to make
connection with the experimental data, one identifies the
experimental mobility μexp and carrier density nexp from
experimentally determined parameters [38]:

μexp = lim
B→0

σxy(B)

Bσxx(B)
, nexp = σxx(B = 0)

μexpe
. (10)

The implicit assumption made here is that the impurity
concentration does not change with the sample. Indeed, for
fixed nimp, Fig. 1 shows that mobility increases with increasing
carrier density. This is represented in Fig. 3 as the blue curve
which shows the opposite trend to the experiment. We propose
two possible scenarios that allow us to relax the constant nimp

in a physically justifiable way (and as we discuss below, it is
not possible to determine from these data alone which of these
two scenarios correspond to the experimental situation).

In the first case, we consider the experiment to be
in the homogeneous regime with charged impurities also
acting as dopants that shift the chemical potential [29].
The average induced carrier density is then given by V0 =
�vF (6π2n0/g)1/3 = nimpU (q = 0,n∗), from which we obtain
n0 = 4nimp in the density regime of interest. The green curve

FIG. 3. (Color online) Comparison with the experimental data
of Ref. [26]. The experimentally determined mobility of TlBiSSe,
μexp, decreases as a function of the measured carrier density nexp,
whereas the Drude theory with constant nimp (blue curve) would
predict the opposite trend. In the main text, we propose two possible
scenarios compatible with this behavior. The red curve assumes that
the experiments are in the inhomogeneous regime with nexp � nrms

with correlated charged impurities. Alternatively, the green curve
assumes that the experiments are in the homogeneous regime nexp �
nrms, with the charged impurities also responsible for doping. Here
nexp = n0 ≈ 4nimp, α = 0.68, and δ = 10.

in Fig. 3 uses nexp = n0 = 4nimp and shows good agreement
with the experimental data. Therefore, a plausible resolution
of this experimental “mystery” is that the charged impurities
that are responsible for scattering carriers are also responsible
for doping the samples.

A second possibility is that the samples are in the inhomoge-
neous regime where n0 � nrms. In this regime, one equates the
fluctuations in the impurity potential Vrms with the band energy
to obtain an effective minimum carrier density n∗. The red
curve in Fig. 3 considers samples with disorder (nimp varying
from 6.1 × 1023 m−3 to around 1.9 × 1027 m−3). Using the
EMT equations (8) and the definition of nexp (10), we see good
agreement with the experimental data. Note that here we
must consider impurity position correlations and take the
correlation length r0 � L ∼ n

−1/3
imp as discussed earlier. Both

the homogeneous and inhomogeneous scenarios are generally
consistent with the scaling law, μexp ∼ n

−2/3
exp . This scaling

is a consequence of σ ∼ n4/3/nimp and n ∼ nimp. Note that
this also presents convincing evidence for using Coulomb
impurities as opposed to neutral or pointlike impurities
since the conductivity scales differently with n for the latter
[22]. We remark that our analysis is completely free of fit
parameters and the both the homogeneous and inhomogeneous
theories are in quantitative agreement with the data (the
inhomogeneous curve agrees with the data to within a factor of
4). This also demonstrates that transport measurements alone
cannot distinguish between the two regimes since both show
comparable mobilities (same order of magnitude). We propose
that magnetoresistance is the appropriate measurement to
distinguish between the two regimes.

