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Matrix-product-state method with a dynamical local basis optimization
for bosonic systems out of equilibrium
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We present a method for simulating the time evolution of one-dimensional correlated electron-phonon systems
which combines the time-evolving block decimation algorithm with a dynamical optimization of the local basis.
This approach can reduce the computational cost by orders of magnitude when boson fluctuations are large.
The method is demonstrated on the nonequilibrium Holstein polaron by comparison with exact simulations in a
limited functional space and on the scattering of an electronic wave packet by local phonon modes. Our study of
the scattering problem reveals a rich physics including transient self-trapping and dissipation.
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Phonon degrees of freedom play an important role in
the nonequilibrium properties of correlated materials. In
particular, time-resolved spectroscopy [1,2], photoinduced
phase transitions [3,4], and transport through low-dimensional
or molecular junctions [5-7] call for theoretical investigations
of the nonequilibrium dynamics of charge carriers coupled to
lattice vibrations. Quantum lattice models such as the Holstein
model [8] are often used to describe the low-energy properties
of strongly correlated electron-phonon (EP) systems. Ana-
lytical studies of these systems out of equilibrium are very
difficult and reliable results are scarce. Therefore, theorists
often turn to numerical methods to investigate them [9-11].
Howeyver, accurate numerical simulations of correlated lattice
systems are very challenging because of the rapid increase
of the Hilbert space dimension with system size and phonon
number fluctuations. Similarly, computing the nonequilibrium
dynamics of correlated bosons is a significant challenge in a
great variety of physical systems, such as nonlinear optical
systems [12,13], quantum dissipative systems [14,15], and
low-energy models of quantum chromodynamics [16].

In this Rapid Communication we present a method for
simulating the time evolution of one-dimensional (1D) lattice
models with strongly fluctuating bosonic degrees of freedom
for long periods of time. It combines the time-evolving block
decimation (TEBD) [17,18] with a local basis optimization
(LBO) approach [19] to significantly reduce the computational
cost. The key idea is to optimize the local bases for the
bosonic degrees of freedom dynamically and adaptively. The
accuracy of the method is first demonstrated by comparison
with reliable results for a nonequilibrium polaron problem
[20]. Then, its performance is illustrated with a study of wave
packet scattering by a small EP-coupled structure.

In quantum lattice models phonon degrees of freedom are
represented by bosonic sites. As the Hilbert space of a single
bosonic site is already infinite, it must be truncated to a
subspace of dimension M from the start in wave-function-
based numerical approaches [9]. The most common choice
is to use the lowest M eigenstates of a (well chosen) boson
number operator b'b defining a bare boson basis. Then, exact
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diagonalization or exact time propagation can be easily per-
formed, but the computational cost increases very rapidly with
M and exponentially with the number of lattice sites. Matrix-
product-state (MPS) algorithms, such as the density-matrix
renormalization group (DMRG) [21-25] and TEBD, allow us
to treat 1D systems at a lower computational cost and thus to
investigate much larger systems. However, the computational
effort still increases as M?. Therefore, most applications have
been restricted to problems with small phonon fluctuations
(M < 10), in particular, for nonequilibrium problems [26].

Instead of a bare boson basis of dimension M, one can
describe a quantum state ) using an optimal local basis of
dimension My < M, which is defined as the eigenbasis of the
reduced density matrix of |i) for the bosonic site [19]. This
approach is very efficient for ground-state calculations because
a sufficient accuracy can be reached with a small optimal
basis even when a very large bare basis would be required.
As the optimal basis must be calculated self-consistently, the
total computational cost still rises with M, but only linearly.
Thus ground-state calculations can be carried out with exact
diagonalization or MPS algorithms for systems with M > 10°
using only moderate computer resources [9,19,27,28].

The LBO has yet to have been combined successfully
with MPS methods to study EP systems out of equilibrium,
but for a very recent study of the spin-boson model [29].
The key problem is that the local optimal basis depends
on the represented quantum state |[y(¢)) and thus evolves
with time. This is clearly seen in our recent study of the
optimal boson basis for a nonequilibrium polaron problem (see
Figs. 18-20 in Ref. [20]). Therefore, we have developed
an algorithm which allows us to optimize the local basis
dynamically for the evolving target state |y (¢)).

