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We present a methodology to calculate frequency and momentum dependent all-electron response functions
determined within Kohn-Sham density functional theory. It overcomes the main obstacle in calculating response
functions in practice, which is the slow convergence with respect to the number of unoccupied states and the
basis-set size. In this approach, the usual sum-over-states expression of perturbation theory is complemented by
the response of the orbital basis functions, explicitly constructed by radial integrations of frequency-dependent
Sternheimer equations. To an essential extent an infinite number of unoccupied states are included in this way.
Furthermore, the response of the core electrons is treated virtually exactly, which is out of reach otherwise. The
method is an extension of the recently introduced incomplete-basis-set correction (IBC) [Betzinger et al., Phys.
Rev. B 85, 245124 (2012); 88, 075130 (2013)] to the frequency and momentum domain. We have implemented the
generalized IBC within the all-electron full-potential linearized augmented-plane-wave method and demonstrate
for rocksalt BaO the improved convergence of the dynamical Kohn-Sham polarizability. We apply this technique
to compute (a) quasiparticle energies employing the COHSEX approximation for the self-energy of many-body
perturbation theory and (b) all-electron RPA correlation energies. It is shown that the favorable convergence of
the polarizability is passed over to the COHSEX and RPA calculation.
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I. INTRODUCTION

Response functions play an important role in condensed
matter theory. They describe how a many-electron system
reacts to an external perturbation. For example, a perturbing
electric field leads to a rearrangement of the electronic
charge giving rise to polarization and screening effects.
Likewise, a perturbing magnetic field may induce changes
in the magnetization density. The perturbation can be caused
by an incoming beam of particles, e.g., photons, electrons,
and neutrons. Response functions, thus, determine the spec-
troscopic properties of the material. Furthermore, they are
central ingredients in electronic structure methods that go
beyond standard Kohn-Sham (KS) density-functional theory
(DFT) [1,2]. For example, the GW approximation [3–5] for
the electronic self-energy as well as the electronic correlation
energy within the adiabatic-connection fluctuation-dissipation
theorem (ACFDT) [6,7] using the random-phase approxima-
tion (RPA) [8–10] require the calculation of the microscopic
polarizability in its most general form, i.e., with full frequency
and momentum dependence.

In practice, the main obstacle in calculating the polarizabil-
ity is the slow convergence with respect to the basis-set size and
the number of unoccupied states. It formally involves a sum
over the infinite number of unoccupied states. In a practical
calculation, of course, only a finite number N of states is
available, which becomes a convergence parameter. In recent
years, several approaches have been proposed to accelerate
the convergence. The extra-polar approximation [11] replaces
the unknown energies of all bands above the N th band
by a constant parameter, which allows the sum to collapse
over the unknown bands, an approach that is also known
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as common-energy-denominator approximation (CEDA) [12]
or localized Hartree-Fock method [13] in the context of
the optimized-effective-potential (OEP) method [14,15]. This
approach is easy to implement, but it is not parameter-free and
often still shows slow convergence with respect to N. Berger
et al. [16,17] replaced the energies of the unoccupied states,
instead, by an effective-energy function, which is independent
of the band index, again allowing the infinite sum to convert to
a finite one. However, while in principle exact and parameter-
free, the exact form of this function is not known and must be
approximated. It turns out that improving the approximations
quickly becomes unwieldy. As an alternative, the solution
to the differential Sternheimer equation [18] in a basis set
formally gives the same result as the summation over the
unoccupied states, thereby avoiding the explicit summation.
However, since the solution is sought in the space spanned by
the orbital basis set, the slow convergence with respect to the
basis-set size remains.

In two recent papers, Refs. [19] and [20], we developed
an incomplete-basis-set correction (IBC) for computing the
static polarizability, numerically realized in the all-electron
full-potential linearized augmented-plane-wave (FLAPW)
method [21–24]. The IBC solves the aforementioned prob-
lems. It does not rely on adjustable parameters or additional
approximations and captures response contributions that lie
outside the space spanned by the basis set. It can be pictured as
a combination of the usual sum-over-states (SOS) expression
of Rayleigh-Schrödinger perturbation theory and a basis-
response term constructed from pointwise solutions to an
“atomic” Sternheimer equation. The latter incorporates the
contribution of the infinitely many states that are not contained
in the finite SOS. Similar ideas have been formulated by
Savrasov in Ref. [25] for the linear muffin-tin orbital (LMTO)
method [26,27]. In addition, the IBC comprises a Pulay term
(named after a formally similar expression used in atomic
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force calculations [28]), which corrects for deviations of the
calculated eigenfunctions from the exact pointwise solutions
of the KS equation. In the derivation of the IBC, we exploit the
fact that all-electron methods usually employ basis functions
that are adjusted to the effective potential and therefore
already represent approximate solutions to the underlying KS
equation. In the FLAPW method, these functions are defined
inside the muffin-tin spheres centered around the atoms.
Their response to a perturbation of the effective potential
can be obtained by integrating the corresponding differential
radial Sternheimer equation. We demonstrated [19,20] that
the IBC significantly accelerates the convergence of the static
polarizability in terms of both basis-set size and the number of
unoccupied states.

In this paper, we extend the IBC to frequency and
momentum dependent perturbations (Sec. II A) and apply
it to the dynamical polarizability (Sec. II B). The improved
convergence behavior is demonstrated for rocksalt barium
oxide (Sec. II C). We will see that the generalized IBC enables
the calculation of highly accurate dynamical polarizabilities
already with a minimal LAPW basis set. The resulting
polarizabilities are then employed to compute two different
properties: (a) quasiparticle energies within the COHSEX
approximation for the self-energy and (b) the all-electron RPA
correlation energy of BaO (Sec. III).

II. INCOMPLETE BASIS-SET CORRECTION

This section is devoted to the development of the IBC
for frequency and momentum dependent perturbations. The
resulting equations are formally similar to the ones derived
in Refs. [19] and [20] for the static case. Therefore, we
recapitulate the derivation of the IBC in Sec. II A and focus
specifically on the points where the mathematical formulation
has to be modified to allow for the more general case. We
emphasize here the conceptual idea and discuss the IBC in
an intuitive manner. A detailed derivation starting from the
single-particle KS equations is presented in Appendix A.
Since the core states are confined to the muffin-tin (MT)
spheres and calculated in terms of a spherically symmetric
effective potential, the IBC enables an exact treatment of
their contribution to the polarizability, which is shown in
Appendix B. Section II B uses the results to define a corrected
frequency and momentum dependent polarizability. We then
analyze the improved convergence behavior in Sec. II C. When
referring to equations of our previous papers [19] or [20] we
use a prime (′) or a double prime (′′), respectively. Unless
otherwise noted, we employ the same notation, definitions,
and units (i.e., Hartree atomic units). For simplicity, the spin
index is suppressed, and we restrict the derivation to the
nonrelativistic case. The numerical implementation, however,
uses the corresponding scalar-relativistic equations.

