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Valley-based Cooper pair splitting via topologically confined channels in bilayer graphene
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Bilayer graphene hosts valley-chiral one-dimensional modes at domain walls between regions of different
interlayer potential or stacking order. When such a channel is close to a superconductor, the two electrons of a
Cooper pair, which tunnel into it, move in opposite directions because they belong to different valleys related
by the time-reversal symmetry. This kinetic variant of Cooper pair splitting requires neither Coulomb repulsion
nor energy filtering but is enforced by the robustness of the valley isospin in the absence of atomic-scale defects.
We derive an effective normal/superconducting/normal (NSN) model of the channel in proximity to an s-wave
superconductor, calculate the conductance of split and spin-entangled pairs, and interpret it as a result of local
Andreev reflection, in contrast to the widespread identification of Cooper pair splitting with crossed Andreev
reflection in an NSN geometry.
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Creating mobile nonlocal spin-entangled electrons in a
transport experiment with the help of superconductor–normal
junctions has attracted a lot of attention in theory [1–8] and
experiment [9–14] because the spin degree of freedom of
the electron could serve as a solid-state qubit [15]. In the
existing experiments, the envisaged process where a Cooper
pair is split over two normal leads is crossed Andreev reflection
(CAR) [16,17], which is enhanced by the repulsive electron-
electron interaction on two quantum dots weakly coupled to
the superconductor [1] or by energy filtering [2,18]. The basic
mechanism of these entanglers is not very sensitive to the
specific material used, i.e., the underlying band structure. It
has been shown that characteristic features of new materials
exhibiting Dirac cones like graphene or topological insulators
can be useful for splitting Cooper pairs [7,19–24]. In these
proposals, the efficiency of the splitting process, in the absence
of interactions, relies on nonprotected resonance conditions or
the split Cooper pair is not spin entangled due to spin helicity
or spin polarization of the leads. Helical edge states of the
quantum spin Hall regime have, however, been proposed to
detect spin entanglement [8,25].

Here, we investigate a Cooper pair splitter based on
local Andreev reflection (LAR). We propose to exploit the
valley degree of freedom in bilayer graphene (BG), where
valley-chiral, spin-degenerate one-dimensional (1D) channels
are formed at domain walls. Such domain walls can be
engineered by switching the sign of an interlayer voltage
or by reversing the stacking order [26–28]. In proximity to
a superconductor, Cooper pairs tunneling into the channel
are split: two electrons propagate towards opposite terminals
but remain spin entangled (Fig. 1), since, as required by
time-reversal symmetry, the two electrons forming the Cooper
pair in the superconductor are from different valleys [29].
In this scenario, normal reflection and CAR are absent for
quasiparticles incoming from the normal part of the channel
and scattering at the region with proximity-induced supercon-
ductivity. We find that generally, when normal transmission
through the superconducting region is strong, nonlocal pair
emission is equivalent to LAR, opposite to the case dominated
by normal reflection, where CAR produces nonlocal pairs. Our
BG implementation has unit splitting efficiency independent of

FIG. 1. (Color online) (a) At a domain wall (red) in BG between
different interlayer voltages ±V0 or different stacking order a
topological valley-chiral channel forms. Cooper pairs tunneling into
it from a nearby s-wave superconductor (S) are split because the
two electrons belong to opposite valleys K± and thus have opposite
velocities. They remain spin entangled and propagate to separate
normal leads (N). (b) In each valley two subgap modes along the
domain wall emerge. Energy and momentum conservation along the
NS interface fix four points in the spectrum where Cooper pairs are
injected.

resonance conditions, provided the valley degree of freedom is
robust. The device extends the upcoming “valleytronics” [30]
to nonlocal Einstein-Podolsky-Rosen pairs. A 1D channel
defined by opposite stacking order has recently been created
experimentally in BG [31] with mean free paths over several
hundreds of nanometers, demonstrating weak intervalley
scattering.