We have implemented this approach within the TEBD
algorithm [17,18], which is one of the simplest time-dependent
MPS methods [30-32]. For a chain with L sites, the MPS
representation of a quantum state |{) in an occupation number
basis is

Yk, ..

where the indices k; label the basis states of the d;-dimensional
Hilbert space representing the degrees of freedom on the
lattice site j € {1, ...,L}. (For a bosonic site, d; = M.) The

k) = Thkiplp2ke)2  L-lpLike (1)
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FIG. 1. (Color online) Graphical representation of the MPS (a)
in the original TEBD algorithm and (b) in the TEBD-LBO algorithm.

entanglement between two parts of the lattice (e.g., the sites
{1,...,j} and the sites {j + 1,...,L}) is encoded in the
D ;-dimensional positive definite diagonal matrices A/. Hence
the matrices I'/**/ have dimensions D;_; x D; (with Dy =
Dy = 1). This MPS is represented graphically in Fig. 1(a).
We call D = max{D,...,D;_;} the bond dimension of the
MPS and d = max{d, ...,d.} its local dimension.

Using orthogonality relations for the matrices I' and A, the
matrix elements of the reduced density matrix o/ for the site
Jj are given by

Pl = T T (I, @

The eigenbasis of this d; x d; matrix is called the optimal
local basis. The unitary transformation from the optimal to the
bare basis representation is denoted by R/,

do
M=% Rl Tp. 3)

Sj:]

This transformation is exact if dp = d;. The matrices A/ are
not affected by the basis change. The new MPS structure is
illustrated in Fig. 1(b). This transformation of the matrices I" in
the TEBD algorithm is similar to the approach proposed for a
variational MPS [28,33]. Each optimal basis state has a weight
(eigenvalue) in the interval [0, 1]. We can thus approximate the
original state (1) using only the dy (<d) eigenstates with the
highest weights.

For a Hamiltonian which includes only on-site and nearest-
neighbor interactions H = ), H; 11, the time evolution of
the MPS (1) can be decomposed into successive local updates
with a time step t using a Trotter-Suzuki decomposition (TSD)
of the time evolution operator y = e ~"*/i.i+14/r, where the local
operator H; ;. acts only on a single bond (i.e., sites j and
Jj + 1) [17,18]. Each local update is a unitary transformation
which modifies the two matrices I' and the one matrix A
associated with a bond. In practice, we use a second-order
TSD resulting in an error O(z?) per time step or O(t?) for a
finite period of time.

Here, we only explain how we perform the local update in
our TEBD-LBO algorithm as our method is otherwise identical
to the original TEBD [17,18]. We assume that we know the
MPS (1) at a given time ¢ in its truncated optimal local basis,
i.e., we know the I'p, A, and R matrices withd; < dp < d. A
local update for a single bond consists of four steps. First, we
build the rank-four tensor,

k,k‘ i—1 s . i1 . i+l
aiioy | = [V TITIIT A, @)

where the I matrices are given by (3) and the indices «;, =
1,...,D number the matrix rows and columns. Then, in a
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second step, we carry out the time evolution as done in the
original TEBD algorithm,

s’ = 30 U el )
kj.kjii
where U denotes the d;d; | x d;d;; matrix representation
of the local time-evolution operator e ~**#./+1 in the bare basis.
Generally, the computational cost for this step is O(d*D?),
but it can be reduced to O(d”>D?) using the sparseness of the
matrix representation of (7) in a bare boson basis. In the third
step, we compute the local reduced density matrix (2) from
the tensor ¢ using the relation

b= X TELGE)]T ©

kjy1,00,00

and then diagonalize it. This yields the new optimal bases
for the sites j and j + 1, i.e., new transformations R’ and
R/*!. We discard the optimal eigenstates with a negligible
weight (e.g., lower than 10~'%) and thus obtain a new truncated
optimal basis of dimension dp < d. The tensor ¢ is then
projected into the new optimal basis. Finally, in a fourth step,
the new matrices I, l;grl, and A/ are calculated from the
projected tensor ¢ exactly as in the original TEBD algorithm.
Hence we obtain the MPS representation of the state ¢ at time
t + t in its optimal local basis.