A. Generalization

The polarizability describes the linear response of the
electron density to perturbations of the KS effective potential.
We use the functions MI (r) of the mixed product basis
(MPB) [29–32] as a basis set for the spatial part of the perturba-
tions. The MT MPB functions are given as a product of a radial

part and a spherical harmonic MI (r) = MI (r)YLM (r̂) with the
index I = (a,P,L,M), where a is the atomic index and P

distinguishes between different radial functions Ma
PL(r).

We consider a time-dependent perturbation of the form
MI (r)e−iωt and write the linear response of the KS single-
particle wave functions ϕnk(r) as ϕ

(1)
nk,I (r,ω)e−iωt , showing the

same time dependence as the perturbing field. Since the density
is written in terms of the ϕnk(r), it is this response that we deal
with in the following.

When representing ϕnk(r) = ∑
G zG(n,k)φkG(r) in terms

of the LAPW basis {φkG(r)}

φkG(r) =
{

exp[i(k + G) · r]/
√

� if r ∈ IR∑
lm

∑1
p=0 Aa

lmp(k,G)ua
lmp(ra) if r ∈ MT(a),

(1)

[� denotes the volume of the unit cell, Aa
lmp(k,G) are the

matching coefficients and ra is the position vector relative
to the MT sphere center of atom a] differentiating with
respect to the potential formally produces one term where
the basis functions themselves are differentiated. Through the
augmentation functions ua

lmp(r) = ua
lp(r)Ylm(r̂) defined by

ha
l rua

l0(r) = εa
l rua

l0(r) (2)

for p = 0 and

ha
l rua

l1(r) = εa
l rua

l1(r) + rua
l0(r) (3)

for p = 1, where εa
l is a predefined energy parameter and

ha
l denotes the radial Hamiltonian ha

l = − 1
2

∂2

∂r2 + l(l+1)
2r2 +

V a
eff,0(r), the LAPW basis functions do depend on the spher-

ically averaged effective potential V a
eff,0(r). We can, thus,

formally define a response

u
a(1)
lmp,I (r,ω) =

∑
l′m′

u
a(1)
lmp,I,l′m′(r,ω)Yl′m′(r̂) , (4)

extending the definition of Eq. (1′′) by the frequency of the
perturbation. For a purely spherical perturbation (L = 0), the
response remains in the same lm channel: l′ = l,m′ = m. A
nonspherical perturbation (L > 0), on the other hand, can
create response contributions in other (in general more than
one) l′m′ channels. Using time-dependent perturbation theory
for degenerate states, the radial parts for p = 0 and p = 1 can
be shown to obey the inhomogeneous equations[

ha
l′ − εa

l − ω
]
ru

a(1)
lm0,I,l′m′(r,ω)

= GMm′m
Ll′l

[
δll′ε

a(1)
l,I − MI (r)

]
rua

l0(r) (5)

and[
ha

l′ − εa
l − ω

]
ru

a(1)
lm1,I,l′m′ (r,ω)

= GMm′m
Ll′l

[
δll′ε

a(1)
l,I − MI (r)

]
rua

l1(r) + ru
a(1)
lm0,I,l′m′(r,ω),

(6)

reproducing Eqs. (2′′) and (3′′) in the limit ω → 0. The
linear change ε

a(1)
l,I of the energy parameter εa

l is given by
〈ua

l0|MI |ua
l0〉. We see that it is the Gaunt coefficient GMm′m

Ll′l =∫
YLM (r̂)Y ∗

l′m′ (r̂)Ylm(r̂)d� that couples the LM channel of the
perturbation and the lm channel of the perturbed function with
the resulting l′m′ channel of the response. Due to the selection
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rules of the Gaunt coefficients, many of the terms in Eq. (4)
vanish [20]. Furthermore, it is possible to solve the linear
differential equations independently of m,m′, and M and
subsequently simply scale the solutions by the corresponding
factor GMm′m

Ll′l .
In essence, Eq. (5) is the Sternheimer equation for an atomic

(i.e., spherically symmetric) problem, except for the fact that
the radial functions are defined only for r � Sa with the MT
sphere radius Sa (no atomic boundary condition). In this sense,
we can interpret u

a(1)
lm0,I,l′m′(r,ω) as an “atomic solution” that

takes care of the rapid variations inside the MT spheres, which
cannot be captured in practice by the usual SOS expression.
We will later combine this atomic solution with the SOS and in
this way introduce the necessary periodic boundary condition.

The differential equations above do not determine the
response u

a(1)
lmp,I,l′m′(r,ω) uniquely since we may always add

a multiple of the homogeneous solution[
ha

l′ − εa
l − ω

]
ru

a,hom
l,l′ (r,ω) = 0 . (7)

In the previous publications, we have fixed this arbitrariness
by an orthogonality condition. We have found this definition to
work well in the static case but not so for ω 	= 0, in particular
for large ω. We therefore revert to another condition, namely
that the response (and its gradient) should be continuous
throughout space. Since the LAPW basis functions do not
depend on the effective potential in the interstitial region,
this means that the response should go to zero in value and
slope at the MT sphere boundary. This condition, in fact,
results naturally if we differentiate the matching coefficients
Aa

l′m′p(k,G) as part of the functional derivative of Eq. (1),
which produces terms that contain the functions ua

l′p(r) (p =
0,1). Hence, we have the freedom in three coefficients

ũ
a(1)
lmp,I,l′m′(r,ω) = u

a(1)
lmp,I,l′m′(r,ω) + αu

a,hom
l,l′ (r,ω)

+βua
l′0(r) + γ ua

l′1(r) (8)

but only two conditions ũ
a(1)
lmp,I,l′m′(Sa,ω) = ũ

a(1)′
lmp,I,l′m′(Sa,ω) =

0. We resolve this ambiguity with the choice γ = 0. This

choice leads to stable results up to very large imaginary
frequencies and to a fast band convergence (see results below).
As a rationale, note that for small ω the three radial functions
u

a,hom
l′,l (r,ω), ua

l′0(r), ua
l′1(r) are practically linearly dependent.

In fact, it can be shown that the definition of Ref. [20] is
recovered in the static limit. So far, we have only discussed
the augmented plane waves of the LAPW basis set. For
local orbitals (p � 2) [33–36], we basically use the same
construction principle employing the solution of Eq. (5), now
with the energy parameter εa

lp 	= εa
l of the local orbital.

