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We develop a time-dependent variational Monte Carlo (t-VMC) method for quantum dynamics of strongly
correlated electrons. The t-VMC method has been recently applied to bosonic systems and quantum spin systems.
Here we propose a time-dependent trial wave function with many variational parameters, which is suitable for
nonequilibrium strongly correlated electron systems. As the trial state, we adopt the generalized pair-product
wave function with correlation factors and quantum-number projections. This trial wave function has been proven
to accurately describe ground states of strongly correlated electron systems. To show the accuracy and efficiency
of our trial wave function in nonequilibrium states as well, we present our benchmark results for relaxation
dynamics during and after interaction quench protocols of fermionic Hubbard models. We find that our trial wave
function well reproduces the exact results for the time evolution of physical quantities such as energy, momentum
distribution, spin structure factor, and superconducting correlations. These results show that the t-VMC with
our trial wave function offers an efficient and accurate way to study challenging problems of nonequilibrium
dynamics in strongly correlated electron systems.
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I. INTRODUCTION

Quantum systems with strong many-body correlations in
equilibrium show intriguing properties such as the metal-
insulator transition [1] and high-temperature superconductiv-
ity [2,3]. Recently, because of potential routes to realizing
intriguing phenomena that are not attainable in the equilibrium,
strongly correlated electron systems driven out of equilibrium
have attracted much attention. In fact, owing to the develop-
ment of experimental techniques, we have been able to control
or realize unprecedented phases and their phase transitions
by applying strong and short pulse of external fields such as
intensive laser pumping [4–13].

For satisfactory theoretical understanding of quantum
dynamics of many-body systems, we have to solve the many-
body time-dependent Schrödinger equation i d

dt
|ψ(t)〉 =

H(t) |ψ(t)〉, where |ψ(t)〉 andH(t) represent the wave function
and the Hamiltonian at time t , respectively. The formal
solution of the time-dependent Schrödinger equation is given
by |ψ(t)〉 = T exp[−i

∫ t

0 H(s)ds] |ψ(0)〉. Here T represents
the time ordering. However, such an approach is tractable
only for small many-body systems, because the Hilbert space
grows exponentially as the system size increases. Furthermore,
reduction to an effective single-particle problem such as the
time-dependent Hartree-Fock method [14] does not give us
accurate results. To treat larger systems accurately, there exist
several numerical methods such as time-dependent density
matrix renormalization group method (DMRG) [15–17],
nonequilibrium dynamical mean-field theory (DMFT) [18],
and quantum Monte Carlo (QMC) method [19]. However,
DMRG and DMFT have difficulties in treating large systems in
two or three spatial dimensions when one wishes to treat spatial
correlations and fluctuations accurately. In order to include
nonlocal correlations, the dynamical cluster approximation
(DCA) has been proposed as an extension of the DMFT
[20]. However, it requires high computational costs for a
large cluster size. Although the QMC method can treat finite
systems exactly, its applications are very limited due to the

notorious negative-sign problem. Recently, to overcome the
above difficulties, Carleo et al. developed the time-dependent
variational Monte Carlo (t-VMC) method and optimized
Jastrow factors in bosonic systems [21,22]. This method can be
formulated based on the time-dependent variational principle
(TDVP) [14,23,24]. The t-VMC method has been applied not
only to bosonic systems [21,22] but also to spin models [25].
However, to the best of our knowledge, its application to
correlated electron systems has not been successful yet. This
limitation may be ascribed to the difficulty of constructing
an accurate trial wave function for such systems. Therefore,
the proposal of accurate trial wave functions suitable for
nonequilibrium electron systems in the t-VMC method is
desirable.

The purpose of this study is to propose an accurate and
efficient trial wave function for strongly correlated electron
systems out of equilibrium in the t-VMC framework. To
achieve this purpose, we focus on highly accurate trial wave
functions for ground states of correlated electron systems. In
such systems, many studies have attempted to construct an
accurate and efficient trial wave function in the variational
Monte Carlo (VMC) framework [26–31]. In Ref. [31] Tahara
and one of the authors have reduced the biases by using the
quantum-number projections and introducing many variational
parameters to one-body part. They have adopted a generalized
pair-product wave function as a one-body part because it can
flexibly describe different competing phases such as correlated
metals, antiferromagnetic states, and superconducting states.
This improved trial wave function has proven to be highly ac-
curate for ground states of strongly correlated electron systems
[31–33]. In this paper we show that this trial wave function is
an accurate and efficient one even for nonequilibrium strongly
correlated electron systems in the t-VMC framework.

The organization of this paper is as follows. In Sec. II we
introduce the TDVP which enables us to obtain an optimal
time-dependent trial wave function and formulate the t-VMC
method by using the TDVP. Section III describes a trial

1098-0121/2015/92(24)/245106(11) 245106-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.245106


KOTA IDO, TAKAHIRO OHGOE, AND MASATOSHI IMADA PHYSICAL REVIEW B 92, 245106 (2015)

wave function with a large number of variational parameters
for nonequilibrium strongly correlated electron systems. In
Sec. IV we show the accuracy and efficiency of our trial wave
function by presenting several benchmark results. Finally, we
summarize our work in Sec. V.