In summary, we repeatedly propagate the wave function
(1) in a bare local basis to enlarge the effective Hilbert space
and then project it onto a new effective Hilbert space using
the LBO to control the dimension of the MPS. If dp < d,
the total computational effort scales as d> D3, exactly as with
a bare basis. If a small optimal basis is sufficient (dp < d),
however, our algorithm scales as the largest of dé D3 (the
computational cost of TEBD in the optimal basis) and d° D>
(the computational cost for adapting the optimal basis), and
thus it is significantly faster than a bare basis simulation.
Contrary to the linear scaling of ground-state methods with
d [9,19,28], however, the computational cost still increases as
d?, but the prefactor is reduced significantly, in particular, by
a factor o< 1/D. Therefore, the advantage of the TEBD-LBO
will become more pronounced for problems with a large block
entanglement, i.e., D > 1.

Next, we turn to two applications of our TEBD-LBO
method to EP systems out of equilibrium. We consider an
L y-site Holstein chain [8] connected at each end to tight-
binding leads with Lt fermion sites. The Hamiltonian of the
full system (with L = Ly + 2Ltp sites) is

L-1
H = —1 Xj(c}cj-Jrl + c}ch)
j=1
Ltg+Lu
+ Y lwobib, —y®l+bn;l, )
Jj=Lts+1
where b; and c; annihilate a phonon (boson) and a (spinless)
fermion on site j, respectively, and n; = c} ¢;. Thus d =2M
in this model. The model parameters are the phonon frequency
wp > 0, the EP coupling y, and the hopping integral 7y. We
work with s = 1 and set the energy scale #y = 1, thus the time
unit is i/t) = 1.
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Here, we restrict ourselves to the nonequilibrium dynamics
of an electron coupled to phonons (i.e., the polaron dynamics),
which has recently become a widely studied topic [20,34-45].
One-electron problems have MPS with low bond dimensions
D, which can easily be simulated on a workstation when
the effective local dimension is small (d or dp < 10). Thus
they provide us with a practical test field for our TEBD-
LBO method. Typically, we used D < 30 or kept all block
eigenstates with weight >107!3 in combination with a time
step T as small as 103 to keep TEBD errors (induced by the
TSD and the truncation of the bond dimensions) under control.
The conservation of the electron number is used to decompose
the matrices I', A, p, and ¢ into block submatrices and thus
speed up the calculations. Therefore, we also obtain different
optimal boson states as a function of the electronic occupation
of a site.

The initial wave function contains no phonon,

L
Wt =0) =Y f()chh), ®)
j=1
with the vacuum state |(J). Thus it is only slightly entangled,
as D =d = 2. Naturally, these dimensions can increase
significantly when the wave function evolves with time [25].
Consequently, we always start our simulations with a small
bare basis dimension d. After every time step t, d is increased
if the occupation of the highest phonon state exceeds some
threshold (e.g., 1077).

First, we test our algorithm on the dynamics of a highly
excited electron coupled to phonons [20]. In that case, no tight-
binding lead is attached to the Holstein chain (L = Ly) and
the electron is initially in a state f(j) = «/2/(L + 1)sin(Kj)
with, e.g., K = L/(L + 1). We have recently investigated
this problem [20] using very accurate simulations within a
limited functional space (LFS) [38,46], and we use these
results to check the method presented here. As an illustration,
Fig. 2 compares the time evolution of the phonon number
Npn = (3 ; b;b ;) calculated using TEBD-LBO and LFS. In
Fig. 2(a) we see that the agreement is very good, while in
Fig. 2(b) we observe that relative deviations become overall
smaller when the dimension d is increased and approach the
values obtained using TEBD with a bare basis. Therefore, the
global exponential increase of deviations with time is not due to
the LBO but to intrinsic numerical errors of the TEBD and LFS
methods. However, our tests also confirm that for this problem
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FIG. 2. (Color online) Comparison of LFS and TEBD-LBO for
various dg. (a) Time evolution of the phonon number calculated
for L=Ly =6,y =2, and wy, = 1. (b) Relative deviations of the
TEBD-LBO data from the LFS results. Deviations for TEBD with a
bare basis of dimension d = 86 are also shown.
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do must be a substantial fraction of the bare basis dimension d
(e.g., dp =~ d/4) to achieve a similar accuracy. Consequently,
the dynamical LBO does not reduce the computational cost
significantly in comparison to the bare basis approach for this
type of problem. This is due to the relatively broad distribution
of the local density-matrix eigenvalues that we found in our
previous work [20].