The generalization to momentum dependent perturbations
is straightforward. For a perturbation restricted to the MT
sphere, the momentum dependence can be considered by a
simple phase factor eiq·R with the momentum vector q and the
position vector R that points to the respective MT center. This
corresponds to the definition of the q dependent MT functions
M

q
I (r) of the MPB [29–32]. The response simply acquires the

same phase factor so that, as a result, we can write the response
of a basis function φkG(r) as

φ
(1)
kG,Iq(r,ω) = ei(k+q)·R ∑

lmp

Aa
lmp(k,G) (9)

×
∑
l′m′

ũ
a(1)
lmp,I,l′m′ (|r − R|,ω)Yl′m′ (̂r − R)

for r pointing into the MT sphere centered at R. In the intersti-
tial region the response of the basis is zero. For local orbitals,
an analogous formula is used with the local-orbital index
replacing G. Linear combination with the wave-function co-
efficients yields ϕ̃

(1)
nk,Iq(r,ω) = ∑

G zG(n,k)φ(1)
kG,Iq(r,ω). Just

as Eq. (9), this is a Bloch function with wave vector k + q,
showing that a wave function at k is scattered into k + q by a
q-like perturbation. With ϕ̃

(1)
nk,Iq(r,ω) as a first approximation

to the response of the wave function and using time-dependent
Rayleigh-Schrödinger perturbation theory only for the remain-
der yields a result that is formally similar to the one derived in
Ref. [19],

ϕ
(1)
nk,Iq(r,ω) =

∑
n′�N

〈ϕn′k+q|Mq
I |ϕnk〉

εnk − εn′k+q + ω
ϕn′k+q(r) +

∫
d3r ′

[
δ(r − r′) −

∑
n′�N

ϕn′k+q(r)ϕ∗
n′k+q(r′)

]
ϕ̃

(1)
nk,Iq(r′,ω)

+
∑
n′�N

〈ϕn′k+q|H − εn′k+q|ϕ̃(1)
nk,Iq(ω)〉

εnk − εn′k+q + ω
ϕn′k+q(r) , (10)

where H is the single-particle KS Hamiltonian. In particular,
we can identify several terms that we already know from
the static, q independent case: the usual SOS expression of
text-book perturbation theory, the basis-response (BR) term,
and the Pulay term. It is easy to verify that the last two terms
vanish in the limit of an infinite, complete basis, in which case
the SOS term would yield the exact result. In the practical
case of a finite, incomplete basis set, the BR term specifically
adds response contributions that lie outside the Hilbert space
spanned by the basis set or, in fact, the set of the calculated
eigenfunctions of H , which can be smaller than the basis set.
These contributions come mainly from the infinite number of

states that are not included in the SOS term. The sum over n′
in the BR term can also be interpreted as a double-counting
correction that projects out that part of the response that is
already treated by the first term. The Pulay term constitutes a
correction for the SOS term that arises because the calculated
eigenfunctions of H in general deviate from the true physical
eigenstates due to the incompleteness of the basis set.1 We
want to stress at this point that Eq. (10) is independent of

1We note that there is a second Pulay term for the state ϕnk, which
is, however, negligibly small for an occupied state ϕnk.
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the specifics of the used basis set, which enter only in the
construction of ϕ̃

(1)
nk,Iq(r,ω), defined above in the framework

of the FLAPW method. We are sure that a similar construction
is possible in other basis sets, such as the linear muffin-tin
orbital (LMTO) [26,27] or the projector augmented-wave
(PAW) [37,38] method. In this sense, the IBC appears as a
rather general method that has different realizations in different
approaches.

Unlike what is suggested by the name incomplete-basis-set
correction, we also obtain an accurate description of the linear
response of the core states, which, in the FLAPW method,
are treated independently of the valence basis set. The core
states are calculated as eigensolutions of the relativistic Dirac
equation with atomic boundary conditions, retaining only the
spherical part of the effective potential. The energy eigenvalue
results from the requirement that the solution is regular at
the nucleus r → 0 and that it goes to zero for r→ ∞. In
the same manner as for the valence states, we can obtain the
core-state response as the solution of a perturbed Schrödinger
equation similar to Eq. (5), where we adopt a scalar-relativistic
approximation. Further details are discussed in Appendix B.

B. Polarizability

The polarizability gives the linear response of the electron
number density n(r) to perturbations of the effective potential
Veff(r). It can thus be defined as the functional derivative

χs(r,r′; ω) = δn(r,ω)

δVeff(r′,ω)
, (11)

where we have used a frequency dependent formulation. Due
to the time independence of the unperturbed Hamiltonian the
linear response exhibits the same frequency as the perturbing
field. Representing the polarizability in the MPB and using
n(r) = 2

∑
kn |ϕnk(r)|2, we can write Eq. (11) as

χs,IJ (q,ω) = 2
BZ∑
k

occ.∑
n

〈
M

q
I ϕnk

∣∣ϕ(1)
nk,Jq(ω) + ϕ

(1)
nk,Jq(−ω)

〉
,

(12)
where the factor 2 stems from the spin summation, and the
term containing −ω comes from the derivative of the complex
conjugate. The generalization to the spin-polarized case is
trivial. We note that the k summation should be understood
as an integration over the Brillouin zone (BZ). In practice,
the k-point set is finite and one uses an interpolation between
the points, e.g., the tetrahedron method [39]. In this case,
integration weight factors must be taken into account, which
we omit here for the sake of simplicity. Now, we replace
ϕ

(1)
nk,Jq(r,ω) by the right-hand side of Eq. (10) and obtain the

polarizability as the sum of three terms

χs,IJ (q,ω) = χSOS
s,IJ (q,ω) + χBR

s,IJ (q,ω) + χ
Pulay
s,IJ (q,ω) , (13)

which derive from the SOS, BR, and Pulay terms. The rather
lengthy formulas are explicitly given in Appendix C. The SOS
term corresponds to the usual Adler-Wiser expression for the
polarizability [40,41]; the other two are the IBC terms. The
contribution of the core states is included in the BR term. It
should be pointed out that the corrected formula for χs,IJ (q,ω)
is asymmetric in the indices I and J . This is evident from

Eq. (12), where the I th MPB function is projected from
the left, whereas the J th function enters the IBC-corrected
expression. The deviation from exact Hermiticity is usually
small. The correct symmetry is reestablished in the code
simply by an explicit symmetrization of the polarizability
matrix. The decomposition of Eq. (13) invites us to analyze
the convergence of the three terms separately. We will carry
out such an analysis in the next section.

