
PHYSICAL REVIEW B 92, 245119 (2015)

Fractional Chern insulator phase at the transition between checkerboard and Lieb lattices
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The stability of the ν = 1/3 fractional Chern insulator (FCI) phase is analyzed on the example of a checkerboard
lattice undergoing a transition into a Lieb lattice. The transition is performed by the addition of a second sublattice,
whose coupling to the checkerboard sites is controlled by sublattice staggered potential. We investigate the
influence of these sites on the many-body energy gap between three lowest energy states and the fourth state.
We consider cases with different complex phases acquired in hopping and a model with a flattened topologically
nontrivial band. We find that an interaction with the additional sites either open the single-particle gap or enlarge
the existing one, which translates into similar effect on the many-particle gap. By looking at Berry curvature
flatness we notice its strong correlation with the magnitude of the many-body energy gap, suggesting that the main
mechanism of the FCI stabilization by additional atoms is via their influence on the Berry curvature. Evidence
of the FCI phase for a region in a parameter space with larger energy gap is shown by looking at momenta of the
threefold degenerate ground state, spectral flow, and quasihole excitation spectrum.
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Recent work on fractional Chern insulators (FCIs) as a
lattice version of fractional quantum Hall effect (FQHE) [1,2]
without a need of Landau levels has attracted significant
attention [3–12]. Those are many-particle extensions of Chern
insulators [13]—systems which exhibit integer quantum Hall
effect without magnetic field and were recently realized ex-
perimentally [14,15]. FCIs are particularly interesting because
they can mimic Landau level physics and may provide a more
convenient way of conducting experiments on FQHE, as they
can exist in higher temperatures and would not need high
magnetic fields [4]. FCIs can also depart from Landau level
physics, which happens, e.g., for bands with Chern numbers
higher than 1, where new forms of FCI states can arise [16–19].

Experimental realizations of the FCI phase were proposed
in different systems including cold atoms [20] or molecules in
optical lattices [21,22], graphene [23–25], arrays of quantum
wires [26], transition-metal oxide heterostructures [27,28], or
strongly correlated electrons in layered oxides [29–31].

Initially, it was proposed that FCIs should exist on topo-
logically nontrivial flat band models [3,4,18,32–34]. Several
lattice models with quasiflat topologically nontrivial bands
have been shown numerically to exhibit the FCI phase,
including checkerboard [5–8,35], honeycomb [6,36], square
[36], triangular [29], and kagome lattices [36]. Numerical
evidence for analogs of a number of FQHE states, including
Laughlin 1/m [5], composite fermion hierarchy [9,37], and
non-Abelian Moore-Read and Read-Rezayi states [36,38,39]
was found. For bands with higher Chern numbers, states with
no direct analog in FQHE were found, some of which exhibited
non-Abelian statistics [16,17,19].

To prove the existence of FCIs in torus geometry for
filling p/q one should show q quasidegenerate ground states
[40–42], which flow into each other and do not intersect
with higher states when one flux quantum is inserted through
a handle of the torus [42–44], and obey the momentum
counting rules [38,41]. These rules need to be satisfied also
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for quasihole excitations [8,36]. Alternative methods of
proving FCI existence include many-body Chern number
[5,42,44] and entanglement spectrum [8,45–47].

There are several criteria which allow one to find systems
which can host the FCI phase. First, the flatness ratio (a ratio
of magnitude of band dispersion to the energy gap) needs
to be low, to maximize the effect of interaction. However,
this criterion has proven ambiguous, as the single-particle
dispersion can stabilize the FCI phase [9,29,48–50], and
interactions far exceeding band gap do not always lead to
the destruction of FCIs [51]. Secondly, in the limit of long
wavelength and uniform Berry curvature, the projected density
operator algebra resembles the Girvin-MacDonald-Platzman
algebra [52] for a Landau level. In consequence an energy band
needs to have nearly-flat Berry curvature to host the FCI phase
[36,53]. Also, a third criterion, based on the Fubini-Study
metric was proposed recently [54–56]. However, clear
conditions for FCI existence are not perfectly understood.

