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We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we
calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening
effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon
degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-
perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first
principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems,
such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and
multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of
phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss
how the realistic low-energy Hamiltonian is constructed.
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I. INTRODUCTION

A quantitative description of strongly correlated materials
is one of the most challenging goals in condensed matter
physics. In particular, an accurate treatment of the lattice
degrees of freedom in the strongly correlated regime is
necessary for a description or even a prediction of func-
tional materials such as high-transition-temperature (high-Tc)
superconductors, thermoelectrics, piezoelectrics, and multi-
ferroics. However, the interplay between strong correlation
and electron-phonon coupling has yet to be fully understood.
For example, the role of the electron-phonon interaction in
cuprate superconductors is still controversial [1–5]. Recently,
it has been proposed that the electron correlation enhances
electron-phonon coupling [6–9]. The phonon might cooperate
with plasmons to realize high-Tc superconductivity [10–12].
It has been shown that an unusual cooperation between the
multiorbital electronic correlation and Jahn-Teller phonons is
the essence of high-Tc s-wave superconductivity next to the
Mott insulating phase in fullerides [13–16].

In this paper, we propose that a combination of the density-
functional theory (DFT) and model calculations, which is one
of the most powerful methods to study the strongly correlated
materials [17–19], can also be powerful in studying electron-
phonon-coupled systems with strong electron correlations.
This idea relies on the energy hierarchy in the electronic
structure [19]: By the strong electronic correlation and the
electron-phonon coupling, the low-energy bands near the
Fermi level EF , which we call target bands, may be heavily
reconstructed, while the structure of the high-energy bands will
not change drastically. Furthermore, at a temperature where the
low-energy phenomena (e.g., superconductivity) emerge, the
high-energy states are nearly frozen, i.e., they are nearly totally
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occupied or empty. Then, nearly all the excitation processes
occur in the t subspace, the subspace which the target bands
span (for later use, we define the r subspace as the rest of the
Hilbert space). The most important electron-phonon coupling
processes are the couplings between these t-subspace electrons
and phonons. Therefore, the low-energy physical properties
are governed by the low-energy electrons and the phonons.

This hierarchical structure allows us to construct the
following three-stage scheme [19].

(1) Obtain the global energy structure by the DFT and
define the low-energy subspace.

(2) Trace out the high-energy electron degrees of freedom
and derive a low-energy effective Hamiltonian (downfolding).
The degrees of freedom in the Hamiltonian consist of the
t-subspace electrons and the phonons.

(3) Solve the derived model accurately by the model-
calculation method.

In this scheme, we take into account the material de-
pendence and the high-energy electronic structure by the
DFT, and the effects of electron correlation and electron-
phonon coupling in the low-energy subspace (t subspace)
are considered by the model calculation. A key step in the
scheme is step 2, i.e., the downfolding procedure to derive the
low-energy Hamiltonian.

When we restrict ourselves to the electron degrees of
freedom and forget about the phonons, there has been much
effort devoted to the development of a downfolding scheme.
In this case, the low-energy Hamiltonian would consist of
the electron one-body (hopping) and Coulomb interaction
terms. By employing a localized basis such as the maximally
localized Wannier function [20–22], the derived model has
the form of the extended Hubbard model. The one-body part
describes a realistic hopping structure in the t subspace. The
effective interaction between t-subspace electrons is a partially
screened Coulomb interaction. This is because the high-energy
electrons, which are traced out, cause a renormalization of
the Coulomb interaction. We refer to it as a “partially”
screened interaction because it does not include screening
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processes originating from t-subspace electrons, which are
not traced out and remain as active degrees of freedom. This
partial screening is often calculated within the constrained
random phase approximation (cRPA) [23], which considers
the screening effect of high-energy electrons within the RPA.

The downfolding scheme combined with the model-
calculation method has been successfully applied to, e.g., iron-
based superconductors [24–29], cuprates [30–33], transition-
metal oxides [34,35], and organic compounds [36,37]. Based
on these successes, many attempts have been made to further
improve the scheme. For example, there have been proposals
to improve the one-body part [38,39] and the interaction
part [40–45]. Recently, a GW-based (not DFT-based) scheme
has also been intensively studied [46–49].

Despite the effort devoted to electronic systems, an ab initio
downfolding scheme for electron-phonon coupled systems has
not been established. If we include the phonon degrees of
freedom, the low-energy model acquires the electron-phonon
coupling and phonon one-body terms in addition to the electron
one-body and Coulomb interaction terms. As in the case of
effective Coulomb interaction between t-subspace electrons,
the electron-phonon coupling and phonon frequencies used in
the low-energy Hamiltonian should be a partially renormalized
quantity [50]. They are renormalized due to the coupling
between phonons and high-energy electrons. The coupling
between phonons and t-subspace electrons is considered when
we solve the model by the model-calculation method. When
we derive the model, the renormalization originating from the
t subspace is excluded to avoid the double-counting of it.
Based on this idea, we recently proposed an ab initio scheme
called the constrained density-functional perturbation theory
(cDFPT) [51].

In this paper, we elaborate the practical detail of the cDFPT
method. We show that the cDFPT method can be easily im-
plemented by a slight modification of the conventional DFPT
method, which is implemented in several ab initio packages.
Then we apply the scheme to alkali-doped fullerides [52–
54], where both electron correlations and electron-phonon
interactions are important to explain the phase diagram [13].
By comparing the cDFPT results with the DFPT results,
we discuss how the partially screened quantities, which are
used as input for the model calculation, differ from the fully
renormalized quantities.

This paper is organized as follows. In Sec. II, we review
the DFPT [55–58] to introduce our notation, since the cDFPT
method is closely related to the conventional DFPT. Then we
move on to the explanation of the cDFPT method in Sec. III.
There, we provide practical details to implement the cDFPT
method. We also briefly compare the cDFPT method and
another downfolding method proposed in Ref. [59]. In Sec. IV,
we show the cDFPT results for alkali-doped fullerides and
compare them with the DFPT results. Finally, in Sec. V, we
provide a summary of the paper.

II. REVIEW OF DENSITY-FUNCTIONAL
PERTURBATION THEORY

The cDFPT method is based on the DFPT method, where
the fully renormalized electron-phonon coupling and phonon
frequencies are calculated. As we show below, the cDFPT

method can be formulated as a slight modification of the DFPT
algorithm. Here, we briefly review the DFPT method [55–58]
to introduce the notation used here.

A. Phonon frequencies

1. Expression for interatomic force constants

In solids, phonon frequencies are determined by the
equation [58] ∑

κ ′α′
Dαα′

κκ ′ (q)eα′
κ ′ (q) = ω2

qνe
α
κ (qν), (1)

with momentum q, index for atoms κ , and direction of dis-
placement α = {x,y,z}. This equation shows that the phonon
frequency ωqν is given by the square root of the eigenvalues
of the dynamical matrix D(q). Since the dimension of the
dynamical matrix D(q) is 3n, with n being the number of
atoms in the unit cell, there exist 3n solutions (normal modes),
which we label with the index ν. The eigenvectors of the
dynamical matrix satisfy the orthonormality:∑

κα

e∗α
κ (qν)eα

κ (qν ′) = δνν ′ . (2)

The dynamical matrix is related to the interatomic force
constants Cαα′

κκ ′ (q) by

Dαα′
κκ ′ (q) = 1√

MκMκ ′
Cαα′

κκ ′ (q), (3)

where Mκ is the mass of the κth atom. The interatomic force
constants are written as [58]

Cαα′
κκ ′ (q) = 1

N

[ ∫ (
∂ρ(r)

∂uα
κ (q)

)∗
∂Vion(r)

∂uα′
κ ′ (q)

dr

+
∫

ρ(r)
∂2Vion(r)

∂u∗α
κ (q)∂uα′

κ ′ (q)
dr

+ ∂2EN

∂u∗α
κ (q)∂uα′

κ ′ (q)

]
u=0

, (4)

with the number of unit cells in the Born–von Karman
boundary condition N , the displacement of the ion u, the
electron density ρ, the ionic potential Vion, and the Coulomb
interaction energy among nuclei EN . On the right-hand side
(r.h.s.) of Eq. (4), the first (second) term describes the
contribution from linear (quadratic) electron-phonon coupling
and the third term describes the ionic contribution [60].

