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We study a one-dimensional anisotropic XXZ Heisenberg spin- 1
2 chain with weak random fields hz

i S
z
i by

means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique.
First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ = 〈h2〉/J 2 � 1
and anisotropy parameter � = Jz/Jxy , we find the range of these parameters where disorder is irrelevant in the
infrared limit and spin-spin correlations are described by power laws, and compare it with previously obtained
numerical and analytical results. Then we use the diagram technique in terms of plasmon excitations to study the
low-temperature (T � J ) behavior of heat conductivity κ and spin conductivity σ in this power-law phase. The
obtained Lorentz number L ≡ κ/σT differs from the value derived earlier by means of the memory function
method. We argue also that in the studied region inelastic scattering is strong enough to suppress quantum
interference in the low-temperature limit.
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I. INTRODUCTION

The one-dimensional disordered spin chain is an excellent
example of a strongly correlated quantum system that is
well suited to study the basic properties of such systems. In
particular, the studies of disordered spin chains have become
one of the major playgrounds in the field of many-body
localization (MBL) [1–8]. From the experimental viewpoint,
quasi-one-dimensional antiferromagnets [9–11] attract consid-
erable attention due to their very high thermal conductance,
which is believed to be related with the integrability of the
clean Heisenberg spin- 1

2 chain [12,13]. It is known since
the seminal paper of Ref. [14] that in 1D the competition
between interaction and disorder may lead to delocalization
and the formation of a ground state that is nearly-free from
the effects of disorder, see also Refs. [15,16]. Numerical
studies [17–19] confirm that qualitative conclusion. In order
to provide delocalization, the interaction should be sufficiently
strong and attractive, so this problem bears some resemblance
with a model of superconductor-insulator transition in higher-
dimensional systems [20]. Looking from that perspective, it
seems useful to develop a quantitative theory of the delocalized
phase of one-dimensional quantum systems with a bare
disorder that is “screened” by interactions. In particular, it is
important to study heat transport in a system that is expected
to be dominated by the remains of the disorder potential.

Here we will study the properties of anisotropic XXZ spin
chains in a random magnetic field along the z direction, which
is described by the Hamiltonian (we assume J > 0)

Ĥ = −J
∑

n

(
Ŝx

n Ŝx
n+1 + Ŝy

n Ŝ
y

n+1 + �Ŝz
nŜ

z
n+1 + hn

J
Ŝz

n

)
. (1)

By means of the Jordan-Wigner (JW) transformation the
Hamiltonian (1) can be reduced to the Hamiltonian of
interacting spinless fermions (here ρn = c

†
ncn − 1

2 ):

Ĥ = −J
∑

n

(
1

2
c†ncn+1 + H.c. + �ρnρn+1 + hn

J
ρn

)
. (2)

The anisotropy parameter � can be both positive and negative,
which corresponds to the effective attraction or repulsion
between JW fermions, respectively.

We will consider random fields that are relatively small, so
that γ = 〈h2〉/J 2 � 1, and have zero average 〈h〉 = 0. Thus
our system is, on average, symmetric with respect to z �→ −z

reflection, which translates into the particle-hole symmetry
in terms of JW fermions. It ensures that in the quasiparticle
spectrum ε(k) only odd powers of k survive.

The goal of this paper is to study low-temperature (i.e., the
range T � J ) transport properties, spin and heat conductivity,
in the range of parameters (�,γ ) where T = 0 spin-spin
correlations decay as a power law with the distance. The
rest of the paper is organized as follows. In Sec. II, we
study the phase diagram by means of renormalization group
(RG) approach formulated in Ref. [14]. Although a similar
study was performed in Ref. [17], we need to expose the
RG approach here for completeness of the discussion and
for a comparison with the currently available numerical data.
Section III is devoted to the formulation and an application of
the Keldysh approach to the transport properties of disordered
Luttinger liquid model, which is an appropriate low-energy
approximation for the lattice fermion model (2); in Sec. III A,
spin and heat conductivities (σ and κ) are studied within the
region 1

2 � � � 1 where disorder is irrelevant in the RG sense;
next, in Sec. III B, we discuss the specific behavior of σ and κ

near the critical point � = 1
2 ; the role of quantum interference

corrections and decoherence is discussed in Sec. III C, and
the role of spectrum nonlinearity is considered in Sec. III D.
Finally, we present our conclusions in Sec. IV.

II. LUTTINGER LIQUID DESCRIPTION
AND PHASE DIAGRAM

In the clean limit hn = 0 and in the region −1 < � < 1,
the excitation spectrum of the interacting one-dimensional
fermion system (2) is gapless; then the low-energy and long-
distance properties of the system are known to be described
by the Luttinger liquid (LL) model [15]. It allows to rewrite
the Hamiltonian in terms of fermion density excitations—
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plasmons. The LL model is formulated in terms of canonically
conjugated plasmon fields [φ(x),	(y)] = iδ(x − y); in the
linear approximation for the quasiparticle spectrum, the
Hamiltonian of the LL model reads

ĤLL = 1

2π

∫
dx

(
u

K
(∂xφ)2 + uK(π	)2

)
. (3)

Here, u is the plasmon velocity and K is a dimensionless
Luttinger parameter; these parameters are determined, via the
Bethe ansatz solution for the XXZ model, by the values of J

and �, see Ref. [15], p. 167:

� = cos
π

2K
, u = Ja

2

sin(π/2K)

1 − 1/2K
, (4)

where a is the lattice constant.
In our model (2) disorder couples to the fermion den-

sity ρn; in the LL continuum limit, it reads as ρ(x) =
− 1

π
∂xφ + 1

πa
cos(2kF x − 2φ). The first and second terms in

the above expression correspond to the slow (q ∼ 0) and
fast oscillating (q ∼ 2kF ) parts. Thus there are two types of
scattering of one-dimensional fermions by disorder: forward
and backward. Forward scattering is irrelevant within the linear
approximation for the spectrum, since the corresponding term
in the LL Hamiltonian can be eliminated completely by the
redefinition of phase φ(x). The backward fermion scattering
with momentum transfer q ∼ 2kF is the only effect one should
take into account then. Thus we need only the q ∼ 2kF part
of the original random potential; this part is described by
the random Gaussian complex field ξ (x) with 〈ξ (x)ξ ∗(y)〉 =
Dδ(x − y) and D = 〈h2〉a. The disorder contribution to the
Hamiltonian reads as follows:

Ĥdis = − 1

2πα

∫
dx(ξ (x)e−2iφ + ξ ∗(x)e2iφ). (5)

The renormalization group approach to a disordered Lut-
tinger liquid was formulated in Ref. [14]. It is convenient to
introduce a dimensionless disorder parameter:

g = 2Da

πu2
= 8(1 − 1/2K)2

π sin2(π/2K)
γ. (6)

In terms of this parameter and logarithmic scaling parameter
ξ = ln ã

a
(with ã being running ultraviolet cutoff), the RG

equations read as follows:

du

dξ
= −uK

2
g

dK

dξ
= −K2

2
g (7)

dg

dξ
= (3 − 2K)g.

These equations can be solved analytically exploiting their
first integral I (K,g) = 9

8 ( 6
K

+ 4 ln K − g). The prefactor 9/8
in the definition of I (K,g) helps to present the parameter α

(measuring distance to the transition line, see Sec. III B) in a
more convenient form. This solution yields the phase diagram
shown as a solid line in Fig. 1. The “delocalized” region lies, in
the limit of very weak disorder, in the range 1

2 < � < 1. Upon
increase of γ , the delocalized region shrinks and eventually

FIG. 1. (Color online) Approximate phase diagram for a disor-
dered XXZ spin chain. Solid line: the one found from the RG
calculations for the Luttinger liquid model with a linear spectrum
(originally obtained in Ref. [17] with wrong scale along γ ). The
small area under the dashed line corresponds to the phase boundary
presented in Ref. [18]; the large area under the dotted line corresponds
to the phase boundary presented in Ref. [19].

disappears already at γ ≈ 0.1. Everywhere in the delocalized
phase the effective disorder g(ξ ) decreases with ξ .

Equal-time spin-spin correlation function 〈S+(0)S−(x)〉
decays as a power law at � > 1

2 , as one can read in Ref. [16],
where a two-loop RG calculation was performed. At smaller
� < 1

2 , the renormalized disorder parameter g(ξ ) grows with
ξ , and one expects an exponential decay of 〈S+(0)S−(x)〉 at
x � Lc, where the correlation length

Lc = c(K)γ 1/(2K−3); c(1) ≈ 2, (8)

see Ref. [14]. Note that for the case of the XY model with
random fields along the z axis (i.e. � = 0) an exponential
decay of 〈S+(0)S−(x)〉 follows directly from single-particle
localization in 1D, as proven rigorously in Ref. [21]. However,
for any � < 1

2 , the relation between the growth of effective
disorder upon RG and Anderson localization is far from being
obvious, since the RG calculation [14] does not contain any
multiple-impurity interference effects, see Refs. [22,23]. The
value of c(K = 1) ≈ 2 follows from a well-known result [24]
for the localization length in the one-dimensional Anderson
problem, Lloc = 96/W 2, see Eq. (9) below for the relation
between W and γ ; we expect c(K) to be a slow function of K

on the interval K ∈ (1,2).
Actually, the derivation of the RG equations (7) as it

was performed in Ref. [14] is valid quantitatively in the
vicinity of the point K = 3/2 only, where the disorder-induced
corrections to the parameter K are logarithmic; for a large K ,
these equations can be used for a qualitative analysis only
(the above-mentioned limitation is specific for the effects of
distributed disorder and is not relevant for LL with a single
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impurity, like the one studied in Ref. [26]). Note that the drop
of the critical disorder γ near the point � = 1 is trivially
related to the decrease of the effective Luttinger velocity u,
see Eqs. (4) and (6). However, at large K , i.e., small 1 − �,
some effects related to the nonlinearity of the excitation
spectrum (neglected within the standard LL model) become
increasingly important. We present some arguments related to
those effects towards the end of the paper. Here, we just note
that low-lying single-particle excitations at the isotropic point
� = 1 are exactly described by magnons with the spectrum
ε(q) = Ja2q2, with qa � 1, and a random potential hn leads
to their straightforward localization.

A similar phase diagram was originally obtained in
Ref. [17]. However, the definition of group velocity u in
Ref. [17] differs from the one given by (4) by a factor of two,
resulting in a four-times extension of the phase diagram along
the γ axis, as was noticed already in Ref. [18]. A simple check
of Eq. (4) can be performed at point � = 0, K = 1, where the
fermion spectrum is known exactly to be ε(k) = −J cos(ka),
yielding a Fermi velocity vF = Ja, which coincides with (4),
while Ref. [17] yields vF = 2Ja.