In this work, we want to investigate how the stability of
FCIs on a given lattice is affected by introducing an interaction
with extra lattice sites. We consider a checkerboard lattice
which transforms into a Lieb lattice [57–61] when a second
sublattice is introduced into the system, controlled by on-site
staggered potential. We investigate the transition between two
lattices in the context of the FCI phase for spinless particles
for 1/3 filling. For finite-size systems in a torus geometry,
we analyze the influence of the interaction between the two
sublattices on the many-body energy gap between three lowest
energy states and the fourth state. For a specific choice of
parameters corresponding to an area of larger energy gap,
we search for signatures of 1/3 Laughlin-like phase. Three
lowest energy states (a threefold ground state manifold) are
analyzed with respect to (i) their momenta, (ii) the energy gap
to excited states for different system sizes, and (iii) spectral
flow. Also, the quasihole spectrum and its momentum counting
is investigated. Our results suggest the existence of the FCI
phase with a stability supported by the interaction with extra
lattice sites. The main mechanism responsible for this is
the influence of extra sites on Berry curvature. The paper
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FIG. 1. (Color online) (a) Structure of Lieb lattice. Red and blue
atoms belong to sublattices A and B, respectively. Solid black
lines denote real nearest-neighbor hoppings; arrows denote complex
second-neighbor hoppings. Other solid lines denote further-neighbor
hoppings used to flatten the middle band. t2 hopping connects the
second-nearest neighbors within the B sublattice, if an A atom is
between them. Otherwise, the hopping is −t2. t3 hoppings connect
third-nearest neighbors within the B sublattice. Gray ellipses denote
interaction parameters. (b) Topological phase transition in the Lieb
lattice.

is organized as follows: in Section I we describe the lattice
model, Sec. II contains a single-particle analysis, in Sec. III
many-body effects are investigated, and in Sec. IV we conclude
our results.

I. MODEL

A face centered two-dimensional square lattice called a
Lieb lattice is considered, shown in Fig. 1(a). The lattice can be
divided into two sublattices A and B, distinguished in Fig. 1(a)
by red and blue colors. We use tight-binding Hamiltonian

H = t
∑

〈i,j 〉
c
†
i cj + λ

∑

〈〈i,j 〉〉
eiφij c

†
i cj

+ Vst

∑

i∈A

c
†
i ci − Vst

∑

i∈B

c
†
i ci , (1)

where in the first term 〈 〉 denotes summation over nearest
neighbors with the hopping integral t , the second term is a next-
nearest-neighbor term denoted by 〈〈 〉〉 with hopping amplitude
λ and an accumulated extra complex phase φij = ±φ when
going clockwise and counterclockwise, respectively, and Vst

is a staggered sublattice potential. We note that for φ = π/2
the second term corresponds to Kane-Mele spin-orbit coupling
[62], and φ = π/4 was considered for a checkerboard lattice
in Refs. [3,5]. In the latter case, extra hoppings were added to
open the gap and flatten one of the bands; they are shown as

t2 and t3 in Fig. 1(b), with values t2 = λ

2+√
2

and t3 = λ

2+2
√

2
[3,5]. A transition between a Lieb lattice and a checkerboard
lattice is driven by tuning Vst to infinity. In this case, lattice
sites represented in red in Fig. 1(b) are decoupled from sites
represented in blue, and systems consisting of sites of different
colors can be treated independently, with blue sites forming a
checkerboard lattice. A systematic analysis of this transition
will be presented in the next section.

Many-body effects are studied using density-density inter-
action of the form

V = VNN

∑

〈i,j 〉
ninj + VNNN

∑

〈〈i,j 〉〉
ninj , (2)

where ni is a density operator on site i, and VNN and VNNN are
interactions between first and second neighbors, respectively.
We will focus on correlation effects within the middle band,
so the Hilbert space is truncated, containing states from this
band only. The lower band is considered as completely filled.
Also, a flat-band approximation is used neglecting the kinetic
energies. We note that middle band states are localized mostly
on one sublattice [indicated by blue in Fig. 1(b)] even for low
Vst , as long as it is topologically nontrivial. Therefore, the
leading term in Eq. (2) is between second neighbors, VNNN .
All calculations are performed for finite-size Nx × Ny samples
with a torus geometry, where Nx (Ny) is a number of unit cells
in x (y) direction. We consider 1/3 filling of the middle band
which corresponds to N = NxNy/3 particles in the system.
Due to a translation symmetry and momentum conservation of
two particle Coulomb scattering term, many-body eigenstates
can be indexed by total momentum quantum numbers Kx and
Ky , which are the sum of the momentum quantum numbers of
each of the N particles modulo Nx and Ny , respectively.