2. Electron-density response

In order to evaluate the interatomic force constants, we
need to calculate the electron-density response to the ionic dis-
placement ∂ρ(r)/∂uα

κ (q), which is a key quantity in the cDFPT
method, as we show below. Before explaining the cDFPT, we
show how the electron-density response is calculated in the
usual DFPT method. Here, we consider a metallic case [56].
In the DFT calculation for a metal, it is usual to introduce a
smearing function, δ̃(x), and the corresponding smoothed step
function θ̃(x) = ∫ x

−∞ δ̃(x ′)dx ′. In the present calculation, we
employ the Gaussian smearing δ̃(x) = exp(−x2)/

√
π . Then
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the expression for the electron-density response �ρ(r) to ionic
displacement is given by

�ρ(r) =
∑
n,m

θ̃F,n − θ̃F,m

εn − εm

ψ∗
n (r)ψm(r)〈ψm|�VSCF|ψn〉

= 2
∑

n

ψ∗
n (r)�ψn(r), (5)

where we define �ψn(r) as

�ψn(r) =
∑
m

θ̃F,n − θ̃F,m

εn − εm

θ̃m,nψm(r)〈ψm|�VSCF|ψn〉, (6)

with composite indices for the band and the momentum
n,m, the Kohn-Sham wave function ψn, and the Kohn-Sham
eigenenergy εn. Here, θ̃F,n and θ̃m,n are defined as θ̃F,n =
θ̃ [(εF − εn)/σ ] and θ̃m,n = θ̃ [(εm − εn)/σ ], respectively, with
the Fermi energy εF and a smearing width σ . In the actual
calculation, the electron-density response �ρ and the modu-
lation of the potential �VSCF have indices of the momentum
q, the displaced atom κ , and the direction α, which we omit
for simplicity. The change in the potential �VSCF due to ionic
displacement is given by a sum of the change in the ionic
potential �Vion and the screening contribution from the Hartree
and exchange channels (the second and third terms on the r.h.s.
of the following equation),

�VSCF(r) = �Vion(r) + e2
∫

�ρ(r′)
|r − r′|dr′

+ dVxc[ρ]

dρ

∣∣∣∣
ρ=ρ0(r)

�ρ(r), (7)

with ρ0 being the electron density in the absence of ionic
displacement. Equations (5) and (7) are the equations to
determine the electron-density response, which are solved
self-consistently.

In the DFPT, in order to avoid the cumbersome summation
over unoccupied states in Eq. (6), one alternatively solves the
equations (Eqs. (72) and (73) in Ref. [58])

(HSCF + Q − εn)|�ψn〉 = −(θ̃F,n − Pn)�VSCF|ψn〉, (8)

where

Q =
∑
m

αm|ψm〉〈ψm|, Pn =
∑
m

βn,m|ψm〉〈ψm|, (9)

with

βn,m = θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm

θ̃F,n − θ̃F,m

εn − εm

θ̃m,n. (10)

Here αm’s are parameters to avoid null eigenvalues of the
(HSCF + Q − εn) matrix, which can be set to be a constant
value which is larger than [(maximum energy among partial
occupied states) − (minimum energy of occupied states)]
for all partially occupied states and 0 for totally unoccupied
states [58]. This αm parametrization enables the calculation
without any information on the totally unoccupied states. In
Appendix A, we show that the solution of Eq. (8) is indeed
identical to that of Eq. (6).

When the perturbation has periodicity with the lattice (q =
0), the Fermi energy may change and �ρ acquires an additional

term [58],

�ρ(r) = 2
∑

n

ψ∗
n (r)�ψn(r) + ρ(r,εF )�εF , (11)

with

ρ(r,ε) =
∑

n

1

σ
δ̃

(
ε − εn

σ

)
|ψn(r)|2. (12)

The change in the Fermi energy �εF is determined by the
charge neutrality condition [58].

B. Electron-phonon coupling

When ions move from their equilibrium position, the ionic
potential changes. Then the surrounding electrons will respond
to the potential change and screen it. The electron will feel this
screened potential change and will be scattered. This process
is expressed by the Hamiltonian

Ĥel-ph = 1√
N

∑
qν

∑
knn′σ

gν
n′n(k,q)cσ†

n′k+qc
σ
nk(bqν + b

†
−qν). (13)

Here,

gν
n′n(k,q) =

∑
κα

√
�

2Mκωqν

eα
κ (qν)

×
〈
ψn′k+q

∣∣∣∣∂VSCF(r)

∂uα
κ (q)

∣∣∣∣ψnk

〉
(14)

is the electron-phonon-coupling matrix element involving the
Bloch states ψnk and ψn′k+q and the νth branch phonon with
wave vector q. cσ

nk (cσ†
nk) annihilates (creates) an electron on

the nth Bloch orbital with wave vector k and spin σ . bqν (b†qν)
is the annihilation (creation) operator for the phonon labeled
by the νth branch and the momentum q.

III. CONSTRAINED DENSITY-FUNCTIONAL
PERTURBATION THEORY

A. Basic idea and practical implementation

Our goal is to derive the low-energy Hamiltonian for
electron-phonon-coupled systems, which consists of low-
energy (t-subspace) electrons and phonons. The Hamiltonian
reads

Ĥ = Ĥel + Ĥel-el + Ĥel-ph + Ĥph + ĤDC, (15)

where Ĥel is the electronic one-body part (on-site energy and
hopping terms) and Ĥel-el is the Coulomb interaction term,
such as the Hubbard U . In this paper, we focus on the electron-
phonon coupling Ĥel-ph and phonon one-body term Ĥph, which
are given by

Ĥel-ph = 1√
N

∑
qν

∑
kijσ

g
(p)ν
ij (k,q)cσ†

ik+qc
σ
jk(bqν + b

†
−qν) (16)
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and

Ĥph =
∑
qν

ω(p)
qν b†qνbqν, (17)

respectively. Here, we employ the Wannier gauge for the
electronic degrees of freedom labeled i,j , since it is convenient
for low-energy solvers to take the Wannier gauge. ĤDC is a
double-counting correction, which is discussed in detail in
Sec. III D. In this section, we show how the phonon frequencies
ω(p) and the electron-phonon coupling g(p) in the low-energy
model should be parametrized [51]. As in the case of the
effective Coulomb interactions in Ĥel-el calculated by the cRPA
method [23], they should be partially renormalized quantities,
which take into account the renormalization effects associated
with the elimination of high-energy degrees of freedom
(see Appendix B for a comparison between the cDFPT
and the cRPA). In other words, we derive the parameters
while avoiding double-counting of the renormalization effects,
which are to be taken into account in the model analysis step.
To make it clear that these are partially renormalized quantities,
we attach the superscript (p).

In the following, we discuss how the partially renormalized
phonon quantities are calculated from first principles. For
partial renormalization, we first define the bare phonon
frequencies and electron-phonon coupling. We then divide the
renormalization processes into the low-energy contribution,
which is to be excluded to realize partial renormalization,
and the rest of the contribution, which involves high-energy
electrons.

First, we consider the phonon frequencies. As we see in
Sec. II A, the interatomic force constants [Eq. (4)], which give
the phonon frequencies, consist of several contributions. Since
the low-energy Hamiltonian, Eq. (15), has the linear electron-
phonon coupling term, which gives a renormalization of the
phonon frequencies, we define (ionic contribution) + (con-
tribution from quadratic electron-phonon coupling) as the
“bare” term and (contribution from linear electron-phonon
coupling) as the “renormalizing” term. Then the interatomic
force constants Cαα′

κκ ′ (q) given in Eq. (4) can be divided as
Cαα′

κκ ′ (q) = bareCαα′
κκ ′ (q) + ren.Cαα′

κκ ′ (q), where bareCαα′
κκ ′ (q) gives

the bare phonon frequencies,

bareCαα′
κκ ′ (q) = 1

N

[
∂2EN

∂u∗α
κ (q)∂uα′

κ ′ (q)

+
∫

ρ(r)
∂2Vion(r)

∂u∗α
κ (q)∂uα′

κ ′ (q)
dr

]
, (18)

and ren.Cαα′
κκ ′ (q) gives the renormalization of the phonon

frequencies through the linear electron-phonon coupling,

ren.Cαα′
κκ ′ (q) = 1

N

∫ (
∂ρ(r)

∂uα
κ (q)

)∗
∂Vion(r)

∂uα′
κ ′ (q)

dr. (19)

Next, we consider the bare and renormalizing contributions
to electron-phonon coupling [Eq. (14)]. The derivative of the
self-consistent field potential ∂VSCF(r)/∂uα

κ (q) in Eq. (14) is
also decomposed into the bare contribution,

bare
[
∂VSCF(r)

∂uα
κ (q)

]
= ∂Vion(r)

∂uα
κ (q)

, (20)

and the screening contribution (the change in the Hartree and
exchange potentials),

ren.
[
∂VSCF(r)

∂uα
κ (q)

]
=

∫ (
e2

|r − r′| + dVxc(r)

dρ
δ(r − r′)

)

× ∂ρ(r′)
∂uα

κ (q)
dr′. (21)

We see that the origin of the renormalization of the phonon
frequencies and the screening for electron-phonon couplings
is the coupling between the lattice and the electrons and the
resulting modulation of the electron density due to the lattice
displacement ∂ρ(r)/∂uα

κ (q). The electron-density modulation
∂ρ(r)/∂uα

κ (q) calculated in the conventional DFPT scheme
is a sum of the contributions from all possible particle-
hole excitations [Eq. (5)]. In the cDFPT method [51], we
exclude the target ↔ target excitation processes from the
sum in the calculation of the electron-density modulation.
We use the resulting electron-density modulation for the
renormalization contributions in Eqs. (19) and (21), which
are added to the bare contributions in Eqs. (18) and (20). This
procedure gives the partially renormalized phonon frequencies
and the electron-phonon couplings.