Second, we apply our method to the scattering of an
electronic wave packet by a small EP-coupled structure. In
that case the tight-binding leads are much longer than the
Holstein chain (we use Lt up to 280 and Ly < 6 sites). The
initial state is a Gaussian wave packet centered around a site
Jo in the left lead and with a positive velocity vy & 2t sin(K),

(Jj — Jjo)?
402

f(j)=Cexp [— } exp[i K], ©))

where C is a normalization constant, Ltg — jo > ¢ > 1, and
m > K > 0. For the calculations presented here, weuse 0 = 5
and K = /2. Afteratimet =~ (Lt — jo)/v, the wave packet
reaches the Holstein chain where it becomes temporarily self-
trapped, and finally it is partially transmitted and reflected [47].

For this problem we find that the dynamical LBO reduces
the computational effort substantially when bosonic fluctua-
tions are large. For cases which can be simulated with both a
bare basis and an optimized one, we already observe speed-up
factors larger than 10. For instance, for wy = 0.6 and y = 2,
calculations with a bare basis of dimensiond = 124 (M = 62)
take 14 times longer than with an optimized basis of dimension
dop =9, but both approaches yield similar results with relative
deviations smaller than 1073, For larger phonon fluctuations,
we can only complete simulations using TEBD-LBO. For
instance, in the strong-coupling adiabatic regime (wy = 0.2
and y = 2), the required bare basis dimension is of the order
of 10%, but we can perform the TEBD-LBO simulation using
only up to dp = 23 optimal states. Therefore, the dynamical
LBO allows us to study regimes that we could not treat
with the standard TEBD algorithm on our workstation. (For
comparison, dimensions d = 30 and D = 5 were reported in
Ref. [29].)

The direct injection of an electronic wave packet into an EP-
coupled chain was studied previously [34,37] but the scenario
considered here has not yet been studied. Thus we briefly
discuss two interesting phenomena that we have observed but
postpone a more thorough discussion to a future work. The first
phenomenon is the temporary self-trapping of the electron in
the EP-coupled structure. In Fig. 3(a) we see that the electron
reaches the EP-coupled structure at ¢ ~ 30, but that a finite
density remains in that region even fort = 150 [47]. At several
times, fractions of the wave packet leave the Holstein chain and
start to propagate in the leads. The probability of finding the
electron in the Holstein chainny = ZJLLBL*;:L (nj)isshownin
Fig. 3(b). It increases rapidly when the wave packet reaches the
left edge site of the Holstein chain at # & 30 and then decays
exponentially fast for longer times. The decay rate is longer for
longer chains. Therefore, (a fraction of) the electronic wave
packet becomes temporarily self-trapped in the EP-coupled
structure and is belatedly transmitted or reflected.

The second phenomenon is the dissipation of the electron
energy due to inelastic scattering processes. Figure 4(a) shows
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FIG. 3. (Color online) (a) Electronic density (n;) as a function
of site j and time 7 for Ly = 6, ¥y = 1, and wy = 2.25. The Holstein
chain corresponds to sites j = 280, ...,285. (b) Total electronic
density ny in a Holstein chain of length Ly = 6 (red solid line),
3 (blue dotted line), and 1 (black dashed line) as a function of time 7.
The inset shows the same data on a logarithmic scale.