II. TIME-DEPENDENT VARIATIONAL PRINCIPLE

The time-dependent variational principle (TDVP) proposed
by McLachlan is a variational principle for time-dependent
wave functions [23]. In this principle we consider a distance
between i d

dt
|ψα〉 and H |ψα〉 where α = {αk|k = 1, . . . ,Np}

represent time-dependent variational parameters. By defini-
tion, the distance satisfies the inequality

min
α

∥∥∥∥i
d

dt
|ψα〉 − H |ψα〉

∥∥∥∥ � 0, (1)

where the equality holds if |ψα〉 is the solution of the
time-dependent Schrödinger equation. Here the norm ‖|�〉‖
is defined as the square root of an inner product of a wave
function |�〉, i.e., ‖|�〉‖ = √〈�|�〉. If we could optimize
the variational parameters at each time step such that the
equality holds, we obtain the exact solution of |ψα〉. If a
trial wave function well approximates the exact solution of
the time-dependent Schrödinger equation, the value of the
lower bound should be small. Based on this idea, we optimize
variational parameters at each time step such that the distance
is minimized. Originally, the TDVP was applied in the field
of quantum chemistry [34,35]. Recently, a similar principle
has been applied to the matrix product state for quantum
spin models [24,36], the bosonic Jastrow-type wave function
for the Bose-Hubbard model [21,22], and the Gutzwiller
approximation for strongly correlated electron systems
[37–39].

Although exact time evolution is unitary, and thus the norm
〈ψα|ψα〉 is conserved, it is not necessary conserved in TDVP
[Eq. (1)]. To remove the restriction on the norm, we use a
TDVP for norm-independent dynamics [24],

min
α

∥∥∥∥
(

1 − |ψα〉 〈ψα|
〈ψα|ψα〉

)[
i

d

dt
|ψα〉 − H |ψα〉

]∥∥∥∥ � 0. (2)

The details of the TDVP for norm-independent dynamics is
described in Appendix A. Based on this TDVP, we can derive
the differential equation of the time-dependent variational
parameters. Namely, by solving the minimization problem on
the distance (2), we obtain the time evolution of the variational
parameters [21,22,24,36]:

α̇k = dαk

dt
= −i

Np∑
l

(S−1)klgl, (3)

where a matrix S and a vector g are described as

Skl = 〈O†
kOl〉 − 〈O†

k〉 〈Ol〉 , (4)

gk = 〈O†
kH〉 − 〈O†

k〉 〈H〉 , (5)

respectively. In the t-VMC method we estimate an expectation
value 〈A〉 = 〈ψα |A|ψα〉

〈ψα |ψα〉 by the Markov-chain Monte Carlo

method. The derivative operators Ok and O†
k are defined by

using real space configurations of electrons {x} as

Ok =
∑

x

|x〉 Ok(x) 〈x| ,

O†
k =

∑
x

|x〉 O∗
k (x) 〈x| , (6)

respectively. Here

Ok(x) = 1

〈x|ψα〉
∂

∂αk

〈x|ψα〉 ,

(7)

O∗
k (x) = 1

〈ψα|x〉
∂

∂α∗
k

〈ψα|x〉.

The differential equation [Eq. (3)] is called the TDVP
equation [24,36]. This TDVP equation can also be derived
by minimizing the time-dependent action [24,40]. If we use
the time-dependent variational principle for imaginary time
evolution t = −iτ and solve the TDVP equation by using
the Euler method, we obtain the stochastic reconfiguration
scheme proposed by Sollera [26]. The TDVP equation has
a symplectic property [24,40,41]. This property leads to the
energy conservation if the Hamiltonian is time independent
and we could calculate the derivative of parameters α̇k exactly.

In this study, in order to solve the TDVP equation, we use
the fourth-order Runge-Kutta method which provides us with
a stable and efficient way to perform the time integration.
Note that the Runge-Kutta method is not a symplectic integral
method. Furthermore, there are stochastic errors in the Monte
Carlo calculation of quantities such as 〈O†

kH〉 and 〈O†
kOl〉.

These cause the breaking of the symplectic property of the
TDVP equation. Nevertheless, we observed that the energy is
conserved with high accuracy as we show in Sec. IV.

III. TIME-DEPENDENT VARIATIONAL WAVE FUNCTION

In the t-VMC method, the choice of trial wave functions is
important. As a trial wave function, we adopt the form of

|ψ(t)〉 = LP(t) |φ(t)〉 , (8)

which has been used for equilibrium systems in Refs. [31–33].
Here L represents quantum-number projections which recov-
ers the symmetries the wave function should have throughout
the time evolution, and P(t) represents correlation factors.
For the one-body part |φ(t)〉, we employ the pair-product
wave function. In addition, we include backflow correlations
in the pair-product wave function for lattice model [29,42].
The time-dependent variational parameters are included in the
correlation factors as well as in the one-body part with the
backflow correlations. Note that these variational parameters
should be treated as complex numbers because the variational
parameters evolve as complex numbers in the present method.
In this section we describe each component in detail.

A. One-body part

In the conventional VMC, the Slater determinant with small
variational parameters is used as the one-body part. In order
to improve the conventional one-body part, we assume the
form of the pair-product wave function with many variational
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parameters [31]:

|φ〉 =
⎛
⎝ Ns∑

i,j

fij c
†
i↑c

†
j↓

⎞
⎠

N/2

|0〉 , (9)

where N is the number of electrons, Ns is the system size,
c
†
iσ (ciσ ) is a creation (annihilation) operator of an electron

with spin σ on the site i, and the pairing amplitude fij

is treated as variational parameters. This pair-product wave
function is a general form of a Hartree-Fock-Bogoliubov-type
wave function which allows antiferromagnetic and supercon-
ducting orders [31,43,44]. Thus, it takes advantage of flexibly
describing the paramagnetic metals, antiferromagnetic ordered
states, and superconducting states with any type of frequency
independent gap on equal footing.

B. Correlation factors

By operating the correlation factors on the pair-product
wave function, we can include many-body correlation effects
beyond the mean-field level. In this study we use the Gutzwiller
factorPG [45] and the Jastrow factorPJ [46], i.e.,P = PGPJ .