Now, we propose a practical way to exclude the target ↔
target processes from Eqs. (5) and (8), the equations which
determine the change in the electron density. If |ψn〉 in Eq. (8)
belongs to the t subspace, in order to exclude the target ↔
target polarization processes, the r.h.s. of Eq. (8) should be
modified as

(HSCF + Q − εn)|�ψn〉 = −Pr (θ̃F,n − Pn)�VSCF|ψn〉,
(22)

with Pr being the projection onto the r subspace. The very
same constraint can be achieved by solving Eq. (8) with
modified βn,m’s (β̃n,m’s) given by

β̃n,m =
{

θ̃F,n

(
n,m ∈ t-subspace

)
,

θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm
θ̃F,n−θ̃F,m

εn−εm
θ̃m,n

(
other cases

)
.

(23)

Note that in the latter case, β̃n,m has exactly the same form
as that in Eq. (10), i.e., β̃n,m = βn,m. Only when n,m ∈ t

subspace, βn,m is modified. We can easily show that the r.h.s.
of Eq. (22) with the original βn,m’s is equal to that of Eq. (8)
with β̃n,m’s, which ensures the equivalence of the two types of
modifications. Using β̃n,m in Eq. (23) is also useful to exclude
the contribution to the electron-density modulation from the
possible change in the Fermi energy in the case of q = 0
[the additional contribution given in Eqs. (11) and (12)]. The
possible change in Fermi energy originates from intraband
transitions at the Fermi level, which are the transition processes
in the t subspace and hence are excluded by employing β̃n,m.

When we consider practical implementation, if one has
a code of the conventional DFPT, it is easier to modify
βn,m into β̃n,m than to employ Eq. (22). One needs only to
modify the part where the βn,m parameters are defined; no
modification is needed in the other parts. In Appendix C,
we propose an example of how we modify a source code
to introduce β̃n,m in the case of the QUANTUM ESPRESSO
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package [61,62]. With β̃n,m’s and following the very same
flow of calculations as in the usual DFPT method, one can
calculate the electron-density response to ionic displacement
without target ↔ target polarization processes. Then, with the
resulting electron-density response, we evaluate the partially
renormalized quantities ω(p) and g(p).

B. Relation between fully and partially renormalized quantities

In this section, we show the relation between partially and
fully renormalized quantities. Partially (fully) renormalized
quantities are calculated by the cDFPT (conventional DFPT)
method. The electron-density response �ρ to the change in
the ionic potential �Vion (bare perturbation) is given by [63]

�ρ = χ0(1 − ṽχ0)−1︸ ︷︷ ︸
= χDFT

�Vion (24)

= χ0�VSCF, (25)

where �VSCF is the screened potential change, given by

�VSCF = (1 − ṽχ0)−1�Vion. (26)

Here, ṽ is given by ṽ = v + Kxc, with the bare Coulomb
interaction v and the exchange-correlation kernel Kxc =
δVxc/δρ (Vxc is the exchange-correlation potential). Note that
Eqs. (25) and (26) correspond to Eqs. (5) and (7), respectively.
The screening expressed in Eq. (26) can be divided into two
screening steps: one involving the high-energy degrees of
freedom,

�V
(p)

SCF = (
1 − ṽχ0

r

)−1
�Vion, (27)

and the other associated with the target-target processes,

�V
(f )

SCF = (
1 − W̃ (p)χ0

t

)−1
�V

(p)
SCF. (28)

Here, the total irreducible polarization χ0 is divided into χ0
t

and χ0
r with the polarization within the t subspace χ0

t and the
rest of the polarization χ0

r = χ0 − χ0
t . We have introduced the

superscripts p and f to explicitly distinguish between partially
(p) and fully (f ) renormalized quantities. W̃ (p) is the partially
screened Coulomb interaction given by

W̃ (p) = (
1 − ṽχ0

r

)−1
ṽ. (29)

Since the electron-phonon coupling g represents the scattering
of electrons by �VSCF, the screening process for electron-
phonon coupling can be decomposed in the very same
way as that of �VSCF [Eqs. (27) and (28)]; that is, g(f ) =
(1 − ṽχ0)

−1
g(b) is decomposed into

g(p) = (
1 − ṽχ0

r

)−1
g(b) (30)

and

g(f ) = (
1 − W̃ (p)χ0

t

)−1
g(p). (31)

Equation (31) tells us that when we take into account target-
target screening processes at the DFT level for the model with
partially screened Coulomb and electron-phonon interactions,
we return to the fully screened electron-phonon interactions.

A similar decomposition also applies to the renormalization
of the phonon frequencies. In this case, the phonon self-
energy is decomposed. The renormalizing contribution to the

interatomic force constants in Eq. (19) can be recast as

ren.C = |g′(b)|2χDFT, (32)

where g′(b) =
√

2Mω(b)g(b), with ω(b) being the bare phonon
frequency. For simplicity, we have omitted the indices and
represent the masses of the nucleus by a single mass M . We
define the phonon self-energy in the DFPT scheme as

� =
ren.C

2Mω(b)
= |g(b)|2χDFT. (33)

The contribution to the phonon self-energy can be divided into
�t and �r , i.e.,

� = �t + �r. (34)

Here, �r = |g(b)|2χr
DFT, with χr

DFT = χ0
r (1 − ṽχ0

r )−1, denotes
the phonon self-energy due to electron-phonon coupling in-
volving r-subspace electrons. The other part of the self-energy,
�t = |g(p)|2χt

DFT, with χt
DFT = χ0

t (1 − W̃ (p)χ0
t )−1, originates

from the coupling between t subspace electrons and phonons
through the partially screened coupling g(p). See Appendix D
for the proof that �t + �r = |g(p)|2χt

DFT + |g(b)|2χr
DFT is

indeed identical to � = |g(b)|2χDFT. The decomposition of
� into �t and �r corresponds to the division of the
density-response contribution to ren.C into the target-target
contribution and the others, as in the cDFPT scheme. With
the decomposition of �, we can define the partially dressed
phonon Green’s function D(p) as

[D(p)]−1 = [D(b)]−1 − �r, (35)

with the bare phonon Green’s function D(b). The bare phonon
frequency ω(b) is given by the pole of D(b). Similarly, the
phonon frequency ω(p) in the low-energy Hamiltonian is given
by the pole of D(p). If we further consider �t , we obtain the
fully dressed phonon Green’s function D(f ) as

[D(f )]−1 = [D(p)]−1 − �t. (36)

C. Flow of the calculation and practical issues

As already mentioned, the flow of the cDFPT calculation
follows that of the usual DFPT. The difference comes from the
setting of the βn,m parameters. The flow of the calculation is
as follows:

(1) Optimize the atomic positions within the DFT.
(2) Calculate the global energy structure by the DFT for the

optimized structure and choose the target subspace for which
we construct an effective Hamiltonian.

(3) Set the β̃n,m parameters according to Eq. (23).
(4) Perform the phonon calculation with the β̃n,m param-

eters (the procedure is the very same as in the conventional
DFPT case). Obtain the partially renormalized phonon fre-
quencies ω

(p)
qν to be used in Eq. (17) and the partially screened

potential change ∂V
(p)

SCF(r)
∂uα

κ (q) .