V. MAGNETORESISTANCE

To calculate the magnetotransport of Weyl semimetals,
we assume that the charge and the axial current are weakly
coupled, since Coulomb impurities suppress the scattering
between the two Weyl nodes [39]. Indeed, the results of Ref.
[26] show no negative magnetoresistance or any effect of
an in plane magnetic field, both of which are signatures of
the chiral anomaly [40,41]. Moreover, we note that in the
absence of parallel electric and magnetic fields, the effects of
the chiral anomaly are absent. Thus, the origin of transverse
magnetoresistance in this system is likely due to being disorder
induced, which can be treated in a semiclassical regime. We
then assume that one can define a conductivity matrix with

σxx = σB(r)
1

1 + μ2B2
, σxy = σB(r)

μB

1 + μ2B2
, (11)

where σB(r) = σ (n(r)) is the RPA-Boltzmann conductivity
discussed earlier and the magnetic field is taken along the
z axis. The above set of equations constitute the input
for the EMT model. The solution of the EMT equations
contains both the magnetoresistance caused by having two
types of carriers (electrons and holes) [42] and the disorder-
induced magnetoresistance discussed in the context of silver
chalcogenides [37,43] and other two-dimensional systems
[44], where MR ≡ [ρxx(B) − ρxx(B = 0)]/ρxx(B = 0).

A simple physical picture for this disorder-induced MR was
proposed in Ref. [44] and this still holds in Weyl semimetals.
Essentially, disorder results in a situation where the charge
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FIG. 4. (Color online) Magnetoresistance in TlBiSSe. Disor-
dered 3D Weyl fermions can have large MR > 10 for realistic
experimental parameters. The figure shows that both in the homo-
geneous and in the inhomogeneous regime, the magnetoresistance
is quadratic at low fields (see inset) and linear at high fields in
agreement with experimental observations. Notice that the MR in the
inhomogeneous regime is much larger than that of the homogeneous
regime, suggesting that increasing disorder is an easy way to enhance
the MR.

carriers move with varying drift velocities in various regions.
The global Hall field thus cannot cancel the velocity dependent
Lorentz force (as would be the case in a homogeneous system)
and the electron trajectories become longer as the magnetic
field is increased. This is the origin of disorder-induced
magnetoresistance.

For Weyl semimetals in general, our theory predicts that
the MR should be quadratic at low magnetic fields and
linear at high magnetic fields. In Fig. 4 we show our results
for n0 = 3.8 × 1023 m−3 and nimp = 9.5 × 1022 m−3 (homo-
geneous regime), and for n0 → 0, nimp = 2.3 × 1024 m−3

(inhomogeneous regime). These values were chosen so that
they correspond to similar μexp and nexp and therefore they
cannot be distinguished from transport measurements alone.
The results in Fig. 4 demonstrate convincingly that within the
semiclassical theory presented here, the magnetoresistance in
the inhomogeneous regime is much larger than that of the
homogeneous regime. We also note that in the inhomogeneous
regime MR is comparable to that seen by Ref. [26] for
matching parameters, suggesting that those samples were
in the inhomogeneous regime. Within this model, having
MR > 10 is easily achievable in the inhomogeneous regime
for moderate values of B, but it is several orders of magnitude
weaker in the homogeneous regime. This suggests a clear
way to experimentally distinguish between these two regimes.
Moreover, an easy way to increase MR for technological
applications is to make the sample dirtier, a counterintuitive,
yet easily achievable, experimental goal.
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APPENDIX A: CORRELATED IMPURITIES

Here we consider the effect of spatial correlations between
impurities in the inhomogeneous regime. This problem has
been considered before in Refs. [33,45], but its relation
to diagrammatic perturbation theory is now made explicit.
Disorder-averaged Green’s functions are defined in terms of
their self-energy. At the Gaussian level, the disorder-averaged
self-energy is defined in terms of the diagrams depicted in
Fig. 5. Disorder averaging is generally defined in terms of a
weighted sum over impurity positions of a disorder-dependent
quantity O(Ri) [46]:

〈O(r)〉 =
∫ Nimp∏

i=1

dRi g(Ri) O(r,Ri), (A1)

〈O(r) O(r′)〉 =
∫ Nimp∏

i=1

dRi

Nimp∏
j=1

dRj g(Ri ,Rj )

× O(r,Ri) O(r′,Rj ) · · · . (A2)