that one pair of transmitted and reflected wave packets moves
with the same absolute velocity vg = 2 as the incident wave
packet while a second pair moves with a lower velocity v; &
1.1 [47]. This corresponds to an inelastic process where a
phonon is excited by the presence of the electron in the EP-
coupled structure and is then left behind when the electron
propagates away from this structure. The final velocity v, =
2ty sin(k,) can be easily determined from the equality of the
asymptotic total energy for ¢t — £o00, —2fycos(K) = nwy —
2ty cos(k,), where n is the number of excited phonons left
behind. Similar patterns have been observed recently in a 1D
photonic waveguide coupled to a two-level scatterer (see Fig. 3
in Ref. [48]). In Fig. 4(b) we see that the phonon energy
Epn = woNph, which is zero initially, remains finite after the
electron has left the EP-coupled structure (i.e., for t — 00).
This confirms that an irreversible energy transfer occurs from
the electron to the phonon degrees of freedom (dissipation).
In summary, we have developed a TEBD algorithm with
a dynamical optimization of local boson bases that allows us
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FIG. 4. (Color online) (a) Electronic density (#;) as a function of
site j and timet for Ly = 1,y = 2.5, and wy = 1.65. The position of
the EP site is j = 90. (b) Phonon energy Ep, = woNp, as a function
of time for Ly = 1, wy = 1.5, and several values of y.

to simulate the nonequilibrium dynamics of electron-phonon
systems more efficiently. This opens the way for numerous
theoretical investigations of time-resolved spectral properties
[1,2], photoinduced phase transitions [3,4], and transport in
low dimensions [5—7]. The overall performance depends on
the properties of the local density matrix out of equilibrium and
thus on the specific problem investigated. The basic idea can
easily be combined with other time-dependent MPS methods
[30-32] or applied to other bosonic systems such as correlated
photons [12,13], quantum baths [14,15], and scalar fields [16],
as well as to other systems with large local Hilbert spaces such
as high spin models [49,50].

C.B., ED., EH.-M., and E.J. acknowledge support from
the DFG (Deutsche Forschungsgemeinschaft) through Grants
No. JE 261/2-1 and No. HE 5242/3-1 in the Research Unit
Advanced Computational Methods for Strongly Correlated
Quantum Systems (FOR 1807). L.V. was supported by the
Alexander-von-Humboldt foundation. This work was also
supported in part by National Science Foundation Grant No.
PHYS-1066293 and the hospitality of the Aspen Center for
Physics.

[1] D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K.
Haule, Electrodynamics of correlated electron materials, Rev.
Mod. Phys. 83, 471 (2011).

[2] J. Orenstein, Ultrafast spectroscopy of quantum materials, Phys.
Today 65(9), 44 (2012).

[3] K. Nasu, Itinerant type many-body theories for photo-induced
structural phase transitions, Rep. Prog. Phys. 67, 1607 (2004).

[4] K. Yonemitsu and K. Nasu, Theory of photoinduced phase
transitions in itinerant electron systems, Phys. Rep. 465, 1
(2008).

[5] M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport
junctions: vibrational effects, J. Phys.: Condens. Matter 19,
103201 (2007).

[6] E. A. Osorio, T. Bjgrnholm, J.-M. Lehn, M. Ruben, and
H.S.J. vander Zant, Single-molecule transport in three-terminal
devices, J. Phys.: Condens. Matter 20, 374121 (2008).

[71 N. A. Zimbovskaya and M. R. Pederson, Electron transport
through molecular junctions, Phys. Rep. 509, 1 (2011).

[8] T. Holstein, Studies of polaron motion: Part I. The molecular-
crystal model, Ann. Phys. 8, 325 (1959).

[9] E. Jeckelmann and H. Fehske, Exact numerical methods
for electron-phonon problems, Riv. Nuovo Cimento 30, 259
(2007).

[10] F. F. Assaad and H. G. Evertz, World-line and Determinantal
Quantum Monte Carlo Methods for Spins, Phonons and Elec-
trons, in Computational Many-Particle Physics, edited by H.
Fehske, R. Schneider, and A. Weille, Lecture Notes in Physics
Vol. 739 (Springer, Berlin, 2008), Chap. 10, pp. 277-356.

[11] M. Hohenadler and T. C. Lang, Autocorrelations in Quan-
tum Monte Carlo Simulations of Electron-Phonon Models, in
Computational Many-Particle Physics (Ref. [10]), Chap. 11,
pp. 357-366.

[12] T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, Non-
equilibrium many-body effects in driven nonlinear resonator
arrays, New J. Phys. 14, 103025 (2012).

[13] 1. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[14] U. Weiss, Quantum Dissipative Systems, Series in Modern
Condensed Matter Physics Vol. 13 (World Scientific, Singapore,
2008).