(5) Take the Wannier matrix element of ∂V
(p)

SCF(r)
∂uα

κ (q) to obtain
the partially renormalized electron-phonon coupling term in
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Eq. (16) as follows:

g
(p)ν
ij (k,q) =

∑
κα

√
�

2Mκω
(p)
qν

e(p)α
κ (qν)

×
〈
ψ

(w)
ik+q

∣∣∣∣∣∂V
(p)

SCF(r)

∂uα
κ (q)

∣∣∣∣∣ψ (w)
jk

〉
, (37)

where we use the superscript (w) to make it clear that the wave
function is in the Wannier gauge.

Finally, we mention one practical issue in obtaining the par-
tially screened phonon frequencies ω

(p)
qν . In obtaining the fully

renormalized phonon frequencies, we often impose the acous-
tic sum rule to ensure that the frequency of the acoustic phonon
at q = 0 is 0. To obtain the partially renormalized phonon
frequencies, we impose the same correction of the acoustic
sum rule as used in the calculation of the fully renormalized
phonon frequencies. Then the partially renormalized phonon
frequency of the acoustic phonon at q = 0 does not always
go to 0. This is because the phonon self-energy involving
t-subspace electrons �t = |g(p)|2χt

DFT can be finite, since
there can be a finite coupling between the acoustic phonon
and t-subspace electrons through Umklapp (G 
= 0) processes,
while the coupling for the q + G = 0 process is 0. We also give
another explanation for possible nonzero phonon frequency for
the acoustic mode at q = 0. For example, in the case where
the unit cell consists of a single atom, at q = 0, the ionic
contribution to the interatomic force constant [the third term
on the r.h.s. of Eq. (4)] is 0. The first (second) term on the r.h.s.
of Eq. (4), which is related to the linear (quadratic) electron-
phonon coupling, makes a negative (positive) contribution to
the interatomic force constant. Since the first and second terms
cancel each other, the fully renormalized phonon frequency
at q = 0 goes to 0. In the cDFPT, we exclude the target
contribution to the first term, thus imbalance occurs between
the first and the second terms, which makes the partially
renormalized phonon frequency nonzero.

D. Double-counting correction

When we combine the DFT and the model-calculation
methods, we usually need a double-counting correction. In
the case of our scheme, we have a double-counting problem
for a possible change in equilibrium positions of the atoms
due to the coupling between lattice and t-subspace electrons.
The low-energy Hamiltonian should be formulated such that
we obtain equilibrium positions of the ions which agree with
the optimized positions within the DFT level, after we solve
the model at the static mean-field (DFT) level. To realize
this, we need a double-counting correction in the low-energy
Hamiltonian, whose form is

ĤDC = − 1√
N

∑
ν

∑
kijσ

g
(p)ν
ij (k,q=0)

〈
c
σ†
ik cσ

jk

〉(
b0ν + b

†
0ν

)
.

(38)

Here, 〈cσ†
ik cσ

jk〉 is the expectation value evaluated within the
DFT.

To understand the physical meaning of the double-counting
correction, we consider a simple case, where the t subspace

consists of a single band and only one Holstein phonon couples
to the electron locally. Then the electron-phonon coupling term
in Eq. (16) is given by

Ĥel-ph =
∑

l

g(p)nlxl, (39)

where we switch to the real-space representation and l is the
site index. nl is the density operator for site l and xl is the
displacement of the lattice. The double-counting correction
[Eq. (38)] becomes

ĤDC = −
∑

l

g(p)〈nl〉xl. (40)

If we put together the electron-phonon coupling, double-
counting, and potential energy terms [the phonon-related part
of the low-energy Hamiltonian in Eq. (15)], it is given by

Ĥ =
∑

l

g(p)(nl − 〈nl〉)xl +
∑

l

1

2
(ω(p))2x2

l

=
∑

l

g(p)nlxl+
∑

l

1

2
(ω(p))2

(
xl − x0

l

)2 + const., (41)

where x0
l = g(p)〈nl〉/(ω(p))2. In the above expression, we take

the atomic mass to be 1, for simplicity. Now the physical
meaning of the double-counting correction becomes clear:
It gives the shift of the potential minimum of the lattice
vibration by x0

l , which is proportional to the occupation of
the electron 〈nl〉. x0

l gives the equilibrium position of the
lattice vibration without the effect of the low-energy electron
manifold. When we solve the model at the mean-field (DFT)
level, the equilibrium position goes back to the optimized
position within the DFT, since the contributions from Eqs. (39)
and (40) cancel each other.

E. Comparison between our scheme and the scheme proposed
in Ref. [59]

Recently, Giovannetti et al. [59] also proposed a downfold-
ing scheme for electron-phonon-coupled systems. Here, we
compare our scheme with that of Giovannetti et al. The main
difference is the form of the double-counting correction. In
Ref. [59], the phonon-related part of the Hamiltonian [64],
which corresponds to Eq. (41) in our case, is given by

Ĥ =
∑

l

g(p)x0
l nl +

∑
l

g(p)nl

(
xl − x0

l

)

+
∑

l

1

2
(ω(p))2

(
xl − x0

l

)2
. (42)

Here, the electron-phonon coupling g(p) is calculated at xl =
x0

l , while in our scheme g(p) is calculated at xl = 0. Further-
more, Giovannetti et al. include the term

∑
l g

(p)x0
l nl , which

represents the deformation of the band due to the difference
in the equilibrium position between that in the low-energy
Hamiltonian and that obtained by the DFT optimization. Thus,
Giovannetti et al. also introduce the correction to the electronic
part, while our scheme only includes the correction to phonons.
Therefore, the form of the Hamiltonian in Ref. [59] is more
general than ours.
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If the difference in the equilibrium position is large (i.e., |x0
l |

is large), the band deformation term
∑

l g
(p)x0

l nl will become
important. In the case of fullerides, which are discussed
in the next section, we conclude that this effect is small
because the equilibrium positions of the undoped and doped
C60 solids are very similar, which makes the effect of doping an
almost-rigid band shift. Thus, our scheme is indeed applicable
to the fulleride problem. However, of course, there exist
systems in which this band deformation effect is significant.
Reference [59] argues that it is important to take into account
the band deformation effect in the case of the K-doped picene
system [65], because the deformation of the molecule by
doping is not negligible.

To derive the parameters in Eq. (42), Giovannetti et al.
assume that the electrons couple to a single optical phonon,
while in our scheme, we can treat all phonon modes. First,
Giovannetti et al. estimate g(p) by calculating the electron-
phonon coupling for the undoped picene system. Then they
determine x0

l and ω(p) such that the mean-field solution of
the Hamiltonian recovers the equilibrium positions and the
phonon frequencies of the doped system derived within the
DFT and DFPT.

We still lack the methodology to derive a Hamiltonian with
the form of Eq. (42) in a totally ab initio way, i.e., without
simplifying the electron-phonon coupling or determining x0

l

and ω(p) in the postprocessing. To realize this, we need to
develop an ab initio structure optimization scheme without
the effect of low-energy electrons. We also have to carefully
consider the change in electronic parameters. When we derive
a model based on the optimized structure without the effect of
low-energy electrons, for example, the shape of the Wannier
function can be different from that with the fully optimized
structure. Then the values of Coulomb interaction parameters
can differ from those with the conventional cRPA, which uses
the Wannier functions constructed from the fully optimized
structure. When band deformation is really severe, we might
have to be careful in the choice of the low-energy subspace
since the low-energy band character of the optimized structure
without the effect of low-energy electrons might change from
that of the fully optimized structure. Therefore, there re-
main many open questions and challenges regarding the
derivation of a Hamiltonian including the band deformation
term [Eq. (42)]. Note that, in the situation where this band
deformation is important, the cDFPT is also challenged, since
the current cDFPT does not take account of its effect.

IV. APPLICATION

A. Calculation conditions

We performed cDFPT calculations [51] for five fcc A3C60

systems, namely, K3C60, Rb3C60, and Cs3C60 with three
different lattice parameters, whose properties are summarized
in Table I. We employed the same lattice constants as those
employed in Ref. [66] to evaluate the Coulomb parameters by
the cRPA. We specify the material by the volume (VC60

3−)
occupied per C3−

60 anion in a solid. The most expanded

material (Cs3C60, with VC60
3− = 804 Å

3
) is a Mott insulator

and the second most expanded system (Cs3C60, with VC60
3− =

TABLE I. List of materials employed in the calculation. We list
the name of compounds, the lattice constant a, the corresponding
volume occupied per C3−

60 anion in a solid, the applied pressure
in experiments, and the superconducting transition temperature Tc

or Néel temperature TN . Listed materials are the same as those in
Ref. [66] (in Ref. [66], the Coulomb interaction parameters and
hopping parameters are evaluated).

a VC60
3− Pressure Tc (TN )

(Å) (Å
3
) (kb) (K) Ref. No.

fcc K3C60 14.240 722 0 19 [68]
fcc Rb3C60 14.420 750 0 29 [68]
fcc Cs3C60 14.500 762 7 35 [67]
fcc Cs3C60 14.640 784 2 26 [67]
fcc Cs3C60 14.762 804 0 (2.2) [67]

784 Å
3
) is on the verge of the metal-insulator transition [67].