The phase diagram obtained by the analysis of RG equa-
tions can be compared with the numeric phase diagram from
Ref. [18], see dashed line in Fig. 1. Comparing Eq. (2) with the
Eq. (1) of Ref. [18], one obtains the following correspondence
between parameters:

J = 2, γ = W 2

48
, � = −V/2. (9)

Using these equations, we obtain a phase boundary that is
shown by the dashed line in Fig. 1. According to these
numerical data, the delocalized region covers a much smaller
part of the phase diagram than the RG calculations predict.
We expect that the major source of this discrepancy is due to
inapplicability of the RG equations (7) at large K values due
to the effects of spectrum nonlinearity that becomes important
closer to � = 1. On the other hand, near the point K = 3/2, the
numerical data [18] suggest delocalization at the values of γ

that are above our critical line. We believe that this discrepancy
comes from the limited accuracy of the numerical data due to
finite size effects, which becomes most prominent at very weak
disorder; the same effect in a more prominent form is discussed
below in connection with the results of Ref. [19].

A disorder-interaction phase diagram for the 1D fermion
model was also obtained in Ref. [19], see the dotted line in
Fig. 1 [the notations here are almost the same as in Ref. [18],
up to the change V → U , so we can use (9)]. The delocalized
region obtained in Ref. [19] is noticeably larger than the one
predicted by RG equations (7). The delocalized phase appears
when γ � 0.13, which is close to the predicted γ � 0.10;
however, the delocalized region is much wider and spreads
almost up to the noninteracting point � = 0, which strongly
disagrees with the predicted value of � = 0.5. We argue that
such behavior of transition line can be caused by finite-size
effects. To support this argument, we should estimate the
localization length using Eq. (8) and compare it with the
maximal system size used in the computations of Ref. [19].
For example, consider the point � = 0.3 and W = 1.4 (that
corresponds to K ≈ 1.24 and γ ≈ 0.045, close to the phase
boundary of Ref. [19]); our estimate (8) yields Lloc ≈ 400,

which is comparable to the maximal system sizes L ≈ 1000
used. In other terms, the large value of the exponent (3−2K)−1

for K slightly less than 3/2, and the smallness of the relevant
dimensionless disorder parameter γ , lead to a very small
inverse correlation length 1/Lloc that is difficult to distinguish
from zero within numerical analysis. Below, we will focus
on the delocalized phase 1

2 < � < 1 that corresponds to
the range of 3

2 < K < ∞, where the renormalized disorder
constant g is small, and one can obtain transport properties
using perturbation theory for the bosonic LL model with
renormalized parameters.

III. TRANSPORT PROPERTIES

Here, we proceed from the Hamiltonian description defined
by Eq. (3.5) to the Keldysh action for the LL model with
disorder. We follow Ref. [25], introducing a Keldysh time
contour with time running from minus infinity to plus infinity
and backwards. The total Keldysh action Stot consists of a
trivial free boson part S0 and a disorder-related part coming
directly from Eq. (5):

Sdis = 1

2πa

∫
C

dtdx(ξ (x)e−2iφ + ξ ∗(x)e2iφ). (10)

We integrate exp(iStot) over a random Gaussian field ξ (x)
and perform a Keldysh rotation introducing classical φcl =
1
2 (φ+ + φ−) and quantum φq = φ+ − φ− field components,
arriving finally at the effective disorder action

Sdis = iD

π2a2

∫
dt1dt2dy cos 2(φcl(y,t1) − φcl(y,t2))

× sin φq(y,t1) sin φq(y,t2). (11)

The integration dy over the single coordinate y comes about
due to the averaging over the δ-correlated random potential
ξ (x).

The corresponding vertex coming from Keldysh action (11)
is highly nonlinear. In order to apply Wicks theorem with
such a vertex, one needs to Taylor-expand the correspond-
ing nonlinear term and perform a contraction and then a
resummation of the series. However, one can note that such a
procedure is effectively equivalent to taking a derivative with
respect to the corresponding φ field, e.g., 〈φ(x1)f (φ(x2))〉 =
〈φ(x1)φ(x2)〉 × 〈 ∂f

∂φ
(φ(x2))〉.

In order to obtain the self-energy for the retarded Green
function in the lowest order over Sdis we consider the first-order
correction to it, which reads

iδG
(1)
R (t − t ′,x − x ′)

= iD

π2α2

∫
dt1dt2dy〈φcl(x,t)φq(x ′,t ′)

× cos 2(φ1cl − φ2cl) sin φ1q sin φ2q〉0

= 4iD

π2α2

∫
dt1dt2dyG

(0)
R (x − y,t − t1)

×(
G

(0)
R (t1 − t ′,y − x ′) − G

(0)
R (t2 − t ′,y − x ′)

)
×〈sin 2(φcl(y,t1)−φcl(y,t2)) cos φq(y,t1) sin φq(y,t2)〉0.

(12)
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(a) (b)

FIG. 2. Lowest-order diagrams for the retarded self energy
�R(ω). Dashed lines correspond to disorder average 〈ξ (x)ξ ∗(y)〉 and
wavy lines correspond to averaging of sines cosine and cosines of
boson fields. Solid lines correspond to “amputated” external Green
function lines

By 〈. . . 〉0 we denote the average with respect to the free boson
action. This analytic expression corresponds to two Feynman
diagrams (see Fig. 2).