C. Performance

We analyze the convergence of the polarizability in terms
of the basis-set size and the number of unoccupied states
for the example of rocksalt BaO. Barium oxide was chosen
as a prototypical ionic system with localized states (O2p

and semicore Ba5s and 5p). Localized states are known to
cause convergence problems in the conventional SOS approach
due to their slowly convergent Fourier series that allows
them to couple to energetically high-lying states [42]. As the
noninteracting reference system, we employ the solution of a
preceding DFT calculation with the PBE functional [43] for
the exchange-correlation potential and a lattice constant of
10.24 a0 (a0 is the Bohr radius). A reciprocal cutoff radius of
4.00 a−1

0 for the interstitial region and an angular momentum
cutoff of 10 in the MT spheres (of both elements with
SBa = SO = 2.49 a0) is employed. The Ba 5s and 5p semicore
states are described by local orbitals. For the auxiliary MPB
a reciprocal cutoff of 3.30 a−1

0 and an angular momentum
cutoff of 4 is used. The Brillouin zone is sampled by a
2 × 2 × 2 k-point set.

As a figure of merit for the accuracy of the polarizability
matrix χs,IJ (q,ω), we choose its trace (tr). The formalism so
far applies to real and complex frequencies ω alike. Since the
ACFDT-RPA correlation energy expression only involves the
imaginary frequency axis, we restrict ourselves to imaginary
frequencies in the following. Furthermore, we concentrate on
the valence contribution to the polarizability and leave out the
core contribution for the moment, which would merely lead to
a constant vertical shift of the curves.

The convergence of tr χs(q,ω) is analyzed in Fig. 1 with
respect to the basis-set size for the X point of the BZ,
q = (0.0,0.5,0.5) in internal coordinates, and three different
frequencies along the imaginary axis (which are integration
points of the Gauß quadrature). The size of the LAPW basis set
is controlled by mainly two parameters: the reciprocal cutoff
Gcut and the number nLO of additional sets of local orbitals.
Here, one set contains in total 72 functions of orbital character
s,p, . . ., h (l = 5) for the two atom types. While nLO = 0
corresponds to the conventional minimal LAPW basis for BaO
including the 5s and 5p semicore local orbitals amounting
to 276 basis functions, the basis with nLO = 6 contains 708
functions in total.

Figure 1 shows the expected result, namely that the
conventional SOS [(green) dashed curve] converges very
slowly with respect to nLO. The rate of convergence gets
even smaller the larger the absolute value of the frequency
is, revealing that this problem intensifies for the dynamical
polarizability. The curve corresponding to the BR term [(blue)
dotted curve] exhibits an equally slow but inverse convergence
towards zero, reflecting the improved completeness of the basis
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FIG. 1. (Color online) Trace of the polarizability matrix
χs,IJ (q,ω) for q = (0.0,0.5,0.5) and three different imaginary fre-
quencies as a function of the basis-set size, indicated by nLO; 276 and
708 basis functions for nLO = 0 and 6, respectively. The SOS part is
shown as a (green) dashed curve and the BR and Pulay terms as (blue)
dashed and (orange) dot-dashed curves, respectively. The sum of the
three contributions is the IBC result and is shown as the (red) solid
line. The insets show the IBC-corrected curve on a finer scale [(red)
pluses], additionally for Gcut = 4.40 a−1

0 [(turquoise) open circles]
and 4.80 a−1

0 [(magenta) filled triangles].

set with increasing nLO. When comparing the curves for the
three frequencies, we observe that the BR term takes over
more and more of the response for larger frequencies and,
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FIG. 2. (Color online) Convergence of the trace of χs,IJ (q,ω)
for q = (0.0,0.5,0.5) and three different imaginary frequencies
with respect to the number of unoccupied states, for two basis
sets containing 276 (nLO = 0, circles) and 708 functions (nLO = 6,
squares), respectively. Green open symbols correspond to the SOS,
blue filled symbols to the BR, and orange half-filled symbols to
the Pulay term. The sum, given as red open symbols, shows rapid
convergence independently of the chosen basis set.

thus, compensates for the slow convergence of the SOS. The
Pulay term [(orange) dot-dashed curve] gives a relatively small
contribution, but still an important one for the conventional
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basis set (nLO = 0), in particular for small frequencies. Adding
up all three contributions yields the red curve, which is nearly
a constant on the scale of the graph. The variation between
nLO = 0 and nLO = 6 lies below 1.5% as can be seen in the
insets, where we also show the convergence of tr χs,IJ (q,ω)
with respect to the reciprocal cutoff Gcut. Increasing Gcut to
4.40 a−1

0 and 4.80 a−1
0 changes the curves only marginally. In

conclusion, the IBC enables a calculation of the dynamical
polarizability that is by orders of magnitude more accurate
than with the conventional SOS expression. In particular, even
with the minimal LAPW basis set (nLO = 0), the polarizability
is converged to an accuracy that cannot be achieved with the
much larger nLO = 6 basis set without the IBC.

So far, we have included all eigenstates of the single-particle
Hamiltonian in the calculation of χs,IJ (q,ω) meaning that the
number N of states used in Eq. (10) is identical to the number
of basis functions. However, each of the terms in this equation
depends on N . The dependence is such that the omission of
bands in the SOS term will increase the BR term because a
smaller portion of ϕ̃

(1)
nk,Iq(r,ω) is projected out. One can hope

that the latter will compensate the omissions in the former so
that much fewer unoccupied states are needed for convergence.
This, in fact, works surprisingly well as we show in Fig. 2 for
the minimal (nLO = 0) and largest (nLO = 6) LAPW basis. The
figure demonstrates that the SOS term alone again converges
very slowly. We note that the calculation with nLO = 0 appears
to converge but to the wrong value. Adding BR and Pulay terms
to the SOS yields the curve formed by the (red) open circles and
squares, which exhibits a very rapid convergence with respect
to the unoccupied states. Interestingly, the converged value
hardly depends on the basis set used in contrast to what we find
for the conventional SOS calculation. The Pulay term is again
relatively small. However, for nLO = 0 and small frequencies
it does give a numerically important contribution that is crucial
in guaranteeing the basis-set independence of the converged
polarizability.

In the form of Eq. (13), the IBC is a noniterative correction.
The Pulay term gives rise to a substantial computational
overhead. Instead of calculating this term explicitly, it is often
a more efficient strategy to simply use one extra set of local
orbitals, i.e., nLO = 1, in which case the Pulay term reduces
to practically zero and does not have to be evaluated. The
BR term, on the other hand, can be implemented in a rather
efficient way that scales with the third power of the system
size. This has to be compared to the fourth power scaling of
the standard SOS term. Thus, with increasing system size the
relative computational effort for calculating the BR term will
decrease.