II. SINGLE-PARTICLE ANALYSIS

The unit cell of the Lieb lattice consists of three sites giving
three energy bands after diagonalization of the Hamiltonian
given by Eq. (1). A band structure in the simplest case when
only nearest-neighbor hopping integrals t are included has the
lower and upper bands touching each other in the middle of the
energy spectrum at energy E = 0, where the perfectly flat third
energy band is present [59]. Two dispersive bands are almost
equally localized on both sublattices, while the flat middle band
is almost fully localized on a sublattice indicated in blue in
Fig. 1(a). We next introduce the second term from Eq. (1) with
φ = π/2. The energy gap opens and the lower and upper bands
are topologically nontrivial with Chern numbers C = −1 and
C = 1, respectively, and the middle flat band is topologically
trivial with Chern number C = 0, as shown in Fig. 1(b) on the
left. Following Zhao and Shen [60], the topology of the energy
bands can be changed by introducing a staggered sublattice
potential, i.e., the two last terms in the Hamiltonian given by
Eq. (1). An increase of Vst leads to bending of the middle
band. At a critical value of Vst = 2λ, the middle and lower
bands touch [see the band structure shown in the middle in
Fig. 1(b)]. At this point a topological phase transition occurs.
For Vst > 2λ, the lower band becomes topologically trivial
with Chern number C = 0, while the middle band becomes
nontrivial with Chern number C = −1, which is shown in
Fig. 1(b) on the right. A similar transition occurs for φ = π/4,
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but at the value Vst = √
2λ and at Vst = λ when t2 and t3 are

considered.
Two energy gaps are indicated in Fig. 1(b) on the right: Eg1

between two topologically nontrivial bands, the upper (C = 1)
and the middle band (C = −1), and Eg2 between topologically
nontrivial middle band (C = −1) and topologically trivial
lower band (C = 0). We investigate a magnitude of these gaps
as a function of model parameters. In Fig. 2(a), a schematic
evolution of the energy bands as a function of a staggered
sublattice potential Vst for λ = 0.2 and φ = π/2 is shown. An
increase of Vst increases Eg2 , separating two topologically
nontrivial higher energy bands from the lower band. This
corresponds also to decoupling of a sublattice indicated in
red from a sublattice indicated in blue in Fig. 1(a). In a limit of
Vst → ∞, two sublattices are completely decoupled and the
Lieb lattice transforms into the checkerboard lattice [blue sites
in Fig. 1(b)]. At the same time, the energy gap Eg1 between two
topologically nontrivial bands from the checkerboard lattice
decreases monotonically to zero. A map of a magnitude of
the energy gap Eg1 as a function of the staggered sublattice
potential Vst and λ for φ = π/2 is shown in Fig. 2(b). The
staggered sublattice potential Vst is varied from Vst = 0 to
Vst → ∞, which can be performed by introducing a parameter
s given by a formula Vst = 4 tan(sπ/2), where s changes in a
range of values s = (0,1). For an isolated checkerboard lattice
corresponding to s = 1 (Vst → ∞), Eg1 = 0. An introduction
of finite Vst opens the energy gap Eg1 .

For sufficiently high Vst the energy gap is a direct
gap in M point of the Brillouin zone, with magnitude
Eg1 =

√
4t2 + V 2

st − Vst . Below Vst = t2

2λ
− 2λ [white line

in Fig. 2(b)] the bottom of the highest band is located at

(a) (b)

(c) (d)

FIG. 2. (Color online) (a), (c) Evolution of the band structure of
the Lieb lattice in a function of Vst for fixed λ = 0.2. (b), (d) Maps of
single-particle energy gap Eg1 depending on λ and staggered potential
Vst , parametrized by Vst = 4 tan(sπ/2). The top and bottom rows
correspond to φ = π/2 and φ = π/4, respectively. The white line in
(b) shows the border between the direct (above the line) and indirect
(below the line) gaps between the upper and middle bands.