241106-4


http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1063/PT.3.1717
http://dx.doi.org/10.1063/PT.3.1717
http://dx.doi.org/10.1063/PT.3.1717
http://dx.doi.org/10.1063/PT.3.1717
http://dx.doi.org/10.1088/0034-4885/67/9/R02
http://dx.doi.org/10.1088/0034-4885/67/9/R02
http://dx.doi.org/10.1088/0034-4885/67/9/R02
http://dx.doi.org/10.1088/0034-4885/67/9/R02
http://dx.doi.org/10.1016/j.physrep.2008.04.008
http://dx.doi.org/10.1016/j.physrep.2008.04.008
http://dx.doi.org/10.1016/j.physrep.2008.04.008
http://dx.doi.org/10.1016/j.physrep.2008.04.008
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/20/37/374121
http://dx.doi.org/10.1088/0953-8984/20/37/374121
http://dx.doi.org/10.1088/0953-8984/20/37/374121
http://dx.doi.org/10.1088/0953-8984/20/37/374121
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1088/1367-2630/14/10/103025
http://dx.doi.org/10.1088/1367-2630/14/10/103025
http://dx.doi.org/10.1088/1367-2630/14/10/103025
http://dx.doi.org/10.1088/1367-2630/14/10/103025
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299

MATRIX-PRODUCT-STATE METHOD WITH A DYNAMICAL ...

[15] Y. Yao, L. Duan, Z. Li, C.-Q. Wu, and Y. Zhao, Dynamics of the
sub-Ohmic spin-boson model: A comparison of three numerical
approaches, Phys. Rev. E 88, 023303 (2013).

[16] J. Berges, D. Gelfand, and D. Sexty, Amplified fermion
production from overpopulated Bose fields, Phys. Rev. D 89,
025001 (2014).

[17] G. Vidal, Efficient Classical Simulation of Slightly Entangled
Quantum Computations, Phys. Rev. Lett. 91, 147902 (2003).

[18] G. Vidal, Efficient Simulation of One-Dimensional Quantum
Many-Body Systems, Phys. Rev. Lett. 93, 040502 (2004).

[19] C. Zhang, E. Jeckelmann, and S. R. White, Density Matrix
Approach to Local Hilbert Space Reduction, Phys. Rev. Lett.
80, 2661 (1998).

[20] F. Dorfner, L. Vidmar, C. Brockt, E. Jeckelmann, and F.
Heidrich-Meisner, Real-time decay of a highly excited charge
carrier in the one-dimensional Holstein model, Phys. Rev. B 91,
104302 (2015).

[21] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[22] S. R. White, Density-matrix algorithms for quantum renormal-
ization groups, Phys. Rev. B 48, 10345 (1993).

[23] U. Schollwock, The density-matrix renormalization group, Rev.
Mod. Phys. 77, 259 (2005).

[24] E. Jeckelmann, Density-Matrix Renormalization Group
Algorithms, in Computational
(Ref. [10]), Chap. 21, pp. 597-619.

[25] U. Schollwock, The density-matrix renormalization group in the
age of matrix product states, Ann. Phys. 326, 96 (2011).

[26] H. Matsueda, S. Sota, T. Tohyama, and S. Maekawa, Relaxation
dynamics of photocarriers in one-dimensional Mott insulators
coupled to phonons, J. Phys. Soc. Jpn. 81, 013701 (2012).

[27] W. Barford, R. J. Bursill, and M. Y. Lavrentiev, Breakdown of
the adiabatic approximation in trans-polyacetylene, Phys. Rev.
B 65, 075107 (2002).

[28] C. Guo, A. Weichselbaum, J. von Delft, and M. Vojta, Critical
and strong-coupling phases in one- and two-bath spin-boson
models, Phys. Rev. Lett. 108, 160401 (2012).

[29] F. A. Y. N. Schroder, A. W. Chin, and R. H. Friend, Simulating
open quantum dynamics with time-dependent variational matrix
product states: Towards microscopic correlation of environment
dynamics and reduced system evolution, arXiv:1507.02202.

[30] S. R. White and A. E. Feiguin, Real-time evolution using
the density matrix renormalization group, Phys. Rev. Lett. 93,
076401 (2004).