III. APPLICATIONS

The IBC, as derived in the last section, improves the
convergence of the polarizability considerably. Any method
that requires the knowledge of the polarizability will benefit
from the correction. In the previous papers, we have applied
the IBC to the optimized effective potential method [19,20,44],
in which only the ω → 0 and q → 0 limit is needed. In the
present paper, we have extended the formulation to momentum
and frequency dependent perturbations. As practical examples,
we apply the IBC to barium oxide to calculate (a) selected

electronic transition energies in the COHSEX approximation
for the self-energy and (b) the RPA correlation energy. While
for COHSEX only the static momentum-dependent IBC is
required, we need the polarizability with full momentum and
frequency dependence in the case of the RPA correlation
energy.

A. COHSEX

The COHSEX approximation is the static limit of the GW

self-energy [3–5]. It can be divided into a screened-exchange
(SEX) term SEX and a Coulomb-hole (COH) part COH:

SEX(r,r′) = −
occ.∑
nk

ϕnk(r)W (r,r′; 0)ϕ∗
nk(r′) (14)

COH(r,r′) = 1

2
δ(r − r′)[W (r,r′; 0) − v(r,r′)] . (15)

Equation (14) has the same functional form as the Hartree-
Fock exchange term with the bare Coulomb interaction v(r,r′)
replaced by the static limit of the RPA screened Coulomb
interaction W (q) = [1 − v(q)χs(q)]−1v(q). The COH term
corresponds to half of the potential felt by an electron at r
caused by the Coulomb hole around it. We restrict ourselves to
first-order perturbation theory, in which the quasiparticle en-
ergies are given by εCOHSEX

nk = εDFT
nk + 〈ϕnk|SEX + COH −

Vxc|ϕnk〉. The contribution of the core states is calculated on the
Hartree-Fock level as is common practice in GW calculations.
We use here the static limit of the GW self-energy, because
the latter would require, in addition to the IBC-corrected W ,
a corresponding correction for the Green function G, which
goes beyond the scope of the present study.

Barium oxide is a semiconductor with a direct band gap
at the X point of the Brillouin zone. In Table I, we show the
convergence of the direct band gap as well as the transition
energies from the valence-band maximum to the lowest
conduction states at � and L for different LAPW basis sets,
distinguished by nLO (for a definition of nLO see above). We
compare with the standard semilocal PBE functional [43] for
the exchange-correlation energy.

The PBE functional underestimates the band gap with
respect to experiment. Application of COHSEX opens the band
gap, but it overshoots. The calculated band gap is nearly 2 eV
larger than the experimental value. It is well known [45,46]
that COHSEX shows such a tendency. We observe that the
conventional calculations using the SOS exhibit a very slow
convergence. On the contrary, employing the IBC in the
calculation of W yields COHSEX transition energies that
converge as fast as in the PBE approach. In particular, the
small changes in the transition energies between nLO = 1
and nLO = 0 are merely a basis-set effect that is the same
order of magnitude in the two methods. Between nLO = 1 and
nLO = 6, the IBC-corrected COHSEX values are very stable;
they change by maximally 4 meV, while the uncorrected
values show variations that are a hundred times larger.

So far, we have restricted the IBC to response contributions
from the valence bands. However, as discussed above and in
more detail in Appendix B, the IBC allows us to treat the core-
state response in a very precise way. Interestingly, including the
core states affects the COHSEX transition energies relatively
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TABLE I. PBE and COHSEX band transition energies (in eV) for rocksalt BaO as a function of the basis-set size (parameter nLO) and
comparison to experiment. COHSEX energies are shown without (SOS) and with the IBC. The Brillouin zone is sampled by a 4 × 4 × 4 k-point
set.

X5′v → X3c X5′v → �1c X5′v → L2′c

PBE COHSEX@PBE PBE COHSEX@PBE PBE COHSEX@PBE

BaO SOS IBC SOS IBC SOS IBC

nLO = 0 1.808 4.401 6.017 4.239 6.699 8.162 5.044 7.873 8.766
nLO = 1 1.793 5.456 5.930 3.888 7.318 7.709 5.014 8.402 8.637
nLO = 2 1.793 5.777 5.927 3.881 7.585 7.709 5.012 8.564 8.635
nLO = 3 1.793 5.878 5.926 3.881 7.669 7.706 5.012 8.611 8.635
nLO = 4 1.793 5.906 5.926 3.880 7.693 7.706 5.012 8.625 8.635
nLO = 5 1.793 5.916 5.926 3.880 7.700 7.706 5.012 8.630 8.635
nLO = 6 1.793 5.920 5.926 3.880 7.704 7.706 5.012 8.632 8.635
Expt. 3.9a,4.1b

aReference [47].
bReference [48].

strongly. The direct band gap changes to 6.08 eV. For the
X5′v → �1c and X5′v → L2′c we obtain 7.46 eV and 8.72 eV,
respectively. We find that it is the COH term that is responsible
for these changes, while the SEX term is insensitive to the
response coming from the core states. This is reminiscent
of the fact that the COH term is known to overestimate the
contribution of high-lying bands [46], because it assumes
the energies of the relevant bands to be close to each other.
The same seems to hold for the core states; while they do give
a sizable response contribution, the COHSEX approximation
exaggerates the effect as it does not take the energy distance
between the core and valence states properly into account.

B. RPA correlation energy

Based on the ACFDT [6,7], the exchange-correlation
energy of KS DFT can be represented exactly in terms of the
dynamical polarizability of the interacting (scaled) electron
system. Applying the random-phase approximation (RPA) for
the interacting response then yields the RPA correlation energy

ERPA
c [n] = 1

2π

BZ∑
q

∫ ∞

0
tr{ln[1 − v(q)χs(q,iω)]

+ v(q)χs(q,iω)}dω , (16)

where all quantities in the trace (tr) are understood as matrices:
the unit matrix 1 with the elements δIJ , the polarizability ma-
trix χs,IJ (q,iω) evaluated at the imaginary frequency iω, and
the matrix vIJ (q) representing the bare Coulomb interaction
in the MPB. Exploiting the invariance of the trace under cyclic
permutations, the matrix in the curly brackets can be replaced
by the symmetrized expression ln[1 − A(q,iω)] + A(q,iω)
with A(q,iω) = v1/2(q)χs(q,iω)v1/2(q), which allows us to
calculate the trace by

∑
j ln[1 − aj (q,iω)] + aj (q,iω) with

the eigenvalues aj (q,iω) of A(q,iω). Further details of the
implementation will be published elsewhere [49].