Performing the average of sines and cosines of φ fields using
Wicks theorem, we extract the retarded bosonic self-energy,
whose Fourier transform reads

�R(ω) = − 4D

π2a2

∫ ∞

0
dt(1 − eiωt )e2i(GK (t)−GK (0)) sin 2GR(t),

(13)

where the bare retarded and Keldysh components of the Green
function are as follows:

G
(0)
R (ω,q) = πuK

(ω + i0)2 − u2q2
, (14)

G
(0)
R (t,x) = −πK

2
θ (t)θ (ut − |x|), (15)

G
(0)
K (ω) = F (ω)

(
G

(0)
R (ω) − G

(0)
A (ω)

)
(16)

with F (ω) = coth βω

2 being the equilibrium distribution func-
tion. The inverse Fourier transformation of the Keldysh com-
ponent G

(0)
K (ω) to the real space-time, G

(0)
K (t,x), is infrared-

divergent; it is sufficient to use the difference G
(0)
K (t,x) −

G
(0)
K (0,0), which is finite:

G
(0)
K (t,x) − G

(0)
K (0,0)

= i
K

2
ln

(
u2β2

π2α2

∣∣∣∣ sinh
π (x + ut)

uβ
sinh

π (x − ut)

uβ

∣∣∣∣
)

. (17)

At low temperatures T � J , two different types of contribu-
tions to the disorder-induced self-energy can be separated:
virtual transitions with T � ω � J and real (dissipative)
transitions with ω � T . The first contribution leads to a
logarithmic renormalization of the model parameters yielding
the RG equations (7) described above; the second contribution
yields the dissipative behavior of the corresponding self-
energy �R(ω) = −iω/uπKτ with a momentum relaxation
rate as follows:

1

τ (T )
= 2DK

u

�2(K)

�(2K)

(
2πaT

u

)2K−2

. (18)

According to Eq. (18), the product T τ ∝ T 3−2K diverges as
T → 0 in the delocalized phase. The full Green function then
reads as follows:

GR(ω,q) = πuK

ω2 − u2q2 + iω/τ
, GA = G∗

R. (19)

A. Spin and heat conductivities

To obtain transport properties, one can apply the Kubo
formulas. The expressions for spin and energy currents can
be derived from the corresponding continuity equation ∂tρα +
∇jα = 0 (index α corresponds to either spin or energy), and
using classical equations of motion. For the Hamiltonian of
the form Ĥ = ∫

dxρE(φ(x),∇φ(x),	(x)), the equations of
motion read as follows:

∂tφ = ∂ρE

∂	
, ∂t	 = −∂ρE

∂φ
+ ∇ ∂ρE

∂(∇φ)
, (20)

so the energy density obeys the following continuity equation:

∂tρE = ∂ρE

∂φ
∂tφ + ∂ρE

∂∇φ
∂t∇φ + ∂ρE

∂	
∂t	 = ∇

(
∂ρE

∂∇φ

∂ρE

∂	

)
(21)

and similarly for the spin density. Considering the total
Hamiltonian consisting of two contributions (3) and (5), we
arrive at the following expressions for the currents:

js = 1

π
∂tφ, jE = − u

πK
∂tφ∇φ. (22)

We emphasize that Eq. (22) provide exact (within the Lut-
tinger liquid approximation) expressions for both spin and
thermal currents. Surprisingly, in the LL approximation, the
energy current does not contain any terms related to the
presence of backscattering. In Appendix, we provide a detailed
derivation of the energy current, starting from the lattice
fermion model (1), and show that backscattering does produce
additional terms for the energy current, but these terms vanish
in the continuous LL limit, when a → 0 at some fixed value
of the product Ja.

Spin transport is governed by the single-plasmon Green
function, while for energy transport we need to calculate
the correlation function of four φ fields. Applying the Kubo
formula for spin conductivity, we reproduce the Drude-like
result of Refs. [23,27],

σ (ω) = iω

π2
GR(ω,q = 0) = uK

π

τ

1 − iωτ
, (23)

valid at ω � T .
The thermal conductivity κ is expressed in terms of

the so-called “thermal susceptibility” χE(ω,q) as κ(ω) =
−iβ/ω × (χE(ω,q = 0) − χE(0,0)). Introducing the short no-
tation x = (t,x), and q = (ω,q), the expression for the thermal
susceptibility in real space reads as follows:

χE(x1 − x2) = i
u2

π2K2
〈(∂tφ∇φ)cl(x1)(∂tφ∇φ)q(x2)〉, (24)

and χ (q) is the Fourier transform of this expression. Applying
Wicks theorem, one finds

χE(x1 − x2) ≡ −i
u2

2π2K2

(
∂2
t GK (x1 − x2)∇2GA(x2 − x1)

+ ∂t∇GR(x1 − x2)∂t∇GK (x2 − x1)

+ ∂2
t GR(x1 − x2)∇2GK (x2 − x1)

+ ∂t∇GK (x1 − x2)∂t∇GA(x2 − x1)
)
. (25)