The Gutzwiller factor which was introduced by Gutzwiller
[45] has the form of

PG = exp

(
−g

Ns∑
i

ni↑ni↓

)
, (10)

where niσ = c
†
iσ ciσ and g is the variational parameter. The

Gutzwiller factor punishes the double occupation of electrons
on the same site in real space configurations. In the limit g →
∞, the Gutzwiller wave function PG |φ〉 corresponds to a state
which contains no double occupation. The Gutzwiller factor
is a simple way to improve a mean-field wave function such
as a Slater determinant and the pair-product wave function.
However, it was numerically proven that the Gutzwiller wave
function cannot describe the nonmagnetic Mott transition in
any finite dimensional systems [47]. The main reason for this is
that the Gutzwiller factor only includes the on-site correlation.
Although some doubly occupied (doublon) and empty (holon)
sites exist in the Mott insulator where charge fluctuations are
allowed, the doublon and holon have to be bound in realizing
an insulating behavior.

In order to describe the Mott transition, the Jastrow factor
is introduced [27]:

PJ = exp

⎛
⎝−

Ns∑
i,j

vij (ni − 1)(nj − 1)

⎞
⎠, (11)

where ni = ni↑ + ni↓, vij = v(r i − rj ) = v(rj − r i) are the
variational parameters, and r i(rj ) represents the position
vector of the site i(j ). The Jastrow factor can be represented
by using a doublon number operator and a holon number
operator. The electron number operator ni is written as
ni = 1 + Di − Hi , where Di = ni↑ni↓ is the doublon number
operator and Hi = (1 − ni↑)(1 − ni↓) is the holon number

operator. By using this relation, the Jastrow factor becomes

PJ = exp

⎛
⎝−

Ns∑
i,j

vij (DiDj + HiHj − DiHj − HiDj )

⎞
⎠.

(12)

Equation (12) shows that the Jastrow factor includes off-
site repulsive correlations between doublon-doublon (holon-
holon) pairs and attractive correlations between doublon-holon
pairs if vij > 0. These doublon-holon attractive correlations in
the Jastrow factor play a crucial role for the Mott transition
[27,48].

C. Quantum-number projections

In general ground states of finite quantum systems, the
symmetries of the Hamiltonian must be preserved even if
the symmetry breaking occurs in the thermodynamic limit.
Furthermore, such symmetries must be preserved even after
time evolutions as long as external fields do not break
the original symmetries. However, conventional trial wave
functions often break symmetries of the Hamiltonian.

The quantum-number projection enables us to recover the
symmetries of the trial wave function [49]. Here we introduce
two quantum-number projections: the spin projection LS and
the momentum projection LK . The spin projection LS is the
projection onto the state with a total spin S and z component
of spin Sz = 0. This projection has a form of the integration
over spin space:

LS = 2S + 1

8π2

∫
d
PS(cos β)R(
), (13)

where 
 = (α,β,γ ) is the Euler angle, PS(cos β) is the
Sth Legendre polynomial, and R(
) = eiαSz

eiβSy

eiγ Sz

is the
rotational operator. When the one-body part |φ〉 and the real
space configurations {x} satisfy the condition of Sz = 0, we
can omit the integrations over γ and α as follows:

LS |φ〉 = 2S + 1

8π2

∫
d
PS(cos β)eiαSz

eiβSy

eiγ Sz |φ〉

=
∑

x

|x〉 2S + 1

2

∫
dβ sin βPS(cos β) 〈x|eiβSy |φ〉 .

(14)

We can efficiently estimate the integration over β by the Gauss-
Legendre quadrature [50]. The momentum projection LK is
the projection onto the state with a total momentum K . This
projection has a form

LK = 1

Ns

∑
R

ei K ·RTR, (15)

where TR is the translation operator with the translation
vector R.

D. Backflow correlations

One efficient way to include correlation effects in a trial
wave function is to include backflow correlations [29,42,51–
53]. Recently Tocchio et al. proposed a way of introducing
backflow correlations into a Slater determinant for lattice
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models and found that the backflow correlations substantially
improve ground-state energy of frustrated electronic systems
in the region above intermediate strength of coupling [29,42].
In a way similar to the approach by Tocchio et al., the backflow
correlations for lattice models can be implemented in the
pair-product wave functions with the momentum projection
as

LK |φb〉 =
∑

x

LK |x〉 〈x|φb〉

=
∑

x

(
N

2

)
!
∑

R

ei K ·RPf[Xb(x−R)] |x〉 , (16)

where |φb〉 and PfXb(x−R) represent the pair-product wave
function with backflow correlations and the Pfaffian of the
skew-symmetric matrix Xb(x−R), respectively. Xb(xR) is
defined as

Xb
nm(xR) = f b

TR(in)TR(im)(xR) − f b
TR(im)TR(in)(xR). (17)

Here xR represents the real space configuration which is
created by shifting a configuration x by a translation vector
R. The site of the nth (mth) electron is represented by in (im).
TR(in) is the site characterized by the position vector r in + R.
For simplicity we do not consider the momentum projection in
the following equations. The pairing amplitude with backflow
correlations is defined by

f b
inim

(x) =
3∑

μ,ν=0

∑
τ,τ ′

η
μν

ττ ′�
μ↑
in,in+τ (x)�ν↓

im,im+τ ′(x)

× fin+τ,im+τ ′ , (18)

where {ημν

ττ ′} represent variational parameters.
∑

τ (τ ′) is taken
over τ (τ ′) that satisfies the following condition: 0 � |δ| �
rmax, where δ = r in+τ − r in (δ = r im+τ ′ − r im). We usually
choose rmax as the range of hopping terms in the Hamiltonian.
Here we drop the electron indices n and m for simplicity of
notation, and we define �

μσ

i,i+τ (x) as

�0σ
i,i+τ (x) = δi,i+τ , (19)

�1σ
i,i+τ (x) = 〈DiHi+τ 〉x , (20)