In Fig. 3, we show the convergence of the RPA correlation
energy for BaO. According to the band summation in Eq. (12),
we define a valence-only (i.e., n is restricted to the valence
states) and an all-electron (i.e., n runs over the core states

in addition) polarizability, which after insertion into Eq. (16)
yields a valence-only (left axis) and an all-electron (right axis)
RPA correlation energy. To see the effect of the IBC, we
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FIG. 3. (Color online) Convergence of the valence-only (left
axis) and all-electron (right axis) RPA correlation energy for BaO
with respect to (a) the basis-set size (parameter nLO) and (b) the
number of unoccupied states without (green dashed lines) and with
IBC (red solid line) for a LAPW basis with nLO = 6.
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also distinguish between a calculation without the correction
[i.e., using only the standard SOS term of Eq. (13)] and the
full expression including the BR and the Pulay terms. The
RPA correlation energy clearly benefits from the improved
convergence behavior of the polarizability when the IBC
is employed. While the valence correlation energy does
eventually converge when local orbitals are added to the
LAPW basis [Fig. 3(a)], this appears to be impossible for
the all-electron energy calculated with the SOS term alone.
It is clear that the latter is incapable of yielding the correct
contribution of the core states to the RPA correlation energy.
Even with the largest basis set (nLO = 6) it is off by a
factor. With the IBC, on the other hand, valence-only and
all-electron correlation energies are converged for all practical
purposes already with the conventional minimal LAPW basis,
convincingly shown by the near constancy of the solid line.
We also find again a very fast convergence with respect to the
number of unoccupied states shown in Fig. 3(b).

The contribution of the core electrons to the absolute cor-
relation energy is dominant. It amounts to about −4.5 Htr and
accounts for 83% of the all-electron RPA correlation energy of
BaO. Interestingly, this ratio is close to the percentage (75%)
of core electrons (48) to the total number of electrons (64), so
that each electron of the system, valence and core, seems to
contribute a comparable amount. This is not surprising if one
remembers that the leading term of the LDA correlation energy
(in the low-density limit) is an integral over n(r)4/3. The power
4/3 is reasonably close to 1, in which case the contribution per
occupied state would in fact be a constant. It is also known
from quantum chemical calculations that the core electrons
yield a substantial contribution to the correlation energy and
that it is not justified to neglect them when absolute energies
are needed [50].

IV. CONCLUSIONS

In this paper, we have presented a technique to compute
precise frequency and momentum dependent all-electron re-
sponse functions. It constitutes a generalization of the recently
introduced incomplete-basis-set correction (IBC) [19,20]. In
this approach, the response of the basis functions used to
represent the single-particle orbitals is explicitly constructed
by radial integration of frequency-dependent Sternheimer
equations and combined with the sum-over-states expres-
sion of standard perturbation theory. In this way, response
contributions that lie outside the Hilbert space spanned by
the original basis are taken into account. The total response
then consists of three terms: the sum-over-states expression
of conventional perturbation theory, a basis-response term,
and a Pulay term. While the basis-response term incorporates
to some extent an infinite number of states, the Pulay term
corrects for deviations of the single-particle wave functions
calculated in the finite orbital basis from the exact pointwise
solutions of the Hamiltonian.

We demonstrated within the all-electron FLAPW approach
that the IBC substantially improves the convergence of the
frequency- and momentum-dependent polarizability in terms
of both basis-set size and number of unoccupied states. A
highly converged response is already obtained with a minimal
LAPW basis set. With increasing frequency, we observed that

the IBC becomes even more important because the LAPW
basis turns out to be less and less adequate to describe
the dynamical response. In addition, the IBC enables a
virtually exact treatment of the core-electron response, which
is otherwise out of reach.

Any method that involves a response function directly
benefits from the IBC. For example, we have utilized the IBC
to compute quasiparticle energies of BaO in the COHSEX
approximation for the electronic self-energy, which requires
the momentum-dependent static polarizability. Thanks to the
IBC, the calculations exhibit a basis-set convergence that
is as fast as in DFT calculations using standard local or
semilocal exchange-correlation functionals. A combination of
the IBC with the recently published modified static remainder
approach [51] seems promising to improve the convergence
of GW calculations. While the modified static remainder
approach accelerates the convergence of G, the IBC addresses
the convergence of W .

As a second application, we have applied the IBC to
calculate the RPA correlation energy of BaO, whose central
ingredient is the frequency- and momentum-dependent po-
larizability. The favorable convergence of the polarizability
is directly transferred to the RPA correlation energy. We
showed that, when absolute correlation energies are needed,
the contribution of the core electrons is not negligible. In
fact, their individual contribution is comparable to that of
the valence electrons. The IBC thus paves the way for the
computation of truly all-electron RPA correlation energies.

The IBC, as formulated in the present paper, is applicable
foremost to electronic structure methods with an explicit
potential-dependent basis set, such as the LAPW or the LMTO
approach. However, we believe that similar corrections could
be constructed for other basis sets as well, most obviously for
pretabulated numeric atomic basis sets, but also for plane-wave
based methods, given that a plane wave is the eigenfunction
to the Schrödinger equation with a constant effective potential
and so, in this sense, also potential adjusted.
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APPENDIX A: GENERALIZATION TO
FREQUENCY-DEPENDENT PERTURBATIONS

In order to derive the IBC for frequency-dependent pertur-
bations we start from the time-dependent Schrödinger equation
for the one-particle orbital ϕn(r,t)

[i∂t − H ]ϕn(r,t) = 0 , (A1)

where the Hamiltonian H is assumed to be time independent
and n is a multi-index comprising a full set of quantum
numbers to uniquely specify the orbital. We assume that
the wave functions ϕn(r,t) are represented by a (explicit)
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time-independent basis set {φj (r)}

ϕn(r,t) =
∑

j

zj (n,t)φj (r) , (A2)

and that the basis functions φj (r) are adjusted to the potential
of the Hamiltonian H as is common practice in all-electron
electronic structure methods.

The expansion coefficients zj (n,t) then result from the
algebraic equation∑

j

〈φk|i∂t − H |φj 〉zj (n,t) = 0 . (A3)

For the time-independent Hamiltonian H the time-dependent
expansion coefficients zj (n,t) are simply given by

zj (n,t) = zj (n) exp(−iεnt), (A4)

where zj (n) denotes the eigenvector of the general eigenvalue
problem ∑

j

〈φk|εn − H |φj 〉zj (n) = 0 (A5)

with eigenvalue εn and overlap matrix 〈φk|φj 〉. The latter arises
from the nonorthogonality of the basis functions.