Here 〈· · · 〉 stands for disorder average, Ri is the position of
the impurities in a d-dimensional volume Ld , Nimp is the total
number of impurities in the system, and the indices i,j,l, . . .

label different impurities. The important objects in the above
definitions are the correlation functions g(Ri ,Rj , . . . ,Rz),
describing correlations between one impurity, two impurities,
and so on [32]. As usual, the hierarchy of correlation functions
cannot be worked out explicitly and one has to perform some
physically motivated ansatz in order to truncate the hierarchy.
For completely random disorder, all correlation functions
factorize as product of single-particle correlations g(Ri) [46].
These are simply equal to the probability of finding an impurity
at site i, i.e., 1/Ld . The pair correlation function g(Ri ,Rj )
gives the probability of finding an impurity at site Ri given
one at site Rj . Let us consider the total disorder potential V (r)
defined in Eq. (1):

V (r) =
Nimp∑
i=1

U (r − Ri). (A3)

In the weak-scattering limit (Born limit), only the first two mo-
ments of the distribution of V (r) are relevant, corresponding to
the diagrams of Fig. 5. Performing the impurity average, one
obtains three diagrams: two proportional to Nimp and one to
N2

imp. For completely random disorder, the term proportional
to N2

imp is a constant that can be renormalized away. However,
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as we are now going to show, if there is any residual structure
in the disorder, the N2

imp term cannot be renormalized away.
For completeness, we start considering the standard single-

impurity diagram; in momentum space it reads

Nimp∑
i=1

〈U (k − k′)e−ı Ri (k−k′)〉 = nimp U (0) δ(k − k′), (A4)

where nimp = Nimp/L
d is the density of impurities and U (0) is

the impurity potential evaluated at zero transferred momentum
q. Note that in principle this term is singular and needs to be
regularized, for example by screening. Here we will assume
that the impurity potential is screened and therefore consider
U (0) as a finite quantity. Consider now the second-order term

Nimp∑
i,j=1

1

Ld

∑
k′

〈U (k − k′) e−ı Ri (k−k′) G0(k′,E)

× U (k′ − k′′) e−ı Rj (k′−k′′)〉, (A5)

where G0(k′,E) is the free electron propagator. Taking the
disorder average, there are two contributions: for i = j one
finds

Nimp∑
i=1

〈e−ı Ri (k−k′) e−ı Rj (k′−k′′)〉 = nimp δ(k − k′′), (A6)

corresponding to the rainbow diagram shown in Fig. 5. For i �=
j , we need to make some assumptions on the pair correlation
function. We assume that it still depends only on the coordinate
difference Ri − Rj [32]. As a consequence, momentum is
conserved on average, i.e., k = k′′. We also assume that the
pair correlation function does not depend on the angle between
Ri and Rj . Within these assumptions, Eq. (A5) reads

1

Ld

∑
k′

G0(k′,E) U 2(|k − k′|) nimp

×
{

1 + nimp

∫
ddR g(R)e−ı R(k−k′)

}
, (A7)

where the first term in the curly brackets corresponds to the
Born term (single-particle scattering) and the second takes
into account the effect of two-particle scattering. Note that the
second term is singular at k = k′ [32]; to take care of this
singularity, one subtracts it as the Fourier transform of unity
and we can define the regularized structure factor as

S(|k − k′|) = 1 + nimp

∫
ddR [g(R) − 1] e−ı R(k−k′). (A8)

This has been obtained in Refs. [33,45] and the structure factor
can be measured, e.g., in neutron diffraction experiments.
Next, we consider the case where the term proportional to
n2

imp is important. For the charge carriers, the “size” of the
charged impurity is roughly given by the effective Bohr radius
a0 of its lowest impurity level; this can be orders of magnitude
larger [47] than the underlying lattice constant [32]. If one
compares the average spacing L between the impurities and
a0, one comes at the conclusion that correlation effects are
important if L < a0. Note that the ratio L/a0 is reminiscent of
the parameter rs used to quantify correlations in an electron

gas. We conclude by connecting the above analysis to the
relaxation time τ . By definition 1/τ (k) = Im �(k), where

Im �(k) = nimp

Ld

∑
k′

U 2(|k − k′|) S(|k − k′|) ImG0(k′,E).