�2σ
i,i+τ (x) = 〈niσ hi,−σ ni+τ,−σ hi+τσ 〉x , (21)

�3σ
i,i+τ (x) = 〈Dini+τ,−σ hi+τσ + niσ hi,−σHi+τ 〉x , (22)

where δi,i+τ represents the Kronecker delta, hiσ = 1 − niσ ,
and 〈A〉x = 〈x|A|x〉 / 〈x|x〉. We impose that η

μν

ττ ′ has the
inversion symmetry and is independent of spin indices, namely
η

μν

ττ ′ = η
μν

−τ,τ ′ = η
μν

τ,−τ ′ = η
νμ

ττ ′ . Furthermore, η00
ττ ′ is replaced

with 1 when �1σ
i,i+τ (x) = 0 for any τ and σ . Note that the

introduction of backflow correlations make computational
costs heavy because we need to recalculate the element of
pairing wave function whenever we generate a candidate of the
next sample and calculate expectation values of off-diagonal
operators.

Finally, we explain the difficulties in operating the spin
projection on the pair-product wave function with backflow
correlations. From the definition of the pairing amplitudes
with backflow correlations, the trial wave function with the

spin projection and backflow correlations is described as

LS |φb〉 =
∑

x

|x〉 2S + 1

2

∫
dβ sin βPS(cos β) 〈x|eiβSy |φb〉

∝
∑
x,x ′

|x〉
∫

dβ sin βPS(cos β) 〈x|eiβSy |x ′〉 PfXb(x ′).

(23)

Here we need to take the summation over real space configu-
rations x ′ because the skew-symmetric matrix depends on x ′.
However, we cannot usually take this summation because the
number of x ′ grows exponentially as the system size increases.
Thus, it is difficult to operate the spin projection on a trial wave
function with backflow correlations.

IV. RESULTS

In this section we show the accuracy and efficiency of
the t-VMC method. For benchmark tests, we consider the
quench dynamics in fermionic Hubbard models. We compare
the t-VMC results with numerically exact results obtained
by calculating the formal solution of the time-dependent
Schrödinger equation and time-dependent DMRG.

A. Model and setting

For benchmark tests we consider the fermionic Hubbard
model which is defined as

H(t) = −thop

∑
〈i,j〉,σ

c
†
iσ cjσ + U (t)

∑
i

ni↑ni↓, (24)

where thop represents the hopping amplitude between nearest-
neighbor sites and U (t) represents the time-dependent on-site
interaction. In this paper we set thop = 1.0. In two-dimensional
cases we treat the square lattice. We consider the linear-ramp
quench where the strength of interaction U (t) is linearly
changed from Ui to Uf during time tq :

U (t) =
{

Ui + Uf −Ui

tq
t (0 � t � tq),

Uf (t � tq),
(25)

where Ui and Uf represent the strength of interaction before
and after the quench protocol, respectively.

For equilibrium systems, there exist many theoretical
studies on the Hubbard models [33,54–57]. In the present
models the ground state at half-filling is believed to be the
antiferromagnetic insulator for any nonzero U/thop due to
the Fermi surface nesting. Away from half-filling, this model
shows rich phases such as correlated metals, antiferromag-
netic metal, and d-wave superconducting states [33,55–57].
According to the VMC calculations, such superconducting
states appear above U/thop � 6.0 in an interval of the doping
concentration [33].

In all the t-VMC calculations, we impose a boundary con-
dition so that the closed shell condition is satisfied for U (t) =
0.0. We choose the discrete time step �t = 1.0 × 10−2/U (t)
for U (t) > thop and �t = 1.0 × 10−2/thop for U (t) < thop in
the Runge-Kutta procedure.
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B. Comparison with exact results

In this section we mainly show the t-VMC results compared
with “exact” results. Here the exact results mean those
obtained by directly calculating the formal solution of the
time-dependent Schrödinger equation:

|ψ(t + �t)〉 = e−iH�t |ψ(t)〉

=
M−1∑
n=0

(−iH�t

n!

)n

|ψ(t)〉 + O(�tM ), (26)

where the wave function is completely expanded in the full
Hilbert space. The errors in this calculation arise only from
the time discretization with the amplitude of O(�tM ). To
preserve the total energy and the norm of the wave function
with good accuracy, we have to choose a small time-grid �t

and a high order M . In this study we choose �t = 1.0 × 10−3

and M = 3 for systems at half-filling and �t = 1.0 × 10−2

and M = 5 for doped systems. Although the exact results can
be obtained irrespective of the interaction strength, the system
size is severely restricted to small systems because of the
exponentially growing computational cost with the increase
of the system size. In order to check whether our trial wave
function is accurate even for larger systems, here we compare
the t-VMC results with time-dependent DMRG results which
are expected to be highly accurate in the thermodynamic limit.

In this section we mainly show the results obtained by using
a trial wave function with all quantum-number projections but
without backflow correlations |ψ(t)〉 = LK=0LS=0P(t) |φ(t)〉.
Although we also tried a trial wave function with backflow
correlations |ψ(t)〉 = LK=0P(t) |φb(t)〉 in our benchmarks,
we did not observe any clear improvement at least for small
systems. Figure 1 shows an example of the time evolution
of the double occupancy for the one-dimensional Hubbard

FIG. 1. (Color online) Time evolution of double occupancy d(t)
for linear-ramp quench in one-dimensional Hubbard model at
half-filling. The parameter set is chosen as (Ui,Uf ,tq ,Ns) =
(0.0,12.0,5.0,10). Red open squares represent the results computed
by using the trial wave function with the momentum projection
but without backflow correlations and blue solid squares represent
the results obtained by using the trial wave function with backflow
correlations and the momentum projection. Black curve represents
the exact result. The range of backflow parameters rmax is chosen as
1. To verify the effect of backflow correlations, here we optimized
trial wave functions directly without the Monte Carlo integration.

model at half-filling and (Ui,Uf ,tq,Ns) = (0.0,12.0,5.0,10).
This result indicates no effect of the backflow correlations.
Note that backflow correlations may improve the description
of dynamics in large systems with geometrical frustrations
in a strong coupling region because these correlations are
important for the description of ground states for such systems
[29,42].