Subjecting the system to a time-dependent perturbation
W (t) will cause a change in the expansion coefficients zj (n,t),
and moreover the assumed potential dependence of the basis
functions φj (r) induces a time-dependent change of the basis.
Consequently, the first order change of the wave function
ϕ(1)

n (r,t) consists of two contributions

ϕ(1)
n (r,t) =

∑
j

z
(1)
j (n,t)φ(0)

j (r) + z
(0)
j (n,t)φ(1)

j (r,t) . (A6)

The superscript (0) and (1) distinguish between unperturbed
and perturbed quantities.

For a more compact notation of the wave-function response
we introduce the abbreviations

ϕ̂(1)
n (r,t) =

∑
j

z
(1)
j (n,t)φ(0)

j (r) (A7)

ϕ̃(1)
n (r,t) =

∑
j

z
(0)
j (n,t)φ(1)

j (r,t) , (A8)

which correspond to Eq. (24′). The exact form of the basis-
function response φ

(1)
j (r,t) depends of course on the specifics

of the underlying electronic structure method. For the moment,
however, we assume that the response of the basis functions
φ

(1)
j (r,t) is known and thereby ϕ̃(1)

n (r,t) is completely fixed.
The remaining unknown is the first-order change of the
expansion coefficient z

(1)
j (n,t), which we will determine in

the following.
Linearizing Eq. (A3) with respect to the potential and taking

into account the change of the expansion coefficient as well
as the change of the basis function according to Eq. (A6)
leads to the following set of equations for the coefficients

z
(1)
j (n,t):[
i
〈
φ

(0)
k

∣∣φ(0)
j

〉
∂t − 〈

φ
(0)
k

∣∣H ∣∣φ(0)
j

〉]
z

(1)
j (n,t)

= [〈
φ

(0)
k

∣∣W ∣∣φ(0)
j

〉 + 〈
φ

(0)
k

∣∣H ∣∣φ(1)
j

〉 + 〈
φ

(1)
k

∣∣H ∣∣φ(0)
j

〉]
z

(0)
j (n,t)

− i
[〈
φ

(1)
k

∣∣φ(0)
j

〉 + 〈
φ

(0)
k

∣∣φ(1)
j

〉]
∂tz

(0)
j (n,t)

− i z
(0)
j (n,t)

〈
φ

(0)
k

∣∣∂tφ
(1)
j

〉
. (A9)

By Fourier transforming all time-dependent quantities to the
frequency domain, the set of coupled differential equations in
time turns into a set of algebraic equations[(

ω + ε(0)
n

)〈
φ

(0)
k

∣∣φ(0)
j

〉 − 〈
φ

(0)
k

∣∣H ∣∣φ(0)
j

〉]
z

(1)
j

(
n,ω + ε(0)

n

)
= [〈

φ
(0)
k

∣∣W (ω)
∣∣φ(0)

j

〉 + 〈
φ

(0)
k

∣∣H − ε(0)
n

∣∣φ(1)
j (ω)

〉
+ 〈

φ
(1)
k (−ω)

∣∣H − ε(0)
n

∣∣φ(0)
j

〉 − ω
〈
φ

(0)
k

∣∣φ(1)
j

〉]
z

(0)
j (n),

(A10)

where we defined the Fourier transform of a generic time-
dependent function f (t) by

f (t) = 1

2π

∫ ∞

−∞
f (ω) exp[−iωt] dω . (A11)

This algebraic equation can be solved for the expansion
coefficients z

(1)
j (n,ω + εn) either by inversion of the matrix

(ω + εn)〈φ(0)
k |φ(0)

j 〉 − 〈φ(0)
k |H |φ(0)

j 〉 or by applying a basis

transformation to the wave functions {ϕ(0)
n′ } of the static

Hamiltonian H . Which of the two approaches is numerically
more advantageous depends on the number of basis functions
in comparison to the number of bands required to converge
the wave function response. In any case, it is quite instructive
to apply a basis transformation to the wave functions {ϕ(0)

n′ } of
the static Hamiltonian H which yields〈

ϕ
(0)
n′

∣∣ϕ̂(1)
n (ω + εn)〉

=
〈
ϕ

(0)
n′

∣∣W (ω)
∣∣ϕ(0)

n

〉
ε

(0)
n − ε

(0)
n′ + ω

+
〈
ϕ

(0)
n′

∣∣H − ε
(0)
n′

∣∣ϕ̃(1)
n (ω)

〉
ε

(0)
n − ε

(0)
n′ + ω

+
〈
ϕ̃

(1)
n′ (−ω)

∣∣H − ε(0)
n

∣∣ϕ(0)
n

〉
ε

(0)
n − ε

(0)
n′ + ω

− 〈
ϕ

(0)
n′

∣∣ϕ̃(1)
n (ω)

〉
. (A12)

The complete first order change of the wave function is then
given by

ϕ(1)
n (r,t) = 1

2π

∫ ∞

−∞
ϕ(1)

n (r,ω) exp[−i(ω + εn)t] dω (A13)

with

ϕ(1)
n (r,ω) =

∑
n′

[〈
ϕ

(0)
n′

∣∣W (ω)
∣∣ϕ(0)

n

〉
ε

(0)
n − ε

(0)
n′ + ω

+
〈
ϕ

(0)
n′

∣∣H − ε
(0)
n′

∣∣ϕ̃(1)
n (ω)

〉
ε

(0)
n − ε

(0)
n′ + ω

+
〈
ϕ̃

(1)
n′ (−ω)

∣∣H − ε(0)
n

∣∣ϕ(0)
n

〉
ε

(0)
n − ε

(0)
n′ + ω

]
ϕ

(0)
n′ (r)

+ϕ̃(1)
n (r,ω) −

∑
n′

〈
ϕ

(0)
n′

∣∣ϕ̃(1)
n (ω)〉ϕ(0)

n′ (r) . (A14)

The wave-function response, Eq. (A14), comprises the sum-
over-states (SOS) term of conventional perturbation theory,
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Pulay terms that correct for deviations of the state ϕ(0)
n and

ϕ
(0)
n′ , respectively, from the true eigenstate of H , and the basis

response (BR) term. The latter consists of the basis response
ϕ̃(1)

n (r,ω) and a double-counting correction. The Pulay and
BR term together constitute the IBC. In Eq. (10) the Pulay
term, correcting for deviations of the state ϕ(0)

n from the true
eigenstate of H , has been neglected, since we found that this
term is usually negligibly small for an occupied state ϕn.

APPENDIX B: CORE ELECTRON RESPONSE

In the LAPW approach, the core-electron wave functions
are given as solutions to an atomic Dirac equation. For the
calculation of the core-electron response, however, we apply
the scalar-relativistic approximation. For notational simplicity
we resort to the nonrelativistic Schrödinger equation in the
following.