Here, we dropped the so-called contact term due to con-
traction 〈∂tφ1∂tφ2〉 �= −∂2

t 〈φ1φ2〉, since it does not contribute
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to the conductivity. Performing a Fourier transformation of
this expression and using the equilibrium relation for the
Keldysh Green function (16), which holds also for the dressed
propagators, and introducing a short notation p = (ε,p), we
arrive at

χE(q) = −i
u2

4π2K2

∫
d2p

(2π )2
(ε(p − q) + (ε − ω)p)2

× ((F (ε) − F (ε − ω))GR(p)GA(p − q)

+F (ε − ω)GR(p − q)GR(p)

−F (ε)GA(p)GA(p − q)). (26)

The second line of this expression contains products of two
retarded (RR) or two advanced (AA) propagators. These terms
do not contribute to the thermal conductivity; moreover, they
are canceled by the term χE(q = 0) in the expression for the
thermal conductivity. Then the result for the static thermal
conductivity reads

κ = u2

π2K2

1

2T 2

∫
dε

2π

ε2

sinh2 ε
2T

∫
dp

2π
p2GR(ε,p)GA(ε,p).

(27)
An integration in Eq. (27) with full propagators (19) yields the
final result

κ = π

3
uT τ. (28)

A comparison between Eqs. (23) and (28) provides us with the
value of the Lorentz number

L = κ

σT
= π2

3K
. (29)

We mention in passing, that formally the result (29) matches its
standard Fermi liquid value LFL = π2

3 for K = 1; however, in
this range of K , our treatment of the spin chain problem is not
applicable due to localization effects. Our result coincides with
the one known for the clean limit of LL [26], but differs from
the strong-impurity result by Kane and Fisher [26], LKF =
π2/(2K + K2). It is also different from the one obtained by Li
and Orignac (LO) by means of memory function [27]: LLO =
π2/9 × (2K−1 + K−2). The coincidence of our result with
the one obtained [26] for a single weak scatterer is expected,
since (i) no multiple impurity effects were considered and (ii)
we consider weak impurities and the renormalization flow at
K > 3/2 makes it even weaker.

The discrepancy of our result with the LO result is due
to limitations of the memory function formalism used in
Ref. [27], which is based upon the extrapolation from the large-
ω region to the static limit. Indeed, the frequency-dependent
thermal conductance κ(ω) depends on two different frequency
scales, T and 1/τ ; according to Eq. (18), in the region K >

3/2, one always has T � 1/τ (T ) in the low-temperature limit.
In order to obtain the static thermal conductivity, one should be
able to compute κ(ω) at ωτ � 1, whereas the memory function
method is based upon the calculation of the high-frequency
limit κ(ω � T ) and further extrapolation to zero frequency.
We believe that the presence of two parametrically different
frequency scales 1/τ and T makes such an extrapolation
unreliable, which led LO to a result that is in error in the
range of large T τ we are interested in.

The above calculation leading to Eqs. (28) and (29) should
be performed, in general, with the parameters (g,K) renor-
malized [due to RG equations (7)] down to the temperature
scale ξT . If the bare parameters (g,K) are in the bulk of the
delocalized phase (not too close to the transition line), one can
neglect the renormalization of K and u due to disorder, leading
to results for spin and thermal conductivities that depend on
the scale ξT via the scattering time τ only, see Eq. (18). Then
the result is given by Eqs. (23) and (28) with bare parameters.

Near the transition line one should take the renormalization
of all the parameters simultaneously. Below, we will see how
it affects the physical properties of the system.

B. Vicinity of the point � = 1
2

Expanding the first integral of system (7) by K − 3
2 , or,

equivalently, � − 1
2 , one obtains

I − Ic = 27

π2

(
� − 1

2

)2

− 16

3π
γ. (30)

The equality I = Ic yields the phase boundary of the delocal-
ized state in the form (� − 1

2 )
2 = 16π

81 γ .
The solution of equations (7) can be expressed in terms of

the vicinity to the transition line α = √
I − Ic � 1:

u(ξ ) = u exp

(
2

3
K(ξ ) − 1

)
K(ξ ) = α coth α(ξ + ξ0)

g(ξ ) = 8α2

9 sinh2 α(ξ + ξ0)
, (31)

where ξ0 depends on the initial values of parameters. Consider-
ing the temperature to be low enough (so ξT � |ξ0|,1/α), one
obtains the low-temperature behavior of the renormalized pa-
rameters g(ξT ) � α2 exp(−2αξ ) � α2(T/J )2α and K(ξT ) −
3
2 � α = const.

Now we repeat the above calculations leading to nonzero
Im�(ω) and obtain Drude-type formulas with corrected
power-law exponent α:

σ � α−2a(T/J )−1−2α, κ � Jα−2a(T/J )−2α. (32)

The Lorentz number is still given by Eq. (29) once renormal-
ization K → K(ξT ) is taken into account. Modifications of K

and α are negligible if g � (K − 3
2 )2.

C. Smallness of the interference corrections

Our result for the heat conductance, Eq. (28), was obtained
within a Drude-type approximation. Since our system is
one-dimensional, some care should be exercised to check if
the effects of quantum interference and Anderson localization
could affect that result. To begin with, it is useful to employ
the result of Ref. [22] where the same issue was considered for
a disordered Luttinger liquid with a weak interaction, |K −
1| � 1. Namely, it was found in Ref. [22] that interference
corrections are negligible at sufficiently high temperatures
T � τ−1(T )(K − 1)−2. We are working at K > 3/2 and the
corresponding condition is just T � 1/τ (T ), which is always
fulfilled at low temperatures T � J according to Eq. (18).
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FIG. 3. Loop diagram for “thermal susceptibility” χE . Thermal
current vertices act as the following combinations of derivatives:
(∂t∇′ + ∂ ′

t∇), with derivatives ∂t , ∇ acting on one φ field in the
vertex and ∂ ′

t , ∇′ acting on another one. Solid lines correspond to
“dressed” Green functions.