FIG. 3. (Color online) Maps of the standard deviation of Berry
curvature σB (in the units 1

2π
), in functions of parameters λ and

s [where Vst = 4 tan(sπ/2)], for φ = π/2 (left), φ = π/4 without
additional hoppings (middle), and φ = π/4 with a middle band
flattened by additional hoppings (right). The white lines denote the
topological phase transition at Vst = 2λ for φ = π/2, at Vst = √

2λ

for φ = π/4 without additional hoppings, and Vst = λ for φ = π/4
with additional hoppings.

the � point, therefore Eg1 is an indirect gap of magnitude
4λ. We note that the bandwidth of the middle band in the
topologically nontrivial region is also 4λ, so the flatness ratio
of the middle band is �1. The energy gaps for phase π/4 show
similar behavior, although closed-form expression for Eg1 for
high Vst cannot be obtained. On the other hand, for φ = π/2
and Vst → ∞ the bands touch at the whole boundary of the
Brillouin zone (hence the energy of highest band at both M

and K points asymptotically approach the top of the middle
band), while for φ = π/4 the gap is closed only at the M point.

If additional hoppings are included for φ = π/4 [Figs. 2(c)
and 2(d)], the top of the middle band is not located in any
high-symmetry point, therefore Eg1 can be obtained only
numerically. In Fig. 2(c) we show the dependence of energy
gaps on Vst for λ = 0.2. Similarly to the previous case, Eg2

increases to infinity with increased Vst . However, contrary to
the previous case, in the Vst → ∞ limit Eg1 remains finite
(as was noted in Ref. [3], additional hoppings open the gap
for the checkerboard model). As shown in Fig. 2(d), the value
of this gap depends on λ, which is the only single-particle
energy scale in Vst → ∞ limit. We note that Eg1 for given
λ has maximum for finite Vst [Fig. 2(d)], e.g., at s ≈ 0.3 for
λ = 0.2. Therefore the additional atoms increase the energy
gap, which may be beneficial for the stability of FCI states.

As was shown in Refs. [36,53], Berry curvature flatness has
a positive effect on FCI stability. Motivated by this fact, we
investigate the standard deviation of Berry curvature σB of the
middle band of our model. The results are shown in Fig. 3.
For φ = π/2 and φ = π/4 without additional hoppings (right
and middle subplots of Fig. 3, respectively), there is a nearly
triangular region of low σB , with minimum located at finite Vst .
In this area, an emergence of the FCI phase can be expected. If
additional hoppings are included, the Berry curvature has low
standard deviation for almost all λ and Vst values for which
the system is topologically nontrivial. Although the variation
of σB is too small to be seen in the graph, the minimum of σB

for fixed λ lies at finite Vst . This indicates a small but positive
effect of additional atoms on the stability of the FCI phase.
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III. MANY-BODY RESULTS

A. The transition between Lieb and checkerboard lattices

The staggered sublattice potential Vst controls the ener-
getic distance between sites forming a checkerboard lattice
[indicated in blue in Fig. 1(b)] and extra sites [indicated in red
in Fig. 1(b)] introduced to create the Lieb lattice. Analyzing
the existence of a Laughlin-like phase during the transition
between two lattices, we look at the magnitude of the energy
gap between threefold degenerate ground states and the fourth
state. We perform calculations on a (4 × 6) torus for interaction
parameters VNN = 1.5 and VNNN = 1. The energy spectra are
calculated using an exact diagonalization method, employing
either a Lanczos method or the PRIMME package [63].

Despite the flatness ratio not exceeding 1, flat-band ap-
proximation [5,36] is applied as a first approximation, to focus
only on the effects of interaction, neglecting the effects of
single-particle dispersion and mixing with other bands. In our
calculations, we assume the lower band is completely filled and
the middle band is filled in 1/3. We have verified the validity
of neglecting excitations from the lower band checking that
they do not significantly affect the many-body energy of the
three lowest states. We only noticed some effect of electrons
from the lower band close to a single-particle topological phase
transition, where results should be treated tentatively.