[31] A. J. Daley, C. Kollath, U. Schollwock, and G. Vidal, Time-
dependent density-matrix renormalization-group using adaptive
effective Hilbert spaces, J. Stat. Mech. (2004) P04005.

[32] P. Schmitteckert, Nonequilibrium electron transport using the
density matrix renormalization group method, Phys. Rev. B 70,
121302(R) (2004).

[33] B. Bruognolo, A. Weichselbaum, C. Guo, J. von Delft, I.
Schneider, and M. Vojta, Two-bath spin-boson model: Phase
diagram and critical properties, Phys. Rev. B 90, 245130 (2014).

Many-Particle  Physics

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 92, 241106(R) (2015)

[34] L.-C. Ku and S. A. Trugman, Quantum dynamics of polaron
formation, Phys. Rev. B 75, 014307 (2007).

[35] D. M. Kennes and V. Meden, Relaxation dynamics of an exactly
solvable electron-phonon model, Phys. Rev. B 82, 085109
(2010).

[36] B. Luo,J. Ye, C. Guan, and Y. Zhao, Validity of time-dependent
trial states for the Holstein polaron, Phys. Chem. Chem. Phys.
12, 15073 (2010).

[37] H. Fehske, G. Wellein, and A. R. Bishop, Spatiotemporal
evolution of polaronic states in finite quantum systems, Phys.
Rev. B 83, 075104 (2011).

[38] L. Vidmar, J. Bonca, M. Mierzejewski, P. Prelovsek, and
S. A. Trugman, Nonequilibrium dynamics of the Holstein
polaron driven by an external electric field, Phys. Rev. B 83,
134301 (2011).

[39] D. Golez, J. Bonca, L. Vidmar, and S. A. Trugman, Relaxation
Dynamics of the Holstein Polaron, Phys. Rev. Lett. 109, 236402
(2012).

[40] G. Li, B. Movaghar, A. Nitzan, and M. A. Ratner, Polaron
formation: Ehrenfest dynamics vs. exact results, J. Chem. Phys.
138, 044112 (2013).

[41] A. Dey and S. Yarlagadda, Polaron dynamics and decoherence
in an interacting two-spin system coupled to an optical-phonon
environment, Phys. Rev. B 89, 064311 (2014).

[42] P. Werner and M. Eckstein, Field-induced polaron formation
in the Holstein-Hubbard model, Europhys. Lett. 109, 37002
(2015).

[43] S. Sayyad and M. Eckstein, Coexistence of excited polarons
and metastable delocalized states in photoinduced metals, Phys.
Rev. B 91, 104301 (2015).

[44] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia,
and V. Cataudella, Mobility of Holstein Polaron at Finite
Temperature: An Unbiased Approach, Phys. Rev. Lett. 114,
146401 (2015).

[45] N. Zhou, Z. Huang, J. Zhu, V. Chernyak, and Y. Zhao, Polaron
dynamics with a multitude of Davydov D2 trial states, J. Chem.
Phys. 143, 014113 (2015).

[46] J. Bonca, S. A. Trugman, and I. Batisti¢, Holstein polaron, Phys.
Rev. B 60, 1633 (1999).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.92.241106 for movies of the time evolution
of the electronic densities shown in Figs. 3(a) and 4(a).

[48] E. Sanchez-Burillo, D. Zueco, J. J. Garcia-Ripoll, and L.
Martin-Moreno, Scattering in the Ultrastrong Regime: Non-
linear Optics With One Photon, Phys. Rev. Lett. 113, 263604
(2014).

[49] S. Capponi, G. Roux, P. Lecheminant, P. Azaria, E. Boulat,
and S. R. White, Molecular superfluid phase in systems of one-
dimensional multicomponent fermionic cold atoms, Phys. Rev.
A 77, 013624 (2008).

[50] M. Fihringer, S. Rachel, R. Thomale, M. Greiter, and P.
Schmitteckert, DMRG studies of critical SU(N) spin chains,
Ann. Phys. 17, 922 (2008).