We analyze the setup of Fig. 1 in two steps: first, we investi-
gate the influence of the superconductor on the 1D channel by
solving a Bogoliubov–de Gennes (BdG) equation, and derive
an effective 1D model to describe the proximity effect in
the channel. Second, we calculate the subgap conductance
when applying a bias voltage between the superconductor and

1098-0121/2015/92(24)/241404(5) 241404-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.241404


RAPID COMMUNICATIONS

SCHROER, SILVESTROV, AND RECHER PHYSICAL REVIEW B 92, 241404(R) (2015)

the channel using a rate equation approach. We interpret the
subgap transport in a scattering matrix picture and show that
the outgoing scattered state is a two-particle spin-entangled
state on top of a filled normal-state Fermi sea with a chemical
potential lowered by the bias voltage. To leading order its
weight is given by the LAR amplitude.

Model. We consider a BG sheet with Bernal AB stacking
in the presence of an interlayer voltage V (r) [32]. We
model the superconductor region as BG in which the bands
are shifted by a scalar potential U (r) due to doping and
which has an induced s-wave pairing amplitude �(r). We
employ the low-energy approximation for BG, valid at energies
and (inter)layer voltages smaller than the interlayer hopping
γ1 � 0.3 eV. Without the superconductor, the valley index
χv = ±1 distinguishing the two K points K± = ±(4π/3a,0)
and the electron spin s = ±1 ≡↑ , ↓ are good quantum
numbers and we write the Bogoliubov–de Gennes equation
as H

χv,s

BdG �χv,s(r) = ε�χv,s(r),

H
χv,s

BdG = {
α�

2
[
2χv∂x∂yσy + (

∂2
x − ∂2

y

)
σx

]
+U (r) + V (r)σz

}
τz + �(r)τx, (1)

where α = v2
F /γ1. The Pauli matrices σi act in the pseu-

dospin (A1,B2) space and τi in electron-hole space and we
set the Fermi energy EF = 0. The four-component spinor
is �χv,s(r) = (uχv,s(r),vχv,s(r))T where we have introduced
the electron uχv,s(r) = (uA1,χv,s(r),uB2,χv,s(r)) and hole com-
ponents (u → v) on the two sublattices. Excitations with
energy ε are then expanded as γχv,s(ε) = ∫

d2r �∗
χv,s

(r) ·
�χv,s(r) with the vector of field operators �χv,s(r) =
(ψA1,χv,s(r),ψB2,χv,s(r),s ψ

†
A1,−χv,−s(r),s ψ

†
B2,−χv,−s(r))T. We

neglect skew-interlayer couplings, which induce trigonal
warping at energies close above the gap [33] but do not break
the (topological) subgap states [34].

In the absence of the superconductor [�(r) = U (r) = 0]
and assuming the modes to propagate along the y direction
along a domain wall at x = 0, i.e., V (r) = −V0 sgn(x) with
V0 > 0, the topologically confined modes can be found
analytically [26]. The electron and hole sectors in Eq. (1)
decouple. In the electron sector, the solutions in each half
space have the form �χv,s(r) = (u0

χv,s
(r),0)T where u0

χv,s
(r) =

u0
χv,s

e(i/�)(pxx+pyy) with

u0
χv,s

=
( −ε − V

α2(px + iχvpy)2

)
. (2)

For any fixed energy ε and momentum py there are four

allowed values px = ±
√

±i

√
V 2

0 − ε2/α − p2
y which become

complex when |ε| < V0, i.e., there are no propagating modes
in the bulk at energies below V0. Matching the wave functions
decaying away from the domain wall and their derivatives, one
obtains the two electronic subgap solutions n = 1,2 in each
valley, �0,n

χv,s,py
(x), with the dispersion relation

ε0,1/2
χv,s,py

= ±
√

2V0 − αp2
y

2
− χvpy

2

√
2
√

2αV0 + α2p2
y, (3)

with velocities opposite in the two valleys [26]. The solutions
for the hole sector �

0,3/4
χv,s,py

(x) = (0,v0
χv,s

(r))T where v0
χv,s

(r)

at energy ε
0,3/4
χv,s,py

are obtained from Eqs. (2) and (3) by setting
ε → −ε.

The relevant momenta py are close to the K points: taking
ε ∼ 0, we obtain from Eq. (3) the momentum scale py ∼√

V0/α, on which the K points are located at 4π�

3a
/
√

V0/α ∼
102 for V ∼ � ∼ meV. The guided modes decay into the bulk
on a length scale of

√
�2α/V0, which then is on the order of

several tens of nanometers. This sets the scale of the separation
between the guided mode and a superconductor required to
obtain a proximity effect.