We first consider the situation for φ = π/2 in the second
term of the Hamiltonian given by Eq. (1). Figure 4 on the
left shows a map of the energy gap as a function of λ and a
staggered sublattice potential, represented by the parameter
s. A single-particle topological phase transition is marked
by a white line in the graph, with a topologically nontrivial
region above the line. Opening of the energy gap coincides
with single-particle topological phase transition for Vst = 2λ,
similarly to results from Ref. [8]. Within a topologically

FIG. 4. (Color online) A map of the energy gap between the third
and fourth state for a nonflattened middle band with (a) phase φ =
π/2 and (b) phase φ = π/4 (right) as a function of a parameter
λ and a staggered sublattice potential Vst parametrized by Vst =
4 tan(sπ/2). Interaction strengths are VNN = 1.5, VNNN = 1. The
white line denotes the single-particle topological phase transition for
Vst = 2λ for φ = π/2 and Vst = √

2λ for φ = π/4.

nontrivial region the energy spread δ of threefold degenerate
ground state does not exceed δ = 0.015. Therefore, in a major
part of this region threefold degenerate ground state separated
by the gap is clearly seen in the energy spectrum. Values
of the parameter s ≈ 1 (Vst → ∞) correspond to an isolated
checkerboard lattice giving the energy gap Egap ≈ 0.02.
However, for infinite staggered potential, s = 1, the energy
gap Eg1 = 0, and the validity of the results is uncertain
because one cannot restrict calculations to one band only
when the gap closes. Also, for s close to 1 the spread of
three states becomes comparable with energy gap, therefore
their quasidegeneracy is not visible. For smaller values of a
parameter s, a region with an increased energy gap appears (a
red area in Fig. 4), with the largest energy gap Egap ≈ 0.08
for λ ≈ 0.1 and the parameter s ≈ (0.3,0.7) [Vst ≈ (2.0,8.0)].
Thus, an interaction with extra sites, along with opening a
single-particle gap, stabilizes the FCI phase. Interestingly, the
maximum values of the many-particle gap coincide with the
white line in Fig. 2(b)–the transition between the indirect and
direct gaps.

In Fig. 4 on the right a phase diagram for a phase φ = π/4
is shown. There are no significant qualitative differences com-
paring to results for φ = π/2. Quantitatively, the magnitude of
the many-particle gap is smaller than for φ = π/2. Also, the
region of increased gap is slightly bigger than for φ = π/2,
because the topological phase transition occurs at Vst = √

2λ

instead of Vst = 2λ.
In Fig. 5, a phase diagram for φ = π/4 with a flattened

middle band is shown. This corresponds to a map of the
single-particle energy gap Eg1 from Fig. 2(d). Within a
major part of the range of parameters, the energy gap is
approximately constant and larger in comparison to the energy
gaps for nonflattened bands from Fig. 4, with a maximum of
Egap ≈ 0.085. The single-particle gap Eg1 remains open in

FIG. 5. (Color online) A map of the energy gap between the third
and fourth state for a middle band flattened using additional hoppings
t2 and t3, for a phase φ = π/4, as a function of a parameter λ and a
staggered sublattice potential Vst parametrized by Vst = 4 tan(sπ/2).
Interaction strengths are VNN = 1.5, VNNN = 1. The white line
denotes the single-particle topological phase transition.
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FIG. 6. (Color online) A map of the energy gap between the third
and fourth state as a function of interaction parameters VNN and VNNN

for φ = π/2, λ = 0.2, Vst = 2.

the limit Vst → ∞. The finite value of the many-particle gap
in this limit agrees with earlier results for the checkerboard
model [5,8]. No gap closing for finite Vst shows that the FCI
on the Lieb lattice with additional hoppings is adiabatically
connected to that on the checkerboard lattice. A decrease of
the energy gap Egap is only seen for λ ≈ 0.1 and close to a
single-particle topological phase transition (Vst = λ) marked
by a white line.

For all three considered models, a strong correlation
between FCI stability and the Berry curvature flatness is
observed. The regions of high many-body gap in Figs. 4 and 5
coincide with the regions of small standard deviations of Berry
curvature in Fig. 3. This agrees with the results connecting σB

with FCI stability [36,53]. Thus, we conclude that the main
mechanism of FCI stabilization by additional atoms is their
influence on Berry curvature.