241106-5


http://dx.doi.org/10.1103/PhysRevE.88.023303
http://dx.doi.org/10.1103/PhysRevE.88.023303
http://dx.doi.org/10.1103/PhysRevE.88.023303
http://dx.doi.org/10.1103/PhysRevE.88.023303
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1143/JPSJ.81.013701
http://dx.doi.org/10.1143/JPSJ.81.013701
http://dx.doi.org/10.1143/JPSJ.81.013701
http://dx.doi.org/10.1143/JPSJ.81.013701
http://dx.doi.org/10.1103/PhysRevB.65.075107
http://dx.doi.org/10.1103/PhysRevB.65.075107
http://dx.doi.org/10.1103/PhysRevB.65.075107
http://dx.doi.org/10.1103/PhysRevB.65.075107
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://arxiv.org/abs/arXiv:1507.02202
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.75.014307
http://dx.doi.org/10.1103/PhysRevB.75.014307
http://dx.doi.org/10.1103/PhysRevB.75.014307
http://dx.doi.org/10.1103/PhysRevB.75.014307
http://dx.doi.org/10.1103/PhysRevB.82.085109
http://dx.doi.org/10.1103/PhysRevB.82.085109
http://dx.doi.org/10.1103/PhysRevB.82.085109
http://dx.doi.org/10.1103/PhysRevB.82.085109
http://dx.doi.org/10.1039/c0cp00663g
http://dx.doi.org/10.1039/c0cp00663g
http://dx.doi.org/10.1039/c0cp00663g
http://dx.doi.org/10.1039/c0cp00663g
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.83.134301
http://dx.doi.org/10.1103/PhysRevB.83.134301
http://dx.doi.org/10.1103/PhysRevB.83.134301
http://dx.doi.org/10.1103/PhysRevB.83.134301
http://dx.doi.org/10.1103/PhysRevLett.109.236402
http://dx.doi.org/10.1103/PhysRevLett.109.236402
http://dx.doi.org/10.1103/PhysRevLett.109.236402
http://dx.doi.org/10.1103/PhysRevLett.109.236402
http://dx.doi.org/10.1063/1.4776230
http://dx.doi.org/10.1063/1.4776230
http://dx.doi.org/10.1063/1.4776230
http://dx.doi.org/10.1063/1.4776230
http://dx.doi.org/10.1103/PhysRevB.89.064311
http://dx.doi.org/10.1103/PhysRevB.89.064311
http://dx.doi.org/10.1103/PhysRevB.89.064311
http://dx.doi.org/10.1103/PhysRevB.89.064311
http://dx.doi.org/10.1209/0295-5075/109/37002
http://dx.doi.org/10.1209/0295-5075/109/37002
http://dx.doi.org/10.1209/0295-5075/109/37002
http://dx.doi.org/10.1209/0295-5075/109/37002
http://dx.doi.org/10.1103/PhysRevB.91.104301
http://dx.doi.org/10.1103/PhysRevB.91.104301
http://dx.doi.org/10.1103/PhysRevB.91.104301
http://dx.doi.org/10.1103/PhysRevB.91.104301
http://dx.doi.org/10.1103/PhysRevLett.114.146401
http://dx.doi.org/10.1103/PhysRevLett.114.146401
http://dx.doi.org/10.1103/PhysRevLett.114.146401
http://dx.doi.org/10.1103/PhysRevLett.114.146401
http://dx.doi.org/10.1063/1.4923009
http://dx.doi.org/10.1063/1.4923009
http://dx.doi.org/10.1063/1.4923009
http://dx.doi.org/10.1063/1.4923009
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://link.aps.org/supplemental/10.1103/PhysRevB.92.241106
http://dx.doi.org/10.1103/PhysRevLett.113.263604
http://dx.doi.org/10.1103/PhysRevLett.113.263604
http://dx.doi.org/10.1103/PhysRevLett.113.263604
http://dx.doi.org/10.1103/PhysRevLett.113.263604
http://dx.doi.org/10.1103/PhysRevA.77.013624
http://dx.doi.org/10.1103/PhysRevA.77.013624
http://dx.doi.org/10.1103/PhysRevA.77.013624
http://dx.doi.org/10.1103/PhysRevA.77.013624
http://dx.doi.org/10.1002/andp.200810326
http://dx.doi.org/10.1002/andp.200810326
http://dx.doi.org/10.1002/andp.200810326
http://dx.doi.org/10.1002/andp.200810326