The other three materials show a metallic behavior and the
superconductivity emerges at low temperatures.

As explained in Sec. III, the implementation of the cDFPT
can be done by slightly modifying the existing DFPT program.
Among the various DFPT codes, in the present study, we
modified the one implemented in the QUANTUM ESPRESSO

package [61,62] (see Appendix C). In the cDFPT calculation,
we need to define the low-energy subspace (t subspace).
Figure 1 shows the band structure for fcc Cs3C60 with VC60

3− =
762 Å

3
. Around the Fermi level, there exist the so-called t1u

bands originating from threefold degenerate LUMO orbitals of
the C60 molecule. The t1u bands are isolated from other bands.
As mentioned in Sec. I, the low-energy physics is governed by
low-energy bands, therefore, we choose the t1u bands as target
bands.

The phonon calculations with the cDFPT and the DFPT
were performed after the DFT ground-state calculations.
In the DFT part, we adopted the local density approxi-
mation with the Perdew-Zunger parametrization [69]. The

-4

-3

-2

-1

 0

 1

 2

 3

 4

En
er

gy
 [e

V
]

t-subspace

Γ       X  K        Γ      L    K W  X 

FIG. 1. (Color online) DFT band structure of fcc Cs3C60 with

VC60
3− = 762 Å

3
. We choose the t1u bands as the t subspace [shaded

(yellow) region]. Dotted (green) curves denote the band dispersion
derived by Wannier hopping parameters for the t subspace.
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TABLE II. Partially renormalized phonon frequencies of Hg modes at the � point calculated by the cDFPT method, in cm−1 (1 eV = 8065.54
cm−1). In Ih symmetry (molecular limit), the Hg-mode phonon frequencies are fivefold degenerate. In fcc A3C60 systems, they are split into
threefold degenerate and twofold degenerate frequencies due to the crystal field. Thus, we list two frequencies for each Hg mode. We list the

values of VC60
3− (in Å

3
) in parentheses just after the material names in column headings.

Frequency (cm−1)

Mode K3C60 (722) Rb3C60 (750) Cs3C60 (762) Cs3C60 (784) Cs3C60 (804)

Hg(1) 260, 271 258, 269 259, 278 259, 274 258, 272
Hg(2) 433, 435 433, 433 434, 436 434, 435 433, 435
Hg(3) 706, 708 707, 708 709, 710 709, 710 709, 710
Hg(4) 785, 786 785, 787 787, 797 786, 793 785, 791
Hg(5) 1124, 1128 1124, 1129 1129, 1138 1127, 1135 1126, 1132
Hg(6) 1282, 1287 1282, 1287 1292, 1298 1288, 1294 1286, 1291
Hg(7) 1451, 1455 1452, 1455 1463, 1466 1459, 1461 1457, 1459
Hg(8) 1563, 1564 1563, 1565 1573, 1573 1569, 1570 1567, 1568

pseudopotentials for C, K, Rb, and Cs atoms were prepared
using the same procedure as in Ref. [70] (Troullier-Martins
norm-conserving pseudopotentials [71] in the Kleinman-
Bylander representation [72]). We employed a 4 × 4 × 4 k
mesh and a cutoff energy of 50 Ry for wave functions.
Under the above conditions, we performed the structure
optimization for the materials listed in Table I by fixing the
lattice constant and ignoring the orientational disorder. In the
phonon calculation part, we employed a 2 × 2 × 2 q mesh and
a Gaussian smearing of 0.025 Ry.

B. Phonon frequencies

In alkali-doped fullerides, it has been shown that the domi-
nant electron-phonon coupling comes from the intramolecular
vibration [53,74–79]. When we consider the isolated C60

molecule, only intramolecular phonon modes with Ag and
Hg symmetries have finite electron-phonon couplings to t1u

electrons [80,81]. This is because the C60 molecule has
extremely high symmetry (Ih symmetry), and coupling to
the other modes is forbidden due to the symmetry [53]. This
property also holds well in C60 solids. In particular, coupling
to the Jahn-Teller phonon (so-called Hg modes) is argued to
be crucial to the superconductivity [13,82].

Table II summarizes our calculated partially renormalized
phonon frequencies (ω(p)’s) of Hg modes at the � point. Due to
the crystal field, the frequencies of Hg modes are split in two.
The high phonon frequencies, up to ∼1600 cm−1 (∼0.2 eV),
can be ascribed to the stiff C-C bonds and the lightness of
carbon atoms. Furthermore, the intramolecular nature of the
modes leads to the following features: The Hg phonon modes
have little dispersion (see Fig. 2). The material dependence of
the frequencies is weak.

Note that these partially renormalized frequencies ω(p)

are the inputs for the low-energy solvers and thus cannot
be directly compared with the experimentally observed fre-
quencies. To compare with experiments, we have to include
the effect of t-subspace electrons and calculate the fully
renormalized phonon frequencies (ω(f )). In general, a stronger
coupling between t-subspace electrons and phonons leads to
a larger difference between ω(p)’s and ω(f )’s [50]. In the case
of alkali-doped fullerides, the electron-phonon coupling of
the individual mode is not large, while the accumulation of
contributions leads to a total electron-phonon coupling of
λ ∼ 0.5−1.0 [6–8,82]. Therefore, we do not expect a large
difference between ω(p)’s and ω(f )’s.

In Table III, we list the fully renormalized phonon fre-
quencies of Hg modes at the � point computed by the DFPT.

TABLE III. Fully renormalized phonon frequencies of Hg modes at the � point calculated by the conventional DFPT method, in cm−1

(1 eV = 8065.54 cm−1). The splitting of the frequencies of each Hg mode is due to the crystal field. We list the values of VC60
3− (in Å

3
) in

parentheses just after the material names in column headings. For comparison, we also show the experimentally observed phonon frequencies
in K3C60 [73].

Frequency (cm−1)

Mode K3C60 (722) Rb3C60 (750) Cs3C60 (762) Cs3C60 (784) Cs3C60 (804) K3C60 (expt.)a

Hg(1) 257, 268 255, 267 256, 277 255, 273 255, 271 271
Hg(2) 423, 425 422, 423 422, 425 421, 424 420, 423 431
Hg(3) 683, 686 684, 686 686, 688 686, 688 686, 687 723
Hg(4) 777, 778 777, 778 780, 788 779, 785 778, 782 . . .

Hg(5) 1110, 1114 1110, 1114 1116, 1125 1113, 1121 1112, 1118 . . .

Hg(6) 1267, 1273 1267, 1272 1277, 1283 1273, 1278 1270, 1275 . . .

Hg(7) 1402, 1407 1403, 1405 1415, 1415 1410, 1410 1406, 1407 1408
Hg(8) 1531, 1536 1531, 1535 1541, 1544 1537, 1540 1535, 1538 1547

aRaman scattering measurement from Ref. [73].
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FIG. 2. (Color online) Phonon dispersion of fcc Cs3C60 with

VC60
3− = 762 Å

3
. For the sake of visibility, we restrict the frequency

range to 1100–1400 cm−1. Solid (red) curves indicate partially
renormalized frequencies calculated by the cDFPT; dotted (blue)
curves, fully renormalized frequencies calculated by the conventional
DFPT.

By comparing them with the partially renormalized values in
Table II, we see the softening of frequencies. This is because
the phonons are dressed by the coupling between phonons and
t1u electrons. In other words, phonons acquire the self-energy
associated with t-subspace electrons. However, as expected
(see the discussion above), the difference is small: The absolute
difference is at most ∼50 cm−1. If we consider the ratio
ω(f )/ω(p), it exceeds 0.95; i.e., the difference is less than
5%. Even when we accurately treat the t-subspace processes
beyond the DFPT level by the model-calculation method, the
t-subspace renormalization effects will remain small. Then
we can expect that conventional DFPT calculations give
reasonable estimates of the phonon frequencies. Indeed, the
fully renormalized frequencies in Table III agree well with the
experimental data [73,83].