To estimate the interference corrections more accurately,
we examine the expression for the “thermal susceptibility” to
higher orders in Sdis adding impurity lines connecting the upper
and lower Green functions drown in Fig. 3. The first-order
correction (with single impurity line) vanishes at zero external
momentum due to the gradient structure of the energy current
vertex. The first nontrivial corrections are due to diagrams
shown in Fig. 4; the corresponding analytical expressions yield

δχE(t − t ′,x − x ′)

= 1

2

(
iD

π2α2

)2 ∫
dt1dt2dt3dt4dydz〈∂tφcl(x,t)∇φcl(x,t)

×(∂tφcl(x
′,t ′)∇φq(x ′,t ′) + ∂tφq(x ′,t ′)∇φcl(x

′,t ′))

× cos(2φcl(y,t1) − 2φcl(y,t2)) sin φq(y,t1) sin φq(y,t2)

× cos(2φcl(z,t3) − 2φcl(z,t4)) sin φq(z,t3) sin φq(z,t4)〉0.

(33)

Grayed box corresponds to sine and cosine averages and
consists of an infinite number of boson propagators connecting
all the points. Generally speaking, such box depends on
all the ingoing energies and momenta. However, a direct
calculation shows that it contains factors e2i(GK (ti−tj )−GK (0)) ∝
1/ sinh2K πT (ti − tj ), which impose an effective constraint
for the time differences: any such diagram is very small unless
the condition |ti − tj | � 1/T is fulfilled. On the other hand,
a typical time scale for the dressed “external” [with respect
to (w.r.t.) to the “grey area”] propagators is τ (T ) � 1/T ;
therefore, up to the leading order in 1/T τ (T ) � 1, one can
try to shrink all four space-time impurity points in Fig. 4
into a single one (see Fig. 5). However, the calculation of
the remaining integrals yields zero result, due to the vector
structure of the current vertex. Therefore nonzero vertex
corrections appear in the next order in 1/T τ (T ) � 1 only, and
are small at low T in the whole “delocalized” phase K > 3/2.

FIG. 4. Nontrivial corrections to “thermal susceptibility.” Solid
lines correspond to “dressed” Green functions, dashed lines cor-
respond to the same impurity, and the grayed area corresponds to
average of cosine and sine of φ fields. See main text for the analytical
expressions.

FIG. 5. Effective form of the diagram for the vertex correction to
thermal susceptibility, valid in the leading order of expansion over
1/T τ (T ) � 1.

D. Spectrum nonlinearity effects

At the Heisenberg isotropic point � = 1 in the clean
system, the spectrum of excitations is quadratic and the
system is no longer described by a Luttinger liquid model.
In the vicinity to this point, the plasmon velocity vanishes as
u = Ja

√
(1 − �)/2; since the dimensionless disorder strength

g depends on the velocity u and the interaction parameter K ,
see Eq. (6), this narrows the region where perturbation theory
in powers of small g is applicable to 〈h2〉/J 2 � (1 − �)3/2.

However, spectrum nonlinearity effects at finite tempera-
tures might become relevant long before the critical point � =
1. Let us make some estimates. Due to particle-hole symmetry,
only odd powers in quasiparticle spectrum survive; the first
nonvanishing contribution to the dispersion relation will be
δε ∼ u

a
(ka)3. At finite temperatures, this yields a new energy

scale δε ∼ T (T a/u)2; such energy scale should be compared
with the scattering ratio 1/τ ∼ ug/a(T/J )2K−2. Therefore we
conclude that spectrum nonlinearity will be important and
should be taken into account when (T/J )5−2K � 〈h2〉/J 2.

For K < 5/2, it leads to a threshold for the temperature
above which nonlinearity effects are expected to be important,
T∗ ∼ J (〈h2〉/J 2)1/(5K−2); on the contrary, at K > 5/2, non-
linearity is always important at low temperatures. In terms of
the � parameter, the borderline at K = 5/2 corresponds to
� = cos π/5 = (1 + √

5)/4 ≈ 0.81.

IV. CONCLUSIONS

We have analyzed the spin and thermal conductance of an
XXZ spin chain with random-field disorder in the parameter
region where the major source of disorder (backscattering of
Jordan-Wigner fermions) is suppressed by quantum fluctua-
tions and irrelevant in the RG sense at low temperatures. Within
the standard bosonization scheme, the problem is reduced to
the Luttinger liquid model with a linear spectrum ε(k) � uk

and Luttinger interaction parameter K in the range 3/2 <

K < ∞, which corresponds to 1/2 < � < 1 in terms of the
original anisotropy parameter � = Jz/J of the spin chain.
We derive a phase boundary in terms of � and normalized
disorder 〈h2〉/J 2 and compare it with the numerical result of
Ref. [18]. Then we used a diagrammatic Drude-like calculation
of thermal and spin conductivities and found a Lorentz number,
see Eq. (29), different from the previous result [27]. We also
argue that quantum interference (the effects beyond Drude
approximation) is irrelevant at low temperatures due to strong
enough inelastic scattering at 1/2 < � < 1.