1. One- and two-dimensional Hubbard model at half-filling

In this section we calculate the time evolution of several
physical quantities. The physical quantities we have measured
are the double occupancy d(t), the momentum distribution
n(t ; k), and the spin structure factor Ss(t ; q) defined as

d(t) = 1

Ns

Ns∑
i

〈ni↑ni↓〉 ,

n(t ; k) = 1

2Ns

∑
i,j,σ

〈c†iσ cjσ 〉 eik·(r i−rj ), (27)

Ss(t ; q) = 1

3Ns

Ns∑
i,j

〈Si · Sj 〉 eiq·(r i−rj ),

respectively. Here k and q are wave numbers in the Brillouin
zone. In addition, Si = 1/2

∑
σ,σ ′ c

†
iσσ σ,σ ′ciσ ′ , where σ are the

Pauli matrices.
Figures 2 and 3 show the time evolution of several

quantities in one dimension for (Ui,tq,Ns) = (0.0,5.0,16) and
in two dimensions for (Ui,tq,Ns) = (0.0,5.0,4 × 4), respec-
tively. The dimension of the Hilbert space in these systems is

 0.2

 0.4

 0.6

 0.8

 1

FIG. 2. (Color online) Time evolution of (a) energy per site
E/Ns(t), (b) double occupancy d(t), (c) jump of momentum dis-
tribution at Fermi energy �n(t) = n(t ; q = π/2) − n(t ; q = π/2 +
π/Ns), and (d) spin structure factor Ss(t ; q = π ) for the linear-ramp
quenches in a one-dimensional Hubbard model at half-filling. The
parameter set is chosen as (Ui,tq ,Ns) = (0.0,5.0,16). Symbols and
curves represent the t-VMC results and the exact results, respectively.
Error bars indicate the statistical errors arising from the Monte Carlo
sampling, but most of them are much smaller than the symbol sizes
here and in the following figures.
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 0.2
 0.4
 0.6
 0.8
 1

 1.2

FIG. 3. (Color online) Time evolution of (a) energy per site
E/Ns(t), (b) double occupancy d(t), (c) jump of momentum
distribution at Fermi energy �n(t) = n(t ; (π,0)) − n(t ; (π,π/Ns)),
and (d) spin structure factor Ss(t ; q = (π,π )) for the linear-ramp
quenches in Hubbard model on square lattice at half-filling. The
parameter set is chosen as (Ui,tq ,Ns) = (0.0,5.0,4 × 4). Symbols and
curves represent the t-VMC results and the exact results, respectively.

Ns
CN ×Ns

CN ≈ 108. However, our trial wave function has
only several hundred parameters. Nevertheless, the t-VMC
results well reproduce the exact results. These results show that
our trial wave function offers a highly accurate and efficient
description of quantum dynamics for strongly correlated
electron systems.

Here we briefly comment on a dynamical transition in the
Hubbard models at half-filling. Several works showed that
the dynamics of the jump �n(t) is different depending on
the strength of interaction [58–60]. For weak interactions,
the jump �n(t) decreases gradually from �n(t) = 1.0 to a
constant. On the other hand, for strong interactions, the jump
�n(t) exhibits a collapse-and-revival oscillation. In Fig. 2(c)
we observe clear collapse-and-revival oscillations in a one-
dimensional system especially at Uf = 8.0. However, Fig. 3(c)
shows that only weak oscillations are detected even at large Uf

in the two-dimensional system. The difference appears to show
a qualitative difference between one- and two-dimensional
systems. However, it is difficult to conclude whether a
dynamical transition to the collapse-and-revival oscillation
happens since the system sizes are too small to measure
physical properties right at the Fermi surface, especially in
the two-dimensional case. To study nonequilibrium properties
such as the dynamical transition, we need to treat a larger
system size. We leave its analysis for a future study.

Next we show the dependence on time-dependent trial wave
functions. In Fig. 4(a) we present the t-VMC results for several
different time-dependent trial wave functions for the quench
from Ui = 0.0 to Uf = 4.0. We note that |φ〉 instead of |φ(t)〉
represents the one-body part fixed through the time evolution
at |φ(t = 0)〉 optimized in the ground state before quenching.
In two of the trial wave functions, we optimized all variational
parameters with the momentum projection and the results
agree with the exact ones. Other results are obtained without
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FIG. 4. (Color online) Time evolution of the jump of the mo-
mentum distribution near Fermi energy �n(t) for the linear-ramp
quenches to (a) Uf = 4.0 and (b) Uf = 8.0 in a one-dimensional
Hubbard model at half-filling. The parameter set is chosen as
(Ui,tq ,Ns) = (0.0,5.0,16). Symbols represent the t-VMC results
obtained by using different trial wave functions. In the legend, the
time-dependent part of the trial wave functions include variational
parameters we optimized. Solid curves represent the exact results.