Figure 2 shows both the partially [solid (red) lines] and
the fully [dotted (blue) lines] renormalized phonon frequen-
cies between 1100 and 1400 cm−1 for fcc Cs3C60 with
VC60

3− = 762 Å
3
. Several intramolecular modes including Hg

modes [Hg(5) and Hg(6)] and non-Hg modes exist in this
frequency range. While they are common in that they have
few dispersions, we see a clear difference between the Hg

modes and the others in the way of softening: Non-Hg modes
do not couple to t1u electrons [84]. Hence, their frequencies
are not affected by the inclusion of t-subspace renormalization
effects. As a result, the dotted (blue) curves (ω(f )) are on top
of the solid (red) curves (ω(p)) for non-Hg modes. On the other
hand, the frequencies for Hg modes are renormalized by a few
percent. Indeed, the red and blue curves are located at different
positions for Hg modes (see the frequency regions 1100–1150
and 1260–1300 cm−1).

C. Phonon-mediated effective interactions between
low-energy electrons

If we write down the partition function for the electron-
phonon-coupled Hamiltonian, Eq. (15), in the coherent-state

j

i i’

g(p)

D(p)

g(p)

j’
FIG. 3. Feynman diagram of phonon-mediated interaction be-

tween electrons. Solid lines with arrows represent the electron
propagator; wavy line, the phonon propagator; and filled circles, the
electron-phonon coupling.

path-integral formalism, we find that we have at most a
quadratic term for the phonon fields. Then we can integrate
out the phonon degrees of freedom analytically. This results
in an electronic model with an additional electron-electron
interaction mediated by phonons (Fig. 3) [85], whose on-site
(=intramolecular) part V

(p)
ij,i ′j ′(iωn) is given by [51]

V
(p)
ij,i ′j ′(iωn) = 1

Nq

∑
qν

g̃
(p)
ij (q,ν)D(p)

q,ν(iωn) g̃(p)∗
j ′i ′ (q,ν)

= − 1

Nq

∑
qν

g̃
(p)
ij (q,ν)

2ω
(p)
qν

ω2
n + (

ω
(p)
qν

)2 g̃
(p)∗
j ′i ′ (q,ν),

(43)

where Nq is the number of the q mesh and ωn is the bosonic
Matsubara frequency ωn = 2πnT with the temperature T [86].
Here, g̃(p)’s are given by

g̃
(p)
ij (q,ν) = 1

Nk

∑
k

g
(p)ν
ij (k,q). (44)

Here, the partially screened electron-phonon coupling g(p)

is used to calculate the phonon-mediated interactions. In
Appendix E, we discuss that the vertex correction for g(p)

is small, which makes the estimate of the phonon-mediated
interactions without the vertex correction reliable.

Phonon-mediated interactions V
(p)
ij,i ′j ′(iωn) are dynamical

interactions, which vanish in the high-frequency limit (ωn →
∞). We call the intraorbital density-density-type, interor-
bital density-density-type, and exchange-type interactions
U

(p)
ph (iωn), U

′(p)
ph (iωn), and J

(p)
ph (iωn), respectively; i.e.,

U
(p)
ph (iωn) = V

(p)
ii,ii(iωn),

U
′(p)
ph (iωn) = V

(p)
ii,jj (iωn), (45)

J
(p)
ph (iωn) = V

(p)
ij,j i(iωn) = V

(p)
ij,ij (iωn),

with i 
= j . We also define the fully screened quantities
U

(f )
ph (iωn), U

′(f )
ph (iωn), and J

(f )
ph (iωn) in the same way;

i.e., U
(f )
ph (iωn) = V

(f )
ii,ii(iωn), U

′(f )
ph (iωn) = V

(f )
ii,jj (iωn), and

J
(f )
ph (iωn) = V

(f )
ij,j i(iωn) = V

(f )
ij,ij (iωn). We find that, because of

the high symmetry of the t1u orbitals, the values of U
(p,f )
ph (iωn),

U
′(p,f )
ph (iωn), and J

(p,f )
ph (iωn) do not depend on the orbital.
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TABLE IV. Material dependence of the static part (ωn =0) of the effective intramolecular interactions mediated by phonons. Values in

parentheses just after material names in column headings denote VC60
3− (in Å

3
).

Type of Interaction (meV)

interaction K3C60 (722) Rb3C60 (750) Cs3C60 (762) Cs3C60 (784) Cs3C60 (804)

U
(p)
ph (0) −152 −142 −114 −124 −134

U
′(p)
ph (0) −53 −42 −13 −22 −31

J
(p)
ph (0) −50 −51 −51 −51 −52

U
(f )
ph (0) −73 −74 −73 −74 −75

U
′(f )
ph (0) 28 29 30 31 31

J
(f )
ph (0) −51 −52 −52 −52 −53

Table IV summarizes the values of the static parts of these
interactions (ωn =0). We find that the relation U

′(p,f )
ph (0)∼

U
(p,f )
ph (0)−2J

(p,f )
ph (0) holds well and also holds for finite

frequencies (see Fig. 4). We first discuss partially renormal-
ized interactions. The negative values of U

(p)
ph (0), U

′(p)
ph (0),

and J
(p)
ph (0) indicate that the interactions are attractive at

ωn = 0. Therefore, they will compete with the repulsive
on-site Coulomb interactions. As for the density-density chan-
nel, since the intramolecular Coulomb repulsion (Hubbard
U ) for t1u electrons is estimated to be of the order of
∼1 eV [66], the repulsive Coulomb interaction dominates
over the phonon-mediated attraction. However, remarkably,
the situation changes for the exchange-type interaction: the
absolute value of |J (p)

ph (0)|∼0.05 eV is larger than that of the
Hund’s coupling, J ∼0.035 eV [66]. Therefore, in fullerides,
an effectively negative exchange interaction is realized [13].
This is contrast with, e.g., the case of LaFeAsO (the first
discovered iron-based superconductor [87]), where the Hund’s
coupling is as large as ∼0.5 eV [25,88] and the phonon-
mediated exchange interaction, J

(p)
ph (0) ∼ −0.02, eV gives

only a minor correction [51]. The unusual competition of the
Hund’s coupling and the phonon-mediated interactions can
be ascribed, mainly, to the following two factors [13]. One
is the molecular nature of the maximally localized Wannier
orbitals. Thus, the sizes of Wannier orbitals become larger than
those of atomic-orbital-like Wannier functions, which results
in a smaller Hund’s coupling. The other is the enhancement
of the negative J

(p)
ph (0) due to the strong couplings between

Jahn-Teller modes and t1u electrons. Jahn-Teller Hg modes
give the non-density-type electron-phonon coupling, which
contributes to J

(p)
ph (0) [80,81,89]. Note that non-Jahn-Teller

Ag modes do not contribute, since the couplings of Ag modes
are of the density type.

As for the material dependence, while that of J
(p)
ph (0) is

small, we see discernible material dependence in U
(p)
ph (0) and

U
′(p)
ph (0). We identify the origin of the material dependence to

be the vibration modes of alkali ions at tetrahedral sites. It is
reasonable that they make a material-dependent contribution
as the distances between C60

3− anions and/or alkali cations
change. Indeed, if we compute U

(p)
ph (0) and U

′(p)
ph (0) for the

five materials excluding the alkali-ion contributions (in this
case, the values become the sum of the contributions from
intramolecular phonons), the results for U

(p)
ph (0) [U ′(p)

ph (0)]

are, in ascending order of VC60
3− , −89 meV [10], −91 meV

[9], −91 meV [9], −93 meV [8], and −95 meV [8]. As is
clear, they have much less material dependence than those
with alkali-ion contributions, which is natural because we
would expect that intramolecular phonons have little material
dependence. We find that the alkali-ion modes couple to the
total density of t1u electrons; i.e., they couple to the density
of the individual orbital with almost the same amplitudes
(g̃(p)

11 
 g̃
(p)
22 
 g̃

(p)
33 ). Thus, it does not contribute to J

(p)
ph .

The contribution to J
(p)
ph (0) originates from the intramolecular

Jahn-Teller coupling (coupling to Hg modes). Therefore, we
see little material dependence of J

(p)
ph (0). Since the electron-

phonon coupling of the alkali-ion modes are of the density
type, the alkali-ion mode contribution is efficiently screened
by t1u electrons, which leads to a minor role of the alkali-ion
modes in superconductivity. As a result, as we see below,
the dominant contribution to fully renormalized interactions
comes from intramolecular phonons, which is consistent with
previous studies [75,90].