These results were obtained neglecting forward scattering
of Jordan-Wigner fermions by disorder, which is allowed as
long as the approximation of LL model with linear spectrum
is employed. However, this approximation is not evidently
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correct everywhere in the delocalized phase. We estimated a
region where it might lead to a qualitatively different low-
temperature behavior as � > cos π

5 . The effects of spectrum
nonlinearity will be considered in a separate publication.

We have not studied the region � < 1
2 where localization

due to disorder is expected; here, it is very interesting to
consider the close vicinity of the transition point, 1

2 − � � 1
and 〈h2〉/J 2 � 1 and search for the existence of a localization-
delocalization threshold as a function of the excitation energy,
like the one studied in Refs. [20,28] for the Bethe lattice model.
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APPENDIX: DERIVATION OF THE ENERGY CURRENT
STARTING FROM THE LATTICE MODEL

We study a general Hamiltonian which is a sum of local
on-site energy operators H = ∑

n hn,n+1, with on-site energies
that satisfy the continuity equation ∂thn,n+1 + jE,n+1 − jE,n =
0 with an energy current jE,n = i[hn−1,n,hn,n+1]. For the
particular Hamiltonian (1), on-site energies have the form

hn,n+1 = −J
[
Ŝx

n Ŝx
n+1 + Ŝy

nS
y

n+1 + �Ŝz
nŜ

z
n+1

] + hnŜ
z
n. (A1)

Substituting this expression into the expression for the energy
current yields two contributions. The first contribution is of
kinetic nature, it does not contain disorder and can be written
in a compact form as a determinant:

j
(kin)
E,n = det

⎛
⎜⎝

Ŝx
n−1 Ŝx

n Ŝx
n+1

Ŝ
y

n−1 Ŝ
y
n Ŝ

y

n+1

�Ŝz
n−1 Ŝz

n �Ŝz
n+1

⎞
⎟⎠. (A2)

Below, we will focus only on the second term, which contains
disorder. The corresponding expression in the original spin
representation and in the Jordan-Wigner representation reads
as follows:

j
(dis)
E,n = −i

J

2
hn(S+

n−1S
−
n − S−

n−1S
+
n )

= −i
J

2
hn(c†n−1cn − c†ncn−1). (A3)

The next step is to take the continuum limit by replacing the
lattice operators cn with the continuous field ψ(x = na) =
cn/

√
a and replacing fields hn with the continuous potential

V (x = na) = hn. The corresponding expression for the energy
current density then reads as follows:

j
(dis)
E (x) = −i

J a

2
V (x)(ψ†(x − a)ψ(x) − ψ†(x)ψ(x − a)).

(A4)
In order to separate forward and backward scattering,

we introduce slowly varying in space left- and right-
moving fermionic fields ψL,R(x) with ψ(x) = eikF xψR(x) +
e−ikF xψL(x). After splitting the potential V (x) onto a
“forward-scattering” part η(x) with Fourier harmonics q ∼ 0
and a “backward-scattering” part ξ (x) with q ∼ 2kF , one
obtains the contributions to the energy current from forward-
and backward-scattering processes:

j
(f.s.)
E = Ja

2
η(x)(ψ†

R(x − a)ψR(x)−ψ
†
L(x − a)ψL(x))+H.c.

≈ Jaη(x)(ψ†
R(x)ψR(x) − ψ

†
L(x)ψL(x)), (A5)

j
(b.s.)
E = Ja

2
ξ ∗(ψ†

R(x − a)ψL(x) − ψ
†
R(x)ψL(x − a)) + H.c.

≈ Ja2

2
ξ ∗(−∇ψ

†
RψL + ψ

†
R(x)∇ψL) + H.c. (A6)

One can see that the backward-scattering contribution is of the
next order in the small lattice constant a and indeed vanishes in
the continuum limit, that is, a → 0 keeping u ∝ Ja constant.

[1] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321,
1126 (2006).

[2] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett.
95, 206603 (2005).

[3] R. Nandkishore and D. A. Huse, Ann. Rev. Condens. Matter
Phys. 6, 15 (2015).

[4] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411
(2010).

[5] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 111,
127201 (2013).

[6] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 110,
260601 (2013).

[7] R. Berkovits, Phys. Rev. B 89, 205137 (2014).
[8] Y. Bar Lev, G. Cohen, and D. R. Reichman, Phys. Rev. Lett.

114, 100601 (2015).
[9] A. V. Sologubenko, K. Gianno, H. R. Ott, A. Vietkine, and A.

Revcolevschi, Phys. Rev. B 64, 054412 (2001).

[10] N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G.
Roth, G. Behr, B. Buchner, and C. Hess, Phys. Rev. B 81,
020405(R) (2010).

[11] N. Hlubek, P. Ribeiro, R. Saint-Martin, S. Nishimoto, A.
Revcolevschi, S.-L. Drechsler, G. Behr, J. Trinckauf, J. E.
Hamann-Borrero, J. Geck, B. Buchner, and C. Hess, Phys. Rev.
B 84, 214419 (2011).

[12] C. Karrasch, R. Ilan, and J. E. Moore, Phys. Rev. B 88, 195129
(2013).