Perturbation theory for superconducting pairing. Assum-
ing a superconductor/normal interface with translational in-
variance along the y direction, there are three distinct areas:
in the superconductor area, x < −d, the pairing amplitude
�(r) = � is finite and U (r) = −US is negative. The area
−d < x < 0 is in the normal state as before, � = US = 0,
but the interlayer voltage is finite, V = V0 > 0. This region is
a tunnel barrier between the superconductor and the domain
wall at the interface to the third region x > 0, where � =
US = 0 and V = −V0. In this situation guided modes exist
at |ε| < min(V0,�) because states above V0 can propagate
in the normal regions and states above � can propagate
in the superconductor. Because of the tunnel barrier the
guided modes are only weakly affected by the superconductor
and we can apply standard quasidegenerate perturbation
theory [35,36], for which the unperturbed Hamiltonian H0

is obtained from HBdG by setting � = U = 0 everywhere
and so the perturbation H1, which adds the missing parts,
is finite only at x < −d. As a result of the perturbation the
electron and hole states of the channel acquire a finite overlap
�̃nn′ (py), where n,n′ label the subgap bands. This allows for
particle number nonconserving processes, i.e., Cooper pair
transport. To first order only the electron and hole states
belonging to the same subgap band mix, �̃11 = �̃22, �̃12 = 0.
This agrees with the result one expects when introducing
superconductivity phenomenologically by constructing the
BdG equation directly from the guided modes with a uniform
pairing �̃11τx . The second order corrections, which take into
account the modification of the wave functions due to the
superconductor, however, reveal that the situation is different
in the geometry we consider. The electron hole overlap
differs in both bands, �̃11 �= �̃22, and band mixing is finite,
�̃12 �= 0 (Fig. 2) [37]. This is confirmed by the full dispersion
relation of HBdG we obtain by matching the four-component
spinor and its derivatives at both interfaces numerically
(Fig. 2, inset): two gaps of different size open at zero
energy (�̃11 and �̃22) and two gaps open at zero momentum
where electron and hole states from different subgap bands
cross (�̃12 = �̃∗

21). This means that there is Cooper pair
transport at zero energy as well as at the finite energies
±V0/

√
2.

Cooper pair transport. We use Fermi’s golden rule to
calculate the Cooper pair current I = 2e

∑
f i(W

+
f i − W−

f i)ρi ,

where W±
f i = 2π

�
|〈f± | HT | i〉|2δ(εf − εi) is the transition rate

from an initial state i with probability ρi at energy εi to the
final state f± with two more (less) electrons at energy εf .
The tunnel Hamiltonian HT comprises the particle number
nonconserving terms of the second-quantized perturbative
model with electron operators cn

χv,s
(k) and hole operators
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FIG. 2. (Color online) Induced intraband superconductivity �̃11

(�̃22) in the 1D channel at the respective Fermi point py =
±2−3/4

√
V0/α and induced interband superconductivity �̃12 at py =

0. For illustrative purposes we choose the bulk superconducting gap
� = V0 and the doping US = 10V0 (� < V0 is equally feasible).
The amplitudes decay exponentially with the distance d to the
superconductor because the V > 0 region acts as a tunnel barrier.
Inset: In the normal state dispersion (dashed) two different-sized
gaps open at the Fermi energy because �̃11 �= �̃22, shown for d =
1.5

√
�2α/V0. Additionally, �̃12 opens a gap at py = 0. This point

contributes significantly to Cooper pair transport because compared
to the Fermi points the normal density of states is higher and because
the energy is larger so the bound states extend further into the bulk,
increasing the coupling to the superconductor.

hn
χv,s

(k) ≡ sc
n†
−χv,−s(−k), where k ≡ py ,

HT =
∑

χvnn′ks

�̃nn′ (k)scn
χv,s

(k)cn′
−χv,−s(−k) + H.c. (4)

Because the superconductor interface has a finite width w, we
restrict the pairing amplitude in real space �̃(x,x ′) to x,x ′ ∈
[−w/2,w/2]. In momentum space (suppressing all indices)
this amounts to