optimizing some part of variational parameters or without
operating the momentum projection. As seen in this figure,
these results do not reproduce the exact results with substantial
discrepancies. Especially we find that the result obtained by
optimizing only the Gutzwiller factor clearly disagrees with
the exact one. The main reason for this disagreement is
that Gutzwiller-type wave function cannot describe insulating
states because of a lack of long-range off-site correlations
which the Jastrow factor includes. In fact, the result obtained
by optimizing only the Gutzwiller-Jastrow factor shows
qualitative agreement with the exact one. This tendency is
similar to that in equilibrium systems where a Gutzwiller-type
wave function fails in reproducing the physical properties of
the Hubbard models in finite dimensions [27,47]. One might
think that variational parameters in one-body part are not
so important to describe the dynamics qualitatively because
optimizing the one-body part affects only the amplitude
of the oscillation after the quench in Fig. 4(a). However,
as we see clearly in Sec. IV B 3, variational parameters in
one-body part play an important role even in a qualitative
description of nonequilibrium states. In Fig. 4(a) we do not
see any improvements by operating the spin projection to
LK=0P(t)|φ(t)〉. However, for the quench to strong interaction
Uf = 8.0 in Fig. 4(b), the difference between the two wave
functions with the momentum projection is more obvious
than that for Uf = 4.0. These results suggest that it is better
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FIG. 5. (Color online) Time evolution of jump of momentum
distribution near Fermi energy for sudden quench from Ui = 0.0 to
Uf = 1.0 by using several methods. The DMRG, DMFT, and DCA
results are taken from Ref. [20]. Symbols, dotted line, dashed line,
and solid curve represent the results obtained by t-VMC, DMFT,
DCA, and DMRG, respectively. The cluster size employed in the
DCA calculation is Nc = 64.

to operate both of the quantum-number projections on the
trial wave function especially in the strong coupling region.
These results show that in order to obtain accurate results by
the t-VMC method, we should operate the quantum-number
projection and optimize all the variational parameters. This
accuracy sensitive to trial wave functions is similar to that for
ground states (see Refs. [31–33] and Appendix B).

2. Size dependence

In the previous subsection we have shown the benchmark
results for small systems at half-filling. In order to check the
accuracy of our trial wave function for larger systems, here
we compare the t-VMC results with highly accurate DMRG
result in the thermodynamic limit. Since the VMC method
offers the results for finite-size systems, we need to investigate
the system-size dependence of our results.

In Fig. 5 we present the t-VMC results of �n(t) for sudden
quench protocol (tq = 0.0) from Ui = 0.0 to Uf = 1.0 in the
one-dimensional Hubbard model at half-filling. In the t-VMC
calculations we operated only the momentum projection to
reduce numerical cost since spin projection is not so important
in the region of small interaction (see Fig. 4). To check
the system-size dependence, we showed three t-VMC results
with different system sizes. For comparisons, we also show
the results obtained by DMRG, DMFT, and DCA [20]. As
an impurity solver of the DMFT and DCA calculations,
the iterative perturbation theory (IPT) was employed. In the
DCA calculation, the reciprocal wave vector K satisfies the
following condition: K = 2nπ/Nc, where n represents integer
and Nc represents a cluster size. Here Nc = 64. As seen in this
figure, the jump �n(t) obtained by DMRG relaxes slowly
with an oscillation. This feature is observed in both the DCA
and t-VMC results although the DMFT result does not show
the oscillation clearly after t > 1.5. However, the DCA result
shows a clear deviation from the DMRG result at long time
even when large cluster size is used. Tsuji and his co-workers
have reported that this deviation comes from the quantum

corrections from higher-order diagrams neglected in the IPT
[20]. On the other hand, our t-VMC results have a strong
size dependence but approach the result of DMRG at long
time as the system size increases. These results imply that our
trial wave function in the t-VMC method have successfully
included the quantum fluctuation beyond the DCA result.

3. Superconducting correlation in hole-doped Hubbard
model in two dimensions

The doped Hubbard model on the square lattice is one
of the simplest models for studying the high-Tc supercon-
ductivity in copper oxides. In this model for equilibrium,
many theoretical studies have proposed the existence of
d-wave superconducting states in the hole-doped region
with strong on-site interaction [33,55–57]. Recently some
experiments have reported that nonequilibrium supercon-
ducting states in copper oxides have been realized even at
room temperature [12,13]. In order to theoretically determine
whether time-evolved states realize superconducting state, it
is necessary to calculate time evolutions of pairing correlation
functions.

As a benchmark for the dx2−y2 -wave pairing correlation
functions Pd (t ; r), we consider the hole-doped Hubbard
models in two dimensions. The pairing correlation function
is defined as

Pd (t ; r) = 1

2Ns

Ns∑
r i

[〈�†
d (r i)�d (r i + r)〉

+ 〈�d (r i)�
†
d (r i + r)〉]. (28)

Here �d (r i) represents the dx2−y2 -wave superconducting order
parameter defined as

�d (r i) = 1√
2

∑
j

fd (rj − r i)(ci↑cj↓ − ci↓cj↑), (29)

where

fd (r) = δry ,0(δrx,1 + δrx ,−1) − δrx,0(δry ,1 + δry ,−1) (30)

is the form factor which describes the dx2−y2 -wave symmetry
and r = (rx,ry).

In Figs. 6(a)–6(d) we compare the t-VMC results with
the exact results of max|Pd (t ; r)| at four different t’s in
the linear-ramp quench from Ui = 0.0 with tq = 10.0. Here
max|Pd (t ; r)| denotes the maximum absolute value of pairing
correlation functions |Pd (t ; r)| among the same r = |r|. As
shown in Figs. 6(a)–6(d), our t-VMC results show good
agreements with the exact results for all the distances at each
time. This accuracy of the superconducting correlations is the
same as that for the ground state (see Appendix B).