[13] Y. Huang, C. Karrasch, and J. E. Moore, Phys. Rev. B 88, 115126
(2013).

[14] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).
[15] T. Giamarchi, Quantum Physics in One Dimension (Clarendon

press, Oxford, 2003).
[16] Z. Ristivojevic, A. Petkovic, P. Le Doussal, and T. Giamarchi,

Phys. Rev. Lett. 109, 026402 (2012).
[17] G. Bouzerar and D. Poilblanc, J. Phys. I (France) 4, 1699 (1994).

235448-7

http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevB.89.205137
http://dx.doi.org/10.1103/PhysRevB.89.205137
http://dx.doi.org/10.1103/PhysRevB.89.205137
http://dx.doi.org/10.1103/PhysRevB.89.205137
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevB.64.054412
http://dx.doi.org/10.1103/PhysRevB.64.054412
http://dx.doi.org/10.1103/PhysRevB.64.054412
http://dx.doi.org/10.1103/PhysRevB.64.054412
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/10.1103/PhysRevB.84.214419
http://dx.doi.org/10.1103/PhysRevB.84.214419
http://dx.doi.org/10.1103/PhysRevB.84.214419
http://dx.doi.org/10.1103/PhysRevB.84.214419
http://dx.doi.org/10.1103/PhysRevB.88.195129
http://dx.doi.org/10.1103/PhysRevB.88.195129
http://dx.doi.org/10.1103/PhysRevB.88.195129
http://dx.doi.org/10.1103/PhysRevB.88.195129
http://dx.doi.org/10.1103/PhysRevB.88.115126
http://dx.doi.org/10.1103/PhysRevB.88.115126
http://dx.doi.org/10.1103/PhysRevB.88.115126
http://dx.doi.org/10.1103/PhysRevB.88.115126
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevLett.109.026402
http://dx.doi.org/10.1103/PhysRevLett.109.026402
http://dx.doi.org/10.1103/PhysRevLett.109.026402
http://dx.doi.org/10.1103/PhysRevLett.109.026402
http://dx.doi.org/10.1051/jp1:1994215
http://dx.doi.org/10.1051/jp1:1994215
http://dx.doi.org/10.1051/jp1:1994215
http://dx.doi.org/10.1051/jp1:1994215


IGOR POBOIKO AND MIKHAIL FEIGEL’MAN PHYSICAL REVIEW B 92, 235448 (2015)

[18] P. Schmitteckert, T. Schulze, C. Schuster, P. Schwab, and U.
Eckern, Phys. Rev. Lett. 80, 560 (1998).

[19] J. M. Carter and A. MacKinnon, Phys. Rev. B 72, 024208 (2005).
[20] M. V. Feigelman, L. B. Ioffe, and M. Mezard, Phys. Rev. B 82,

184534 (2010).
[21] A. Klein and J. F. Perez, Commun. Math. Phys. 128, 99 (1990).
[22] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 75,

085421 (2007).

[23] A. D. Mirlin, D. G. Polyakov, and V. M. Vinokur, Phys. Rev.
Lett. 99, 156405 (2007).

[24] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
[25] A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
[26] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 76, 3192

(1996).
[27] M.-R. Li and E. Orignac, Europhys. Lett. 60, 432 (2002).
[28] M. V. Feigel’man and L. B. Ioffe (unpublished).

235448-8

http://dx.doi.org/10.1103/PhysRevLett.80.560
http://dx.doi.org/10.1103/PhysRevLett.80.560
http://dx.doi.org/10.1103/PhysRevLett.80.560
http://dx.doi.org/10.1103/PhysRevLett.80.560
http://dx.doi.org/10.1103/PhysRevB.72.024208
http://dx.doi.org/10.1103/PhysRevB.72.024208
http://dx.doi.org/10.1103/PhysRevB.72.024208
http://dx.doi.org/10.1103/PhysRevB.72.024208
http://dx.doi.org/10.1103/PhysRevB.82.184534
http://dx.doi.org/10.1103/PhysRevB.82.184534
http://dx.doi.org/10.1103/PhysRevB.82.184534
http://dx.doi.org/10.1103/PhysRevB.82.184534
http://dx.doi.org/10.1007/BF02097047
http://dx.doi.org/10.1007/BF02097047
http://dx.doi.org/10.1007/BF02097047
http://dx.doi.org/10.1007/BF02097047
http://dx.doi.org/10.1103/PhysRevB.75.085421
http://dx.doi.org/10.1103/PhysRevB.75.085421
http://dx.doi.org/10.1103/PhysRevB.75.085421
http://dx.doi.org/10.1103/PhysRevB.75.085421
http://dx.doi.org/10.1103/PhysRevLett.99.156405
http://dx.doi.org/10.1103/PhysRevLett.99.156405
http://dx.doi.org/10.1103/PhysRevLett.99.156405
http://dx.doi.org/10.1103/PhysRevLett.99.156405
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1103/PhysRevLett.76.3192
http://dx.doi.org/10.1103/PhysRevLett.76.3192
http://dx.doi.org/10.1103/PhysRevLett.76.3192
http://dx.doi.org/10.1103/PhysRevLett.76.3192
http://dx.doi.org/10.1209/epl/i2002-00282-0
http://dx.doi.org/10.1209/epl/i2002-00282-0
http://dx.doi.org/10.1209/epl/i2002-00282-0
http://dx.doi.org/10.1209/epl/i2002-00282-0