(A9)
It follows that the variance of the random Gaussian field V (x)
can be written as

〈V (r)V (r′)〉d = nimp

∫
d3qeıq(r−r′)U 2(q)S(q), (A10)

which is our Eq. (6) of the main text.

APPENDIX B: ON THE GAUSSIAN APPROXIMATION

Here we consider the form of the disorder probability distri-
bution used in Eq. (8) of the main text. As explained in the main
text, within the Drude transport theory, this function is the same
as the one used to evaluate the transport time. Here we provide
an explicit proof of the validity of the Gaussian approximation.
This discussion is mostly based on Ref. [48] and is based on
the functional approach to disordered systems. This method is
completely equivalent to the “sum over impurities” approach
used in diagrammatic perturbation theory. In the functional
approach, one is interested in evaluating the disorder-averaged
generating functional

〈ln Z[V ]〉d =
∫

DV P [V ] ln Z[V ], (B1)

where DV is a functional measure. Here we are not interested
in the actual calculation of this quantity, but only in finding
P [V ]. Generally, ln Z[V ] can be substituted with an effective
functional of V as in the case of the effective medium theory
(EMT) employed in the main text. Let us consider the total
disorder potential of Eq. (A3), where the potential U is due to
the Nimp impurity potentials and V (r) is the resulting effective
potential. In order to find P [V ], one needs to interpret the
above definition as a constraint. In the functional formalism
this is accomplished by means of a functional Dirac delta
function averaged over impurity positions

P [V ] =
∏

r

˝
δ

⎡
⎣V (r) −

Nimp∑
i=1

U (r − Ri)

⎤
⎦
˛

=
∫

Dξ
〈
eı

∫
d3rξ (r)[V (r)−∑Nimp

i=1 U (r−Ri )]
〉
, (B2)

where we have used the functional representation of the Dirac
delta function and ξ (r) is a Lagrange multiplier field. The
first step in the evaluation of P [V ] consists of assessing the
correlated nature of the impurities. According to Ref. [46],
and as explained in the main text, if the distance between the
impurities is much larger than the screening length, then the
positions of the impurities are uncorrelated. On the other hand,
if the screening length of the Coulomb potential is comparable
to the average distance between the impurities, then there may
be correlations in the positions of the impurities themselves
(see Appendix A). Here we consider for simplicity the case of
completely uncorrelated disorder and comment on the effect of
correlations at the end. In the thermodynamic limit one obtains
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[48]

P [V ] =
∫

Dξei
∫

d3rξ (r) V (r) exp

×
{
−nimp

∫
d3R

(
1 − e−ı

∫
d3r ξ (r)U (r−R)

)}

=
∫

Dξ ei
∫

d3r ξ (r) V (r) e�(ξ ), (B3)

where in the second step we have identified the cumulant
function of the stochastic process �(ξ ) and the related
characteristic function χ (ξ ) = e�(ξ ). We now follow Ref. [49]
(where more details can be found) and assess the Gaussian

nature of the characteristic function using the central limit
theorem. One needs to expand the cumulant function and
show that the magnitude of the second cumulant is the
dominant one. This is basically the well known Born criterion;
cf. Ref. [46]. For screened Coulomb disorder, and for the
considered values of the electromagnetic coupling α, the Born
criterion is satisfied for carrier density n � n∗; see Sec. III B.
Finally, integrating out the Lagrange multiplier field, one finds
the Gaussian distribution of the random fields used in the
main text. When n � n∗, the screening length of the Coulomb
potential is comparable to the average distance between the
impurities and one needs to use the modified propagator of the
random fields, Eq. (A10).
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