We can compute the fully screened phonon-mediated on-
site interactions using Eq. (43) by replacing the partially
renormalized quantities with the fully renormalized quantities.
We list the values of their static part (ωn =0) in Table IV. We
find that the magnitudes of density-density-type interactions,
U

′(f )
ph (0) and U

(f )
ph (0), differ substantially from those of partially

renormalized ones, U
′(p)
ph (0) and U

(p)
ph (0). On the other hand,

the values of J
(f )
ph (0) are almost unchanged from those of

J
(p)
ph (0). This different behavior of Uph, U ′

ph, and Jph can
be understood as follows. t1u electrons efficiently screen
non-Jahn-Teller-type electron-phonon coupling but not Jahn-
Teller-type coupling. The former contributes to Uph and U ′

ph.
Therefore, the difference between the partially and the fully
renormalized quantities is substantial. On the other hand,
only the Jahn-Teller phonon contributes to Jph. Therefore,
we have little difference between the partially and the fully
renormalized quantities. As we discuss above, the alkali-ion-
mode contribution becomes small in the fully renormalized
quantities and the intramolecular Hg-mode contribution be-
comes dominant (the intramolecular Ag-mode contribution is
also screened because Ag modes couple to the total density
of t1u electrons), which makes the material dependence of
U

(f )
ph (0), U

′(f )
ph (0), and J

(f )
ph (0) small.

When we consider the contribution from Hg modes in
the molecular limit [80,81,89], we can show that the relation
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FIG. 4. (Color online) Frequency dependence of phonon-mediated interactions for fcc Cs3C60 with VC60
3− = 762 Å

3
(a, b) along the real

frequency and (c) along the Matsubara axis. (a) Real and (b) imaginary part of U
(p)
ph (ω), U

′(p)
ph (ω), and J

(p)
ph (ω). The frequency dependences

of these quantities are calculated at ω + iη with η = 0.01 eV. (c) Real part of U
(p)
ph (iωn), U

′(p)
ph (iωn), J

(p)
ph (iωn), U

(f )
ph (iωn), U

′(f )
ph (iωn), and

J
(f )
ph (iωn). The imaginary part is always 0 along the Matsubara axis.

U
′(f )
ph (iωn) = −U

(f )
ph (iωn)/2 holds. Since, in reality, we have

a small contribution from the other modes such as Ag and
the alkali-ion modes, the above relation does not exactly
hold. However, this naturally explains why the interorbital
interactions become repulsive (U ′(f )

ph (0) > 0).
We, finally, discuss the frequency dependence of phonon-

mediated interactions. The frequency dependences for fcc

Cs3C60 with VC60
3− = 762 Å

3
on the real-frequency axis are

shown in Figs. 4(a) and 4(b), which illustrate the real and the
imaginary parts of phonon-mediated interactions, respectively.
Since the frequencies of intramolecular phonons range up to
∼0.2 eV, there exist significant structures below ∼0.2 eV.
Im U

(p)
ph (ω) and Im J

(p)
ph (ω) are always negative. On the other

hand, Im U
′(p)
ph (ω) can be both negative and positive. This is

because the contributions from the non-Jahn-Teller and the
Jahn-Teller (Hg) phonons coexist [the former (latter) makes
a negative (positive) contribution]. Note that both non-Jahn-
Teller and Jahn-Teller phonons make a negative contribution
to ImU

(p)
ph (ω) and ImJ

(p)
ph (ω).

We also show the frequency dependence along the Mat-
subara frequencies in Fig. 4(c), where we also plot the
frequency dependence of fully screened interactions. Again,
the nonmonotonic behavior of U

′(p)
ph (iωn) can be ascribed to

the coexistence of attractive (non-Jahn-Teller) and repulsive
(Jahn-Teller) contributions. Because the contribution from
non-Jahn-Teller phonons becomes small in fully screened
interactions, the frequency dependence of U

′(f )
ph (iωn) becomes

monotonic. Since only Jahn-Teller modes, which are poorly
screened by t1u electrons, contribute to Jph, we have a small
difference between J

(p)
ph (iωn) and J

(f )
ph (iωn). Finally, we note

that the relation U
′(p,f )
ph = U

(p,f )
ph − 2J

(p,f )
ph holds well along

both the real and the imaginary frequency axes.

V. CONCLUSION AND OUTLOOK

In this paper, we have presented a detailed explanation
of a newly developed ab initio downfolding scheme for
the electron-phonon-coupled system, the cDFPT. With the
cDFPT, we can calculate the partially renormalized phonon
frequencies and electron-phonon coupling, which are used
as the parameters in the effective low-energy Hamiltonian.
We have shown that the cDFPT scheme can be easily
implemented by a slight modification of the conventional
DFPT scheme.

We have applied the cDFPT scheme to alkali-doped
fullerides. By excluding the t-subspace renormalization effect,
we have seen hardening of the frequencies of phonon modes
which couple to t-subspace electrons. We have also discussed
the difference between partially and fully screened phonon-
mediated interactions. In partially screened interactions, non-
Jahn-Teller phonons make substantial contributions. However,
in fully screened screened interactions, the contribution from
non-Jahn-Teller modes becomes small because it is efficiently
screened by t1u electrons. Thus, Jahn-Teller phonons make the
dominant contributions to fully screened interactions.

In this paper, we have focused on alkali-doped fullerides.
However, in principle, the cDFPT is applicable to other mate-
rials in which phonons play a crucial role. These applications
remain interesting and important future issues. There also
remain challenges on the developmenal side: As discussed
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in Sec. III E, the current cDFPT is not applicable when the
equilibrium positions of the ions are changed drastically by
coupling to low-energy electrons. It is also challenged when
there exists strong anharmonicity in the system. These are
important open questions in the downfolding for electron-
phonon-coupled systems.
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APPENDIX A: EQUIVALENCE OF EQS. (6) AND (8)

Here, we show that Eqs. (6) and (8) indeed give the same
solution. When we write Eq. (8) as

(HSCF + Q − εn)︸ ︷︷ ︸
A

|�ψn〉︸ ︷︷ ︸
x

= −(θ̃F,n − Pn)�VSCF|ψn〉︸ ︷︷ ︸
y

, (A1)

the A matrix is given, in the Bloch basis (note that, in the case
of QUANTUM ESPRESSO, the plane basis is used in the actual
calculation), by

A =

⎛
⎜⎜⎜⎜⎝

ε1+α1−εn 0

ε2+α2−εn

. . .

0 εM +αM −εn

⎞
⎟⎟⎟⎟⎠, (A2)

where M is the size of the basis set describing the Bloch states. θ̃F,n − Pn, on the r.h.s of Eq. (8), is rewritten as

θ̃F,n − Pn =
∑
m

[
θ̃F,n

(
1 − θ̃n,m

) − θ̃F,mθ̃m,n − αm

θ̃F,n − θ̃F,m

εn − εm

θ̃m,n

]
|ψm〉〈ψm|

=
∑
m

[(
θ̃F,n − θ̃F,m

)
θ̃m,n − αm

θ̃F,n − θ̃F,m

εn − εm

θ̃m,n

]
|ψm〉〈ψm|

= −
∑
m

[
θ̃F,n − θ̃F,m

εn − εm

θ̃m,n(εm + αm − εn)

]
|ψm〉〈ψm|. (A3)

With Eqs. (A1), (A2), and (A3), we can show that |�ψn〉 is given by

|�ψn〉 = A−1y =
∑
m

θ̃F,n − θ̃F,m

εn − εm

θ̃m,n|ψm〉〈ψm|�VSCF|ψn〉, (A4)

which is nothing but a proof that Eq. (8) gives the same result as Eq. (6).

APPENDIX B: COMPARISON BETWEEN THE cDFPT AND THE cRPA

Here, we compare the present cDFPT with the cRPA [23]. In the cRPA, which derives the effective electron-electron
interactions in the low-energy model, we calculate the partially screened Coulomb interaction as [23]

W (p) = (
1 − vχ0

r

)−1
v. (B1)

The fully screened Coulomb interaction is obtained by further taking into account the t-subspace screening effect:

W (f ) = (
1 − W (p)χ0

t

)−1
W (p). (B2)

One can see that Eqs. (B1) and (B2) have the same structure as the screened electron-phonon coupling [Eqs. (30) and (31)]. Both
the cRPA and the cDFPT methods rely on the same kind of decomposition of the screening processes. In both cases, we calculate
the partially screened quantities, which are to be used in the low-energy Hamiltonian.