Figure 6(e) shows the dependence of max|Pd (t ; r)| on trial
wave functions at long time t = 50.0 for Uf = 8.0. We again
note that |φ〉 instead of |φ(t)〉 represents the one-body part
fixed through the time evolution at |φ(t = 0)〉 optimized in the
ground state before quenching. As seen in Fig. 6(e), only the
correlation function at the largest distance obtained by using
PG(t)PJ (t)|φ〉 shows a large deviation from the exact result,
i.e., its value is one order of magnitude lower than the other
ones. This result implies that only optimizing the correlation
factors is insufficient in reproducing pairing correlations in
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(e) Uf =8.0, t=50.0

Exact

FIG. 6. (Color online) Time evolution of superconducting cor-
relation functions max|Pd (t ; r)| for the linear-ramp quenches in
a two-dimensional doped Hubbard model on square lattice. The
parameter set is chosen as (Ui,tq ,Ns,N ) = (0.0,10.0,4 × 4,12). The
results are measured at time (a) t = 1.0 (after quench protocol starts),
(b) t = 5.0 (in the middle of quench protocol), (c) t = 10.0 (after
quench protocol ends), and (d) t = 50.0 (in long-time limit). The
dependence on trial wave functions is also shown in (e) for Uf = 8.0
at t = 50.0. The lattice spacing is used as a unit of distance. Open
symbols represent the t-VMC results and the other symbols represent
the exact results. The accurate results are obtained only when we use
|ψ(t)〉 = LK=0LS=0P(t) |φ(t)〉.

time evolution. In fact, by optimizing the amplitudes of singlet
pairings fij in one-body part in time evolution, the t-VMC
result at the largest distance well reproduces the exact one. It
is important to obtain the long-range part of the max|Pd (t ; r)|
accurately because it enables us to detect the emergence of the
superconducting phase in large systems. Therefore, to describe
different nonequilibrium states flexibly, it is crucial to optimize
the one-body part.

From these benchmark results, even the superconducting
correlation can be well reproduced by using our trial wave
function, which may inspire studies along this line in the
t-VMC method. One of the intriguing studies is on the influ-
ence of strong laser pulse on superconductivity in correlated
electron systems. Some recent works have shown that the
hopping amplitude is reduced by applying strong laser and

the relative strength of interaction to the transfer become
effectively larger than before [61–63]. By using this effect,
the d-wave superconductivity may grow because, for ground
states, it grows as the on-site interaction increases. However,
in order to confirm whether nonequilibrium states show a true
long-range order or not, calculations for larger systems are
required. Studies on nonequilibrium superconducting states in
larger systems will be reported elsewhere.

V. SUMMARY AND OUTLOOK

In summary, we have developed a time-dependent vari-
ational Monte Carlo method (t-VMC) for strongly correlated
electron systems and have shown the benchmark results for the
fermionic Hubbard model out of equilibrium. By comparing
our t-VMC results with the exact results, we found that our
trial wave function well reproduces exact time evolutions in
both one and two dimensions. These results show that our
trial wave function offers an accurate and efficient descrip-
tion of nonequilibrium states in strongly correlated electron
systems.

One of the advantages of the VMC method is its wide
applicability. In fact, the VMC method can be applied to
complicated ab initio effective models derived by the down-
folding scheme and contributed to identifying mechanism of
physical properties in real materials [64,65]. Applications of
the t-VMC method to such models are intriguing future issues.
Furthermore, the VMC method can be applied not only to
purely electronic systems but also to electron-phonon coupled
systems [66]. Therefore, it would be possible to study the
phenomena of relaxation process and photoinduced phase
transitions through phonon modes in real materials such as
copper oxides.
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APPENDIX A: TIME-DEPENDENT VARIATIONAL
PRINCIPLE FOR NORM-INDEPENDENT DYNAMICS

In this Appendix we review the TDVP for norm-
independent dynamics in terms of the principle of least action
[24,40]. We apply the principle of least action to an action
S = ∫

dtL(α,α) on the manifold M of a trial wave function
|ψα〉. Here the Lagrangian L(α,α) is described as

L(α,α) = i

2
(〈ψ̇α|ψα〉 − 〈ψα|ψ̇α〉) − 〈ψα|H|ψα〉 ,

where α and α represents variational parameters and its
complex conjugates, respectively. Although the norm of the
wave function is preserved under the exact time evolution,
the evolution on the manifold M may break the norm
conservation. To remove the restriction on the norm, the
norm-dependent Lagrangian L(α,α) should be normalized.
Thus, the modified Lagrangian L̃(α,α) for norm-independent
dynamics is introduced:

L̃(α,α) = L(α,α)/ 〈ψα|ψα〉

= i

2

〈ψ̇α|ψα〉 − 〈ψα|ψ̇α〉
〈ψα|ψα〉 − 〈ψα|H|ψα〉

〈ψα|ψα〉 .

The variation of the corresponding action δS̃ with respect
to variations of parameters 〈ψα| → 〈ψα| + 〈δψα| is given
by

δS̃(α,α) =
∫

dt
〈δψα|i( d

dt
− 〈ψα |ψ̇α〉

〈ψα |ψα〉
)|ψα〉

〈ψα|ψα〉

−
∫

dt
〈δψα|(H − 〈ψα |H|ψα〉

〈ψα |ψα〉
)|ψα〉

〈ψα|ψα〉

=
∫

dt
〈δψα|(1 − |ψα〉〈ψα |

〈ψα |ψα〉
)[

i d
dt

− H
]|ψα〉

〈ψα|ψα〉 .

TABLE I. Comparison of physical quantities obtained by the
exact diagonalization (ED) method with those by using different trial
wave function for one-dimensional Hubbard model at half-filling.
E/Ns , �n, and Ss(π ) represents energy per site, jump of the
momentum distribution near the Fermi energy, and the spin structure
factor, respectively. The numbers in parentheses denote the statistical
errors in the last digits.