∑
k �̃(k)ckc−k −→ ∑

kk′ �kk′ckck′ with �̃(k)
from the microscopic calculation and

�kk′ = �̃

(
k − k′

2

)
L

2π

∫
dl

sin
[
(l − k)w

2

]
(l − k)L

2

sin
[
(l + k′)w

2

]
(l + k′)L

2

,

where L is the total length of the system, which does not enter
the final results, and we have exploited that the integrand is
peaked around k ≈ l ≈ −k′. With this, the rates for removing
(adding) a Cooper pair, |i〉 → |f 〉 = c

n(†)
χv,s(k)cn′(†)

−χv,−s(k
′)|i〉, be-

come W∓
f i = 4π |�nn′

kk′ |2 〈n̂n,e/h
χv,s (k)〉i 〈n̂n′,e/h

−χv,−s(k
′)〉

i
δ[εn

χv
(k) +

εn′
−χv

(k′)], where at low temperatures the occupation prob-
ability 〈n̂n,e

χv,s
(k)〉

i
= 1 − 〈n̂n,h

χv,s
(k)〉

i
≈ �[−δμ − εn

χv
(k)] with

δμ the voltage applied between the superconductor and the
channel. Rewriting the sum over momenta as energy integrals,
the current becomes

I = 32e

�

πL2

(2π )2

∑
nn′

∫ δμ

−δμ

dε

∣∣∣∣∂kK+n(ε)

∂ε

∣∣∣∣
∣∣∣∣∂kK−n′(−ε)

∂ε

∣∣∣∣
× |�nn′(ε, − ε)|2. (5)

The combination of energy conservation and approximate
momentum conservation implies that the pair tunneling
probability |�nn′(ε, − ε)|2 has a single peak as a function
of ε for each pair n,n′. Injection into the same subgap
band, n = n′, happens near εnn

0 = 0, and into different
subbands, n �= n′, near ε12

0 = −ε21
0 = V0/

√
2 [Fig. 1(b)].

Linearizing the dispersion (3) around these points [36], ε =
εnn′

0 + �vnn′
0 (k − knn′

0 ), the tunnel amplitude becomes �nn′ =
�̃nn′ (knn′

0 ) sin[(ε − εnn′
0 )(w/�vnn′

0 )]/L(ε − εnn′
0 ) and we obtain

the conductance

G ≈ 4G0

∑
nn′

Tnn′
[
δw

(
δμ − εnn′

0

) + δw

(
δμ + εnn′

0

)]
, (6)

where G0 = 2e2/h is the conductance quantum, δw(ε) =
�vnn′

0 sin2[εw/(�vnn′
0 )]/(πwε2) becomes the delta function for

w → ∞, and Tnn′ = 2πw|�̃(knn′
0 )|2/(�vnn′

0 ) is the effective
tunneling strength. Note that the conductance grows with the
length of the interface, in contrast to conventional Cooper
pair splitters, which suffer from an exponential suppression
in the spatial size. Here, Cooper pairs are split kinematically
only after having tunneled locally into the channel, a process
which can happen simultaneously along the whole interface.
The conductance contains a central zero-bias peak and two
characteristic side peaks [Fig. 3(a)], which arise because of
the special subgap band structure and which correspond to
the injection points marked in Fig. 1(b). The peak height is

FIG. 3. (Color online) (a) Subgap conductance G and Cooper
pair current I of a w = 25�

√
α/V0 long interface between the

superconductor and the 1D channel at a distance d = 3
√

�2α/V0

with � = US = V0. The peaks reflect simultaneous energy and
approximate momentum conservation. The sharp boundary of the
superconductor region causes oscillations which vanish if an expo-
nential cutoff is used instead (dashed). (b) Scattering interpretation
of Cooper pair splitting. Incoming holes (open circles) filled up to
the bias δμ are transmitted (T) or undergo LAR. Reflection and CAR
are zero by valley chirality. LAR creates an outgoing electron (filled
circle) on the same side and no outgoing hole on the opposite side,
i.e., an electron of opposite spin, momentum, and energy (dashed
arrow), which are spin entangled (text).
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proportional to the induced superconducting pairings. A factor
of 4 arises due to the spin and valley degeneracy and a factor
of 2 due to pair transport.