In Fig. 6 we show the dependence of the energy gap
between threefold-degenerate ground state and the fourth
states on interaction parameters for fixed λ = 0.2 and Vst = 2.
In general, the energy gap scales approximately linearly
with an interaction between next-nearest neighbors VNNN [an
interaction between particles occupying blue sites in Fig. 1(a)]
and only slightly depends on VNN [an interaction between
particles occupying sites with different colors in Fig. 1(a)].
This is related to the fact that for this choice of parameters
the states from the middle band are 98% localized within
the sublattice forming a checkerboard lattice [blue sites in
Fig. 1(a)].

B. Identification of FCI phase

The correlation between the standard deviation of Berry
curvature and the many-body energy gap strongly suggest that
the many-body ground state in the red regions in Figs. 4 and 5 is
the FCI state. However, this claim needs further confirmation.
Thus, for chosen parameters from such a region, λ = 0.2
and Vst = 2, and phase φ = π/2, we investigate signatures of

(a) (b)

FIG. 7. (Color online) (a) Momentum-resolved low energy spec-
tra for systems with different sizes given by (Nx × Ny) for parameters
φ = π/2, λ = 0.2, Vst = 2, VNN = 1.5, and VNN = 1. The energy is
rescaled so that ground state energy is set to 0. The momenta of
three quasidegenerate states agree with a counting rule for FCI. (b)
Spectral flow upon flux insertion for a (4 × 6) lattice. The threefold
degenerate ground states flow into each other and do not cross with
higher energy states. The inset shows a magnified view of the ground
state manifold evolution.

a 1/3 Laughlin-like state. Figure 7(a) shows a momentum-
resolved energy spectrum for different torus sizes. The energy
spectra are plotted with respect to the ground state energy at
E = 0. We find that for each system size we have a threefold
quasidegenerate ground state, whose momentum counting
corresponds to that obtained from generalized Pauli principle
[8]. In the case of Nx × Ny = (4 × 6) this corresponds to total
momenta of three quasidegenerate ground states for momenta
(Kx,Ky): (0,0), (0,2), and (0,4). The electron density of the
ground state manifold is almost uniformly distributed within
sublattice B, as expected for the incompressible liquid. Small
variations can be attributed to finite-size effects. In Fig. 7(b) the
spectral flow upon magnetic flux insertion for a (4 × 6) torus is
shown. The threefold degenerate ground states do not intersect
with higher states. Three states flow into each other and return
to themselves after insertion of three magnetic fluxes.

FIG. 8. Momentum-resolved energy spectrum for N = 7 elec-
trons on a (4 × 6) torus for parameters φ = π/2, λ = 0.2, Vst = 2,
VNN = 1.5, and VNN = 1. The number of states below the gap
starting around E = 0.25 is 12 for each momentum sector. This is in
agreement with counting for Laughlin quasihole states.
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This no-mixing property of the ground state manifold
with higher energy states is necessary but not sufficient
to prove the existence of a Laughlin-like phase. Thus, we
analyze quasihole excitations from this state [8,36]. Figure
8 shows quasihole spectra for N = 7 electrons on a (4 × 6)
torus (three quasiholes). In this case, 12 quasihole states per
momentum sector for Laughlin-like excitations is predicted.
This is indeed observed in Fig. 8. Similarly, the results for
a (5 × 5) torus filled by eight electrons (one quasihole) also
obeys the counting rules. The spectrum is divided into two
parts separated by a clear energy gap, with 12 quasihole states
per momentum sector below the gap (not shown). Thus, our
results strongly suggest the presence of a FCI in this system.

IV. CONCLUSIONS

In summary, we have analyzed the transition between a
checkerboard lattice and a Lieb lattice in the context of
the FCI phase for 1/3 filling of a topologically nontrivial
energy band. Results were presented for two different complex
phases, and a model with a flattened topologically nontrivial

band. For the nonflattened bands, the additional sites open
the single-particle energy gap and allow a FCI to exist. For
a flattened band, they increase the single-particle energy gap
and stabilize the FCI. We find that the main stabilizing effect
of additional atoms is their influence on Berry curvature,
as we find a strong connection between its flatness and the
magnitude of the many-body energy gap. The existence of
FCI is proven by topological degeneracy, spectral flow, and
momentum counting, both for exact 1/3 filling and systems
with quasiholes. The topologically nontrivial character of the
FCI phase is also seen by the fact that it exists only in param-
eter regions corresponding to a single-particle topologically
nontrivial band.
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