APPENDIX C: PRACTICAL IMPLEMENTATION IN THE CASE OF QUANTUM ESPRESSO

Here, we provide an example of how we modify a source code. In the DFPT implemented in version 4.3.1 of QUANTUM

ESPRESSO [61,62], the βn,m parameters are defined in “orthogonalize.f90,” which exists in the “PH” folder. In Ref. [91], we
distribute a modified “orthogonalize.f90” under the GNU General Public License [92].
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APPENDIX D: CONFIRMATION OF THE EQUALITY � = �t + �r IN SEC. III B

Here, we show that the equality � = �t + �r in Sec. III B indeed holds. In principle, the self-energy �, the electron-phonon
coupling g, the polarization function χ0, and so on, are expressed as matrices. In this section, for the sake of simplicity, we treat
them as if they were scalar quantities. One can easily extend the proof to the case where they are matrices. �t = |g(p)|2χt

DFT is
rewritten as

�t = |g(p)|2 χ0
t

1 − W̃ (p)χ0
t

= |g(b)|2 1

1 − ṽχ0
r

χ0
t

1 − W̃ (p)χ0
t

1

1 − ṽχ0
r

= |g(b)|2
(

1 + ṽχ0
r

1 − ṽχ0
r

)
χ0

t

1 − W̃ (p)χ0
t

(
1 + ṽχ0

r

1 − ṽχ0
r

)

= |g(b)|2(1 + χ0
r W̃ (p)

) χ0
t

1 − W̃ (p)χ0
t

(
1 + W̃ (p)χ0

r

)
= |g(b)|2

[
χ0

t

1 − W̃ (p)χ0
t

+ χ0
r

W̃ (p)

1 − W̃ (p)χ0
t

χ0
t + χ0

t

W̃ (p)

1 − W̃ (p)χ0
t

χ0
r + χ0

r W̃ (p) χ0
t

1 − W̃ (p)χ0
t

W̃ (p)χ0
r

]

= |g(b)|2
[

χ0
t + χ0

t W̃ (f )χ0
t + χ0

r W̃ (f )χ0
t + χ0

t W̃ (f )χ0
r + χ0

r W̃ (p) χ0
t

1 − W̃ (p)χ0
t

W̃ (p)χ0
r

]
. (D1)

Similarly, �r = |g(b)|2χr
DFT is rewritten as

�r = |g(b)|2 χ0
r

1 − ṽχ0
r

= |g(b)|2[ χ0
r + χ0

r W̃ (p)χ0
r

]
. (D2)

Using the equality

W̃ (p) + W̃ (p) χ0
t

1 − W̃ (p)χ0
t

W̃ (p) = W̃ (p)

1 − W̃ (p)χ0
t

= W̃ (f ), (D3)

one can show that �t + �r is expressed as

�t + �r = |g(b)|2[ χ0
t + χ0

r + (
χ0

t + χ0
r

)
W̃ (f )

(
χ0

t + χ0
r

) ]
= |g(b)|2[ χ0 + χ0W̃ (f )χ0 ]
= |g(b)|2χDFT, (D4)

which agrees with the expression for � in Eq. (33).

APPENDIX E: SMALLNESS OF THE
ELECTRON-PHONON VERTEX CORRECTION IN THE

DOWNFOLDING PROCEDURE

Due to the high phonon frequency, ∼0.1 eV, which is
comparable to the typical electronic kinetic energy, ∼0.5 eV,
the Migdal theorem [93] is violated in A3C60 systems.
Therefore, we need a careful consideration of the vertex
corrections. In this Appendix, we argue that, as far as processes
involving high-energy electrons are concerned, the electron-
phonon vertex corrections are small.

To see this, let us consider the “first-order” vertex correction
diagram in Fig. 5. For simplicity, we assume that the multiple
intramolecular phonon modes are represented by a single
Einstein phonon branch with frequency ω0 and that the
electron-phonon vertex g has no momentum dependence (or
the electron-phonon coupling is local). Then the inclusion
of the diagram in Fig. 5 gives the correction to the bare
electron-phonon vertex g0 as g0 → g0(1 + γ ), with γ being a

dimensionless quantity given by

γ = − T

Nk

∑
k′

g1g2D(k − k′)G(k′)G(k′+ q), (E1)

where the gi’s, D, and G are the dressed electron-phonon ver-
tices, phonon Green’s function, and electron Green’s function,
respectively. The gi’s and G have orbital indices, while we
do not show them, for simplicity. k [q] represents a set of the
momentum and the fermionic [bosonic] Matubara frequency,
k = (k,νn) [q = (q,ωn)]. T is the temperature and Nk is the
number of k points. Note that this diagram is of first order
with respect to D, however, it contains higher order diagrams
with respect to the bare phonon Green’s function D0. In the
downfolding procedure, low-energy processes are excluded,
therefore, the two-electron Green’s function in Eq. (E1) should
be a combination of GH and GH or of GH and GL, where
GH (GL) is the propagator of the high-energy (low-energy)
electrons [94]. Then the typical order of γ associated with the

k+q

k

k

k−k
q

g0

g1

g2

k +q

FIG. 5. First-order electron-phonon vertex correction diagram.
The open (filled) circle represents the bare (dressed) electron-phonon
coupling. The thick (thin) solid and wavy lines indicate dressed (bare)
electron and phonon propagators, respectively.

245108-13



YUSUKE NOMURA AND RYOTARO ARITA PHYSICAL REVIEW B 92, 245108 (2015)

downfolding is given by |γ | ∼ 2g1g2/ωr × 1/�E with the
renormalized phonon frequency ωr and the typical particle-
hole excitation energy scale involving high-energy degrees
of freedom �E. Here, to derive this expression, we have
employed the fact that the typical order of the convolution
of GH and GH or GH and GL is ∼1/�E. In the case of
alkali-doped fullerides, �E is at least ∼1 eV. 2g1g2/ωr is
nothing but the static part of the fully screened phonon-
mediated interaction. If g1 and g2 are the coupling between
phonons and low-energy electrons, it corresponds to U

(f )
ph (0),

U
′(f )
ph (0), and J

(f )
ph (0) in Table. IV. While we do not estimate

the coupling between phonons and high-energy electrons,
we expect the order of the phonon-mediated interactions
involving high-energy electrons to be the same as that of

U
′(f )
ph (0) and J

(f )
ph (0). In addition, in the diagrams considered

in the downfolding procedure, the orbital indices for g1 and
g2 are usually different. This is because one is the coupling
to the electron state and the other is the coupling to the
hole state, which would make 2g1g2/ωr smaller. In any case,
2g1g2/ωr will be, at most, ∼0.1 eV. As a result, the correction
γ associated with the downfolding will take a small value,
γ < 0.1.

In conclusion, the neglect of electron-phonon vertex
corrections in the model-derivation step as in the case of the
cDFPT is justified. However, we note that we still need a
careful treatment for vertex corrections in the model-analysis
step since vertex corrections in the t subspace are not
negligible any more.
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P. J. Baker, Y. Ohishi, M. T. McDonald, M. D. Tzirakis, A.
McLennan et al., Nature (London) 466, 221 (2010).

[68] O. Zhou and D. E. Cox, J. Phys. Chem. Solids 53, 1373 (1992).
[69] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[70] R. Akashi and R. Arita, Phys. Rev. B 88, 054510 (2013).
[71] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[72] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).
[73] P. Zhou, K.-A. Wang, A. M. Rao, P. C. Eklund, G. Dresselhaus,

and M. S. Dresselhaus, Phys. Rev. B 45, 10838 (1992).
[74] C. Christides, D. A. Neumann, K. Prassides, J. R. D. Copley, J.

J. Rush, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon,
Phys. Rev. B 46, 12088 (1992).

[75] V. P. Antropov, O. Gunnarsson, and A. I. Liechtenstein, Phys.
Rev. B 48, 7651 (1993).

[76] W. Pickett, D. Papaconstantopoulos, M. Pederson, and S. Erwin,
J. Superconduct. 7, 651 (1994).

[77] T. Ebbesen, J. Tsai, K. Tanigaki, H. Hiura, Y. Shimakawa, Y.
Kubo, I. Hirosawa, and J. Mizuki, Physica C: Superconduc. 203,
163 (1992).

[78] B. Burk, V. H. Crespi, M. Fuhrer, A. Zettl, and M. L. Cohen,
Physica C: Superconduct. 235-240, 2493 (1994).

[79] B. Burk, V. H. Crespi, A. Zettl, and M. L. Cohen, Phys. Rev.
Lett. 72, 3706 (1994).

[80] C. M. Varma, J. Zaanen, and K. Raghavachari, Science 254, 989
(1991).

[81] M. Lannoo, G. A. Baraff, M. Schlüter, and D. Tomanek, Phys.
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