The core-electron wave functions of atom a are given as
solutions of

(
H − εa

lmp

)
ϕa

lmp(r) = 0 , (B1)

where only the spherical potential is taken into account in
the Hamiltonian H . Due to the atomic boundary conditions,
solutions of Eq. (B1) exist only at specific eigenenergies εa

plm.
Since the potential is restricted to be spherical, the eigenvalues
are degenerate with respect to the magnetic quantum number
m (εa

lmp = εa
lp), and the core wave functions are simply given

by

ϕa
lmp(r) = ua

lp(r)Ylm(r̂) , (B2)

where p denotes the principal quantum number, l is the angular
momentum, and m is the magnetic quantum number.

The first-order change of the core wave function
ϕ

a(1)
lmp (r,ω)e−iωt caused by the perturbation MI (r)e−iωt with

MI (r) = Ma
LP (r)YLM (r̂) results from a Sternheimer equation

formally equivalent to Eq. (5). In contrast to the LAPW basis,
however, the solution of the Sternheimer equation for the
core electrons has to obey atomic boundary conditions, which
makes the solution of the Sternheimer equation unique.

In order to solve this equation numerically, an extended
radial mesh that exceeds the MT sphere of atom a is used.
In principle, we can employ the same shooting technique
as described in our previous paper [20], in which the
homogeneous and inhomogeneous Sternheimer equation is
integrated outward and inward up to a matching point. The
inward integration starts at a large distance from the atomic
nucleus. The two homogeneous solutions obtained by inward
and outward integration are added in the respective region such
that the solution becomes continuous in value and slope at the
matching point. In this way, a unique solution is obtained.

However, we observed that for large imaginary frequencies
this approach becomes numerically unstable, since for large
frequencies the radial part of the homogeneous solution starts
to grow exponentially. Hence, we make use of a finite-
difference approach, which has the benefit that the explicit
computation of the homogeneous solution is completely
avoided. The second radial derivative of Eq. (5) is therefore

calculated from the finite difference

∂2

∂r2
f (r)|r=rk

= fk+1 − 2fk + fk−1

(rk+1 − rk)(rk − rk−1)
, (B3)

with which the Sternheimer equation turns into a set of
coupled linear equations of the form Ax = b. In the case
of the Schrödinger equation (scalar-relativistic Schrödinger
equation) the corresponding matrix A has tridiagonal (penta-
diagonal) form. For the solution of the algebraic system of
band matrix form efficient algorithms exist (e.g., the Thomas
algorithm [52]). The atomic boundary conditions can be easily
incorporated in the matrix A by setting A12 = Ann−1 = 0.
We validated our implementation by comparing the resulting
core-electron response with the one obtained by the shooting
method. As long as the shooting method is stable, the results
of both approaches are identical.

As an example, we show in Fig. 4 the response of the
Ba 4s core state of rocksalt BaO due to a given spherical

(a )
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 0  0.5  1  1.5  2  2.5
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rMI(r)

BaO

(b)
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 (1

)
 4

s (
r,ω

)
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ω=      0.47i
ω=    15.69i
ω=  151.19i
ω=1517.18i

BaO

FIG. 4. (Color online) Ba 4s core state of BaO [(red) solid line in
(a)] is perturbed by the spherical mixed product basis function shown
as the (blue) dashed line in (a). The response of the Ba 4s core is
shown for four different imaginary frequencies in (b).
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muffin-tin mixed-product-basis function [shown in Fig. 4(a) as
the (blue) dashed curve] for different imaginary frequencies.
With increasing frequency the radial response is constricted to
a smaller and smaller region around the atomic nuclei (r = 0),
and at the same time the amplitude of the response becomes
smaller and smaller.

APPENDIX C: POLARIZABILITY

By utilizing the expression for the first-order change of the
wave function [Eq. (A14)], the response function [Eq. (12)]
decomposes into a SOS, BR, and Pulay part. The explicit
expressions for each of these terms is given in the following:

χSOS
IJ (q,ω) =

BZ∑
k

occ.∑
n

unocc.∑
n′

〈
M

q
I ϕnk

∣∣ϕn′k+q
〉〈
ϕn′k+q

∣∣ϕnkM
q
J

〉[ 1

εnk − εn′k+q + ω
+ 1

εnk − εn′k+q − ω

]
(C1)

χBR
IJ (q,ω) =

BZ∑
k

occ.∑
n

〈
M

q
I ϕnk

∣∣ϕ̃(1)
nk,Jq(ω) + ϕ̃

(1)
nk,Jq(−ω)

〉 − BZ∑
k

occ.∑
n

∑
n′

〈
M

q
I ϕnk

∣∣ϕn′k+q
〉〈
ϕn′k+q

∣∣ϕ̃(1)
nk,Jq(ω) + ϕ̃

(1)
nk,Jq(−ω)

〉
(C2)

χ
Pulay
IJ (q,ω) =

BZ∑
k

occ.∑
n

∑
n′

〈
M

q
I ϕnk

∣∣ϕn′k+q
〉[ 〈

ϕn′k+q
∣∣H − εn′k+q

∣∣ϕ̃(1)
nk,Jq(ω)

〉
εnk − εn′k+q + ω

+
〈
ϕn′k+q

∣∣H − εn′k+q
∣∣ϕ̃(1)

nk,Jq(−ω)
〉

εnk − εn′k+q − ω

+
〈
ϕ̃

(1)
n′k+q,Jq(−ω)

∣∣H − εnk
∣∣ϕnk

〉
εnk − εn′k+q + ω

+
〈
ϕ̃

(1)
n′k+q,Jq(ω)

∣∣H − εnk
∣∣ϕnk

〉
εnk − εn′k+q − ω

]
. (C3)

According to our experience the Pulay terms comprising H − εnk|ϕnk〉 are negligibly small and can be discarded. Note that
if the quantity ϕ̃

(1)
nk,Jq(ω) occurs in the bra only the wave function has to be complex conjugated and not the perturbation, i.e.,

〈ϕ̃(1)
nk,Jq(ω)| corresponds to the response of ϕ̃σ∗

nk due to M
q
J (r)e−iωt .
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Commun. 180, 347 (2009).
[31] M. Betzinger, C. Friedrich, and S. Blügel, Phys. Rev. B 81,

195117 (2010).
[32] C. Friedrich, S.B lügel, and A. Schindlmayr, Phys. Rev. B 81,

125102 (2010).
[33] D. Singh, Phys. Rev. B 43, 6388 (1991).
[34] E. E. Krasovskii, A. N. Yaresko, and V. N. Antonov, J. Electron

Spectrosc. Relat. Phenom. 68, 157 (1994).
[35] C. Friedrich, A. Schindlmayr, S. Blügel, and T. Kotani, Phys.
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