E/Ns �n Ss(π )

U/thop = 4.0, Ns = 16
PG|φF〉 − 0.5280(5) 0.843(1) 0.490(2)
PGPJ |φF〉 − 0.555(4) 0.5257(17) 0.677(4)
PGPJ |φopt〉 − 0.5674(4) 0.3868(17) 0.6878(23)
LS=0LK=0PGPJ |φopt〉 − 0.57605(1) 0.4220(5) 0.7329(4)
Exact (ED) − 0.57660 0.4326 0.7277
U/thop = 8.0, Ns = 16
PG|φF〉 − 0.217(2) 0.447(3) 0.813(5)
PGPJ |φF〉 − 0.3170(4) 0.168(3) 0.904(3)
PGPJ |φopt〉 − 0.3238(3) 0.150(1) 0.898(3)
LS=0LK=0PGPJ |φopt〉 − 0.32857(2) 0.1546(3) 0.9561(7)
Exact (ED) − 0.32904 0.1578 0.9556

TABLE II. Comparison of energy per site obtained by the ED
method with those by using different trial wave function for doped
Hubbard model on square lattice for U/thop = 8.0 at n = 12/16. The
numbers in parentheses denote the statistical errors in the last digit.

E/Ns

PGPJ |φF〉 − 0.9373(1)
PGPJ |φopt〉 − 0.9452(2)
LS=0LK=0PGPJ |φopt〉 − 0.9728(1)
Exact (ED) − 0.9774

Stationarity of the modified action δS̃ = 0 leads to the
variational equation on the manifold M

〈δψα|
(

1 − |ψα〉 〈ψα|
〈ψα|ψα〉

)[
i

d

dt
− H

]
|ψα〉 = 0. (A1)

Thus, the condition of minimizing the modified action for
norm-independent dynamics is equivalent to Eq. (2) in the full
Hilbert space. Based on Eq. (2) or (A1) we can easily derive
the Euler-Lagrange equation described as

α̇k = dαk

dt
= −i

Np∑
l

(S−1)klgl, (A2)

where a matrix S and a vector g are described as

Skl = ∂

∂αk

∂

∂αl

ln 〈ψα|ψα〉 , gk = ∂

∂αk

〈ψα|H|ψα〉
〈ψα|ψα〉 .

APPENDIX B: DEPENDENCE ON TRIAL
WAVE FUNCTIONS FOR GROUND STATES

OF HUBBARD MODELS

In this Appendix, to gain insight into the dependence of
physical properties on trial wave functions in the nonequilib-
rium states, we compare them with the benchmarks for the
ground states of the Hubbard models.

Exact
opt

opt

F

FIG. 7. (Color online) Superconducting correlation functions
max|Pd (r)| in the ground state of two-dimensional doped Hubbard
model on square lattice for U/thop = 8.0,n = 12/16. Here P =
PGPJ . The lattice spacing is used as a unit of distance. Open symbols
represent the VMC results and the dots represent the ED results.
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Tables I and II show how physical properties depend on trial
wave functions in the ground state of the Hubbard models at
and away from half-filling, respectively. To show the accuracy
of our VMC results, we also show the results obtained by the
exact diagonalization (ED) method. In these tables |φF〉 and
|φopt〉 represent the Fermi sea state and optimized pair-product
wave function, respectively. In all the cases in Table I, there are
large discrepancies, especially in the jump �n, between the
results obtained by using the Gutzwiller-type wave function
(GWF) PG|φF〉 and those of the ED method. The main reason
for this is that GWF cannot describe insulating states as we
described in Sec. III. By operating the Jastrow factor, the

VMC results at half-filling are qualitatively consistent with
those of the ED method. For both half-filled and hole-doped
models, the energies obtained by using our best trial wave
function LK=0LS=0PGPJ |φopt〉 agree with those of the ED
method, and the relative errors are less than 0.5%. Figure 7
shows the pairing correlations obtained by using different
trial wave functions in the doped Hubbard model on the
square lattice for U/thop = 8.0,n = 12/16. As shown in Fig. 7,
LK=0LS=0PGPJ |φopt〉 has the best accuracy of the dx2−y2 -
wave superconducting correlations for all the distances. These
trends on trial wave functions are similar to those in the t-VMC
method.

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

[2] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
[3] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.

Chem. Soc. 130, 3296 (2008).
[4] S. Koshihara, Y. Tokura, T. Mitani, G. Saito, and T. Koda, Phys.

Rev. B 42, 6853 (1990).
[5] T. Miyamoto, K. Kimura, T. Hamamoto, H. Uemura, H. Yada,

H. Matsuzaki, S. Horiuchi, and H. Okamoto, Phys. Rev. Lett.
111, 187801 (2013).

[6] M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura,
R. W. Schoenlein, and A. Cavalleri, Nature (London) 449, 72
(2007).

[7] H. Okamoto, T. Miyagoe, K. Kobayashi, H. Uemura, H.
Nishioka, H. Matsuzaki, A. Sawa, and Y. Tokura, Phys. Rev.
B 82, 060513 (2010).

[8] H. Okamoto, T. Miyagoe, K. Kobayashi, H. Uemura, H.
Nishioka, H. Matsuzaki, A. Sawa, and Y. Tokura, Phys. Rev.
B 83, 125102 (2011).

[9] H. Ichikawa, S. Nozawa, T. Sato, A. Tomita, K. Ichiyanagi, M.
Chollet, L. Guerin, N. Dean, A. Cavalleri, S. Adachi, T. Arima,
H. Sawa, Y. Ogimoto, M. Nakamura, R. Tamaki, K. Miyano,
and S. Koshihara, Nat. Mater. 10, 101 (2011).

[10] L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin,
S. Brazovskii, and D. Mihailovic, Science 344, 177 (2014).

[11] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Science 331, 189 (2011).

[12] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C.
Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri,
Nat. Mater. 13, 705 (2014).

[13] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu,
M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri,
Phys. Rev. B 89, 184516 (2014).

[14] P. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376
(1930).

[15] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[16] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[17] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.
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