LAR and Cooper pair splitting. In Eq. (4) the singlet nature
of the injected pairs is manifest. Cooper pair emission is closely
related to Andreev reflection [38–40] and equivalent to CAR
if the dominant scattering process is ordinary reflection. In
our device, the 1D channel with a proximity-induced super-
conducting region is a NSN junction, in which, by chirality,
only transmission through the S region with amplitude t(ε)
and local Andreev reflection (an incoming quasiparticle in
valley K± is reflected as an outgoing antiparticle with opposite
velocity in valley K∓) with amplitude r(ε) are possible. We
consider the general scattering problem with finite CAR and
normal reflection in the Supplemental Material [36]. When a
voltage bias δμ is applied between the superconductor and the
channel to extract Cooper pairs, the incoming modes are filled
with holes up to EF + δμ. Without the superconductor, all are
transmitted and fill the outgoing modes up to EF + δμ, which
is equivalent to a Fermi sea for electrons |〉δμ with the Fermi
energy EF − δμ [39],

|〉δμ ≡
∏

0 < ε < δμ

αs

hα†
s (ε)|〉 ≡

∏
0 < ε < δμ

αs

cα
s (−ε)|〉. (7)

Here, |〉 is the quasiparticle vacuum with respect to the Fermi
level EF of the superconductor and h

L/R†
s (ε) ≡ sc

L/R
−s (−ε)

creates outgoing holes with spin s at energy EF + ε in the
left/right lead, which is the same as annihilating an electron
with opposite spin −s at energy EF − ε. We drop the valley
index, which is fixed by the requirement that outgoing modes
move away from the superconducting region, and the band
index for simplicity [36]. Due to the proximity effect LAR
becomes finite. The key observation is that when LAR occurs,
no hole with spin s at energy EF + ε is transmitted to the
other side. The outgoing mode is therefore occupied by
a spin −s electron at energy EF − ε [Fig. 3(b)]. To see
this, we use Eq. (7) to write the outgoing state in terms of

|〉δμ [36],∏
0 < ε < δμ

αs

[
s t cᾱ

−s(−ε) + r cα†
s (ε)

]
c
ᾱ†
−s(−ε)|〉δμ

=
∏

0 < ε < δμ

α

{t2 + r2c
α†
↑ (ε)cᾱ†

↓ (−ε)cα†
↓ (ε)cᾱ†

↑ (−ε)

+ rt[cα†
↓ (ε)cᾱ†

↑ (−ε) − c
α†
↑ (ε)cᾱ†

↓ (−ε)]}|〉δμ. (8)

If r is small, it becomes {1 + ∑
εα r[cα†

↓ (ε)cᾱ†
↑ (−ε) −

c
α†
↑ (ε)cᾱ†

↓ (−ε)] + O(r2)}|〉δμ, where the desired nonlocal sin-
glet state is explicit. Then, individual splitting events are
separated and it is meaningful to talk about pairs. In this regime
of interest the above perturbative result holds. Only the emitted
pairs contribute to the shot noise of the scattering state. In
the opposite limit of perfect LAR with O(t) ∼ 0, O(r) ∼ 1,
the outgoing state is a nonentangled product state. LAR is
most pronounced at ε = 0 and ε = ±V0/

√
2 [Fig. 3(a)] where

the superconductor opens gaps �̃nn′ in the spectrum for the
case of an infinitely long (w → ∞) tunnel junction (Fig. 2).
LAR becomes weak for all energies, when w falls below the
coherence lengths �vnn′

0 /�̃nn′ .
Conclusion. Our setup allows for highly efficient creation

of nonlocal spin-entangled electrons without repulsive interac-
tion or energy filters. The topological channel can be created in
the bulk of the BG sample, completely avoiding sharp sample
edges, the main source of intervalley scattering [41], which
could reduce the splitting efficiency. Using an electrically
tunable channel geometry, ballistic beam splitters could be
created to prove the spin entanglement via noise [42], so far
an elusive goal. Spin relaxation and decoherence in BG are
expected to be weak due to the small spin-orbit coupling [43–
45] and the sparsity of nuclear